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ABSTRACT 

Deep Neural Network (DNN) object detectors have proved their efficiency in the detection and 

classification of objects in normal weather. However, these models suffer a lot during bad weather 

conditions (foggy, rain, haze, night, etc.). This study presents a new scheme to reduce the aforementioned 

issue by attenuating the noise in the input image before feeding it to any kind of neural network-based 

object detector. In this study, the image optimization function transforms subpar-quality images due to 

bad weather into pictures with the optimal possible quality by estimating the proper illumination and 

transmission function. These optimized images showed improved object detection rates in the YOLOv4 

and YOLOv5 models. This improvement in object detection was also noticed in the case of video input. 

This scheme was tested with images/videos from various weather conditions, and the results showed an 

encouraging improvement in detection rates. 
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I. INTRODUCTION  

Object recognition with bounding boxes mentioning its 
class has numerous implementations in robotics, self-driving 
vehicles, drones, advanced driver assistant systems, etc. 
Current algorithms are good at handling camera inputs and 
identifying multiclass objects in both image and video. Recent 
studies have shown that these detectors severely underperform 
in challenging weather conditions, such as snow, rain, fog, etc. 
This performance decrease is ascribable to the subpar quality 
image input from the cameras due to reduced illumination and 
increased noise. In the case of autonomous vehicles, input 
images or video sequences can have sizeable variations in 
quality due to the type of camera used, its position, as well as 
the environmental conditions. Contemporary object detectors 
based on neural networks are trained and tested in general with 
appropriately illuminated images. The performance of these 
object detectors suffers greatly in challenging weather 
conditions due to low-quality image input. Unfortunately, this 
is the real-time scenario in most automated applications. In 
self-driving applications, training a Convolutional Neural 
Network (CNN)-based model with all possible environmental 
conditions and scenarios is nearly impossible. Figure 1 shows a 

few samples of bad situations that can be encountered while 
driving. 

Global research on addressing this issue has been 
streamlined into three major strategies, which are sensor fusion, 
image preprocessing, and domain adaptation. The conventional 
approach of depending only on the input from the camera has 
been shown to be inadequate in bad weather conditions. Sensor 
fusion is another strategy to improve object detection. In [1], 
the fusion of a camera, lidar, and radar was used to 
complement each other for object detection in the most 
possible scenarios of driving. The major setback of this strategy 
is the scarcely available datasets using this combination of 
sensors. Furthermore, incorporating multiple sensors into an 
automobile is not cost-effective and can spoil its aesthetics. The 
change in environmental conditions can be considered a 
domain shift. A few models that rely on domain adaptation 
have been proposed for object detection at critical points. Such 
models demand enormous training datasets, and the annotation 
of such data is an intricate process. In addition, the use of 
synthetic datasets has emerged to be a failure due to the 
decrease in performance when tested in real-time.  
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Image preprocessing is another way to enhance the 
attenuated camera images before they are fed into CNN 
models. In [1-3], it was shown that existing preprocessing 
strategies developed, trained, and tested using more or less 
synthetic datasets tend to be unreliable in real-world conditions, 
particularly for moving objects. In this study, the issue of 
object detection and classification in bad weather conditions 
was addressed by incorporating an image preprocessing unit 
into the object detectors, called Reinforced Image Object 
Detector (RIOD). The image preprocessing unit works by 
eliminating noise from the camera output and producing a 
clearer image, which is then fed to the object detector. As 
predicting the input domain or situation of the scene is almost 
impossible, it would be appropriate to remove the noise from 
the attenuated images and, therefore, improve the performance 
of the object detectors. The scope of this study can be 
summarized as follows: 

 Designing an image reinforcement filter and using it before 
the object detectors. Based on certain variables, this filter 
can transform subpar images from the camera into images 
with proper illumination and better quality.  

 Trainning the "You Only Look Once" (YOLO) v4 and v5 
models with annotated datasets consisting of images under 
varying conditions i.e., fog, night, day, rain, haze, etc. 

 Testing by filtering and reinforcing the data from the 
sensor. This reinforced image/video is then fed to the 
YOLOv4 and YOLOv5 models for object detection and 
classification. 

 Perform several iterations, separately for images and video 
inputs, with YOLOv4 and YOLOv5 models to investigate 
the results of the proposed method in object detection and 
classification with the camera as the sole input sensor. 

 

 

Fig. 1.  Images representing the harsh driving scenarios under bad weather 

conditions. These images are samples collected from the DAWN dataset [4].  

II. RELATED WORKS 

Object detectors that rely on the deep CNN concept have 
produced excellent results in detecting objects with bounding 
boxes and labels. However, these models cannot be employed 
directly in certain applications, such as autonomous vehicles. In 

this case, image quality and visibility are highly dependent on 
environmental conditions. Object detectors can be broadly 
classified into two groups: single-stage and two-stage detectors. 
Single-stage detectors are faster in operation than two-stage 
detectors. Single-Shot multi-box Detector (SSD) [5] and 
YOLO [6] are two common single-stage object detectors. 

Many researchers work on domain adaptation to improve 
object detection and classification in harsh climate conditions. 
In [7], the existing faster Region-based CNN (R-CNN) model 
was complemented with domain adaptive components (image 
and instance level shift), showing a slight performance 
improvement under all climate conditions. Although there is a 
slight performance improvement, R-CNN is slow in processing 
compared to the YOLO detectors [8]. In [9], domain-adaptive 
components were integrated into the YOLOv4 backbone at 
three different levels. This model exhibited a certain level of 
improvement in detecting objects compared to the original 
YOLOv4. In [10], a plug-and-play module, called cross-fusion, 
was added to the YOLOv5 model to combine the features of 
multiple convolutional layers, but its improved performance 
came at the cost of increased computational complexity. In [11-
12], a multimodal sensor fusion technique was proposed, which 
presented an enhanced object detection rate for autonomous 
vehicles. However, the integration of four different sensors and 
the simultaneous processing of their outputs in real time proves 
to be cumbersome and expensive compared to other methods. 

III. REINFORCED IMAGE OBJECT DETECTOR 

YOLO is one of the fastest object-detecting models and has 
multiple versions. This study used YOLOv4 and YOLOv5 as 
baseline models, as they exhibit enhanced object detection 
performance when provided with good-quality images as input 
[13]. YOLOv4 [14], is a fast-operating object detection system 
that can be compared to a human body, with CSPdarknet53 
being the backbone of the system that extracts multiple 
features. These features are collected by the layers called 
Spatial Pyramid Pooling (SPP) and Path Aggregation Network 
(PAN), which are the neck of the arrangement. This is further 
fed to the head of the system which is the original YOLOv3. 
After surveying these features, the head annotates the bounding 
boxes as well as the probabilities of the class of each box. 

YOLOv5 is a faster and more lightweight object detection 
system that is more suitable for real-time applications. This 
system relies on a similar three-layer architecture comprising 
the backbone, neck, and head. The YOLOv5 architecture uses a 
focus structure with CSPDarknet53 as its backbone, which 
increases its speed and adds features like data augmentation 
and auto-learning bounding boxes. The weight files of 
YOLOv5 are significantly smaller than those of YOLOv4, 
making YOLOv5 faster and easier to handle. In the proposed 
RIOD-YOLO, the image/video is preprocessed with the help of 
image enhancement filter banks before feeding to the object 
detectors, to ensure that the performance of these detectors is 
kept stable irrespective of the driving scenario, namely fog, 
rain, night, day, etc. 

A. Filter Design for Image-Enhancement 

The output of the sensor, namely the camera output, is 
directed to the image preprocessing filter. This filter cleans up 
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the noisy image that is captured under undesirable weather 
conditions. These refined images are further tested for object 
detection using the YOLOv4 and YOLOv5 models. In this 
study, YOLOv4 was trained and tested with a custom dataset, 
collected specifically for autonomous vehicle applications, and 
YOLOv5 was tested with trained weights. During bad weather 
conditions, the images captured by the camera suffer a lot due 
to low visibility. These subpar images can be upgraded with the 
help of boundary conditions and regularizations [15]. The filter, 
designed as in [15], can perform scene transmission, 
regularization, and optimization to reduce noise and increase 
overall quality of the image. This filter can be used as a 
separate module and work as a ready-to-use image enhancer for 
any CNN model. The brightness of any pixel captured by the 
camera under any climatic condition can be derived as [15-17]: 

���� = �������� + 	
1 − ����
  (1) 

where R(x) represents the captured pixel value, L(x) is the 
luminosity of the scene, T(x) is the scene transmission that 
describes the light that has reached the camera without getting 
scattered, and A is the atmospheric light. The objective is to 
recover L(x) from (1), which requires an estimation of the 
transmission function T(x) and the atmospheric light A. From 
(1), the scene can be recovered as: 

���� =
������

����
+ 	    (2) 

Thus, every x, L(x) can be determined from (2) using the 
transmission function T(x), quantified based on the boundary 
constraints specified in [15], and by estimating the atmospheric 
light A. Let us consider that L(x) is bounded between two 
vectors C0 and C1 that have valid radiance values for every 
image. This in turn leaves a boundary constraint on T(x). Using 
the concept of extrapolation, a boundary constraint Lb(x) is 
worked out for every pixel x, and the lower bound Tb(x) is 
determined by rearranging (2) as: 

�

����
=

‖������‖

‖������‖
    (3) 

The lower bound Tb(x) ensures that the extrapolated values 
lie within the radiance vector values, therefore: 

�����  ≤  ����  ≤ 1    (4) 

This implies that the extrapolated values for each pixel x 
must be within [Tb(x), 1]. Tb(x) is further worked out as [15]: 

�� ��� = ���{����∈{!,#,�}�
�%  &  �% ���

�% � �%'
,

�%  &  �% ���

�% � �%(
�,1} (5) 

This includes determining the smallest of the two terms, 
which are based on the color channels (RGB) and factors such 
as atmospheric light A, pixel intensity R(x), and radiance bound 
Cc0 and Cc1. Scene transmission T(x) is substantially 
regularized to enhance the quality of dehazing. This approach 
employs weighted constraints between adjacent pixels: 

)��, *�
���� –  ��*�
    (6) 

where x and y are two adjacent pixels. The w(x, y) controls the 
influence of constraints and ensures that similar neighboring 
pixels have similar transmission values. A bank of higher-order 
differential filters is used to calculate the weighting function in 
discrete form. The atmospheric light is estimated by applying a 
minimum filter to each color channel of the input image and 
then selecting the maximum value from each channel. 

B. RIOD Architecture 

Rather than complicating the design of Deep Neural 
Networks (DNN) [9-12, 18-19], a separate filter was developed 
to be placed between the camera and the CNN module. This 
filter mechanism enriches the image captured by the camera 
and feeds it to CNN models, as shown in Figure 2. This filter 
arrangement works efficiently for both image and video input. 
As mentioned above, this filtering mechanism reinforces the 
input image to the CNN model and, in turn, increases the object 
detection rate, particularly in adverse climate conditions. 

IV. EXPERIMENTAL SETUP AND RESULTS 

The YOLOv4 and YOLOv5 models were trained and tested 
with a custom dataset, consisting of 5232 images collected 
from a variety of datasets including Dawn, Udacity [20], 
BDD100k [21], and the Indian driving dataset [22]. The dataset 
includes images under various climate conditions, such as rain, 
fog, haze, night, and day. The models were tested using the 
custom dataset to detect 9 classes of objects, namely car, van, 
truck, traffic light, person, motorcycle, bus, and bicycle. The 
tests were carried out on standalone YOLO and RIOD-YOLO. 

 

 
Fig. 2.  RIOD architecture: A filter is placed between the camera and the CNN models, enhancing the image before feeding into the YOLO-based object 

detector. The output from the YOLO-based detector shows the multi-box classification of objects. The chosen images are from the DAWN dataset [4]. 
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Fig. 3.  Reinforced filter output for different climatic conditions such as fog, rain, and snow. All images are from the DAWN dataset [4]. 

 
Fig. 4.  Object detection under various climatic conditions: (a) input image, (b) object detection using customized YOLOv4, (c) RIOD using YOLOv4, and (d) 

RIOD using YOLOv5. All images are from the DAWN dataset [4]. 

A. Setup 1 

The original YOLOv4 model with CSPdarknet53 as its 
backbone was initialized with a pre-trained weight file. The 
weights were updated by training the model using a custom 
dataset in batches of 64 images with a learning rate of 0.0001. 
This updated custom weight file was then used to test the 
model. Table I shows the test results. The reinforcement filter 

was mapped out based on the notion of extrapolation. First, the 
input images were passed through the reinforcement filter 
before being sent to the YOLO models for testing. Figure 3 
compares the input and the corresponding output of the 
reinforcement filter for every image. These reinforced images 
are then fed into the customized YOLOv4 model for testing. 
Figure 4 shows the improvement in object detection rate after 
using the reinforcement filter in various climatic conditions. 
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B. Setup 2 

The reinforcement filter functions as a plug-and-play 
module that can work with different versions of YOLO. In this 
iteration, the filter was attached to the YOLOv5 model, which 
was tested with both a pre-trained weight file (YOLOv5s) and 
a customized weight file. Figure 4 shows the improvement in 
object detection rate after attaching the reinforcement filter. 

C. Evaluation Parameters 

The performance was measured and quantitatively 
evaluated using average Precision (P) and Mean Average 
Precision (MAP). Their computation procedure was: 

, =
�-

�-./-
     (7) 

� =
�-

�-./0
     (8) 

where TP represents true positive, FP also false positive, and 
FN also false negative. The Average Precision (AP) is given 
by: 

	, = 1 ,��� 2�
�

3
    (9) 

The Mean Average Precision (MAP) is given by: 

4	, =
�

0
∑ 	,��∈0     (10) 

where N is the number of object classes. The models were 
tested with the custom dataset, consisting of randomly selected 
images under a variety of climatic conditions, and Table I 
shows the MAP values. 

TABLE I.  COMPARISON OF DIFFERENT CNN METHODS  

Method  Dataset 
Classes 

MAP 
C B V TL P MC 

Domain adaptive faster 

R-CNN [7] 
Cityscapes 41 35 22 - 25 20 29 

YOLOv4[6]  Cityscapes 47 30 - - 32 17 31 

(MS-DAYOLOV4) [9] Cityscapes 56 36 - - 39 29 40 

Robost YOLOv3 Cityscapes 58 51 - - 36 26 43 

Robost YOLOvX Cityscapes 61 57 - - 45 42 51 

YOLOv4 BDD100K 73 - - 47 42 - 54 

YOLOv4 INIT 74 - - 48 45 - 56 

RIOD-YOLOv4 
custom 

dataset 
65 41 22 16 26 70 40 

RIOD-YOLOv5 
custom 

dataset 
78 77 60 43 60 75 65 

column classes C: car, B: bus, V: van, TL: traffic light, P: person, MC: motorcycle 

 

V. CONCLUSION 

The proposed RIOD-YOLO aimed to improve object 
detection efficiency, particularly under adverse climatic 
conditions. In this method, the output from the sensor is fed to 
the image enhancement filter, which comprehensively 
improves the image quality before being fed to the object 
detectors, improving the rate of object detection. A customized 
dataset was used to evaluate the effectiveness of the proposed 
method, and the results clearly showed an improvement in the 
rate of object detection, especially under unfavorable climatic 
conditions. When compared to the baseline YOLO models, the 
proposed RIOD-YOLO produced promising results in every 

aspect. The scope of RIOD-YOLO is not limited to just 
autonomous driving, as it can also be used in surveillance 
systems that use image/video input to improve visibility, 
especially in adverse weather conditions. 
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