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ABSTRACT 

Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on 

human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that 

contribute to them are of the utmost importance. This study employed advanced tree-based machine 

learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate 

matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting 

(GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree 

(ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model 

outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R
2
 of 0.71. 

Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack 

of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind 

speed emerged as the primary determinants in forecasting PM2.5 levels. 

Keywords-air pollutants; machine learning; SHAP analysis 

I. INTRODUCTION  

Air pollution has become a prominent concern in the 21st 
century posing a significant threat to human health [1]. Vehicle 
emissions contribute significantly to atmospheric pollution in 
urban areas, often serving as the primary source of ultrafine 
particles and chemical pollutants, including carbon monoxide 
(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and Total 
Volatile Organic Compounds (TVOCs) [2-3]. In general, 
increased air pollution can be attributed to increased 
motorization, energy consumption, and urbanization [4]. 
Exposure to elevated levels of automobile exhaust pollution 
adversely affects human health. Numerous studies have shown 
a link between exposure to air pollution on heavily trafficked 
roads and various harmful health effects, including elevated 
risk of mortality [5-6], higher rates of cardiopulmonary 

mortality [7], higher incidence of coronary heart disease [8], 
impaired respiratory function such as wheezing and reduced 
peak respiratory flow during infancy [9], lung cancer [10], 
pulmonary edema [11], allergic alveolitis [12], and 
development of chronic bronchitis and asthma [13]. Higher 
incidences of these health effects have been observed in cities 
that rely on automobiles for daily transportation due to 
inadequate public transport [14]. It is important to recognize 
that some of the other factors that contribute to these emissions 
include the presence of old and deteriorated engines, the use of 
improper fuel grades, the lack of routine maintenance, engine 
degradation over time, excessive vehicle use, mishandling of 
lubricants, and limitations in achieving optimal fuel 
combustion [15]. In addition to these factors, meteorological 
factors have been proven to influence the concentration and 
spread of air pollutants.  
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Air pollution modeling can describe the causal relationship 
between emissions, meteorology, atmospheric concentrations, 
deposition, and other aspects. Air quality modeling aims to 
forecast the dispersion, spatial distribution, and concentration 
of atmospheric pollutants using mathematical or statistical 
methods that replicate physical and chemical processes [16]. 
Currently, there is widespread adoption of Machine Learning 
(ML) techniques for air quality forecasting. ML is a 
computational approach to extracting information from data, 
characterized by its ability to autonomously adjust its 
algorithms and models in response to new datasets, requiring 
minimal initial configuration [17]. The typical steps in this 
process involve data collection, screening model evaluation, 
analysis using a complex model and algorithm, and finally 
evaluation and verification of the model's output. Although ML 
has proven to be effective in making predictions, one of its 
major disadvantages is its black-box nature. Therefore, the post 
hoc SHapley Additive exPlanations (SHAP) [18] technique has 
been used to explain models from both a global and a local 
perspective. SHAP is normally used to make an ML model 
more explicable by visualizing its output. Due to the high 
efficiency of SHAP in interpreting various ML models, it has 
been used in several fields, such as the safety assessment of 
infrastructure projects [19], clinical medicine and healthcare 
modeling [20-21], transportation and traffic safety [22-25], and 
economic risk analysis [26].  

ML techniques have been used by many studies in air 
quality modeling and prediction, facilitated by the transition 
from manual to automated methods. In [27], roadside air 
pollution in Lisbon, Portugal, was modeled by training ML 
models with data from meteorological sensors and mobile 
monitoring stations, showing that the Random Forest (RF) 
algorithm was more effective in forecasting pollutant 
concentrations. In [28], data from fixed monitoring stations and 
meteorological sensors were used to perform deep learning-
based prediction, showing that a Support Vector Regression 
(SVR) model was the best in predicting pollutant 
concentrations. In [29], air pollution levels in Delhi, India, 
were predicted using data from fixed monitoring stations and 
meteorological sensors, showing that a Multi-Layer Perceptron 
(MLP) Neural Network (NN) was best suited to predict 
pollutant concentrations. In [16], ML algorithms were used to 
predict traffic-related particulate matter pollution in Sao Paulo, 
Brazil, using data from fixed monitoring stations and traffic 
sensors and showing that SVR was the best in predicting 
pollutant concentrations. Some studies used sophisticated 
methods, such as ensemble learning classification systems, to 
predict air quality [30]. Artificial Neural Networks (ANNs) 
have also been popular techniques in predicting air pollution 
[31-33]. In general, ML algorithms can be effective in 
simulating and forecasting levels of roadside air pollution and 
can be used to create more precise and effective air quality 
monitoring systems. 

This study used different ML algorithms, including 
Extreme Gradient Boosting (XGBoost) [34], RF [35], Extra 
Tree (ET) [36], Gradient Boosting (GB) [37], and Light 
Gradient Boosting Machine (LGBM) [38], which were 
optimized using a Bayesian optimization approach [39]. These 
models were trained and evaluated using data on vehicle-

induced air pollutants, specifically PM2.5, collected from the 
JKIA-Westlands expressway corridor in Kenya. Additionally, a 
statistical multivariate linear regression model was used as a 
benchmark model. This study used Bayesian optimization and 
ML regression models in conjunction with SHAP analysis to 
determine the optimal regression model for the dataset. This 
amalgamation was expected to provide a reliable and accurate 
method for evaluating vehicle-induced air pollutants. Figure 1 
shows the complete research process. 

 

 
Fig. 1.  Research framework. 

II. METHODOLOGY 

A. Site and Data Collection 

Data were collected at three locations along the JKIA-
Westlands Expressway in Kenya, as shown in Figure 2: 
Westlands, Bellevue, and City Cabanas. The Westlands 
location has mixed commercial and residential land use 
whereas City Cabanas is a predominantly industrial area and 
has commercial land use. The Bellevue station is close to the 
city center and characterized by residential and commercial 
land use. Data were collected 24/7 during August 2022, 
December 2022, and February 2023. Traffic volume was 
collected using manual traffic counts that were recorded every 
15 minutes and summarized as hourly traffic volume. Various 
vehicle classifications were recorded: motorcycles, cars, 
minibuses, buses, light-goods vehicles, medium-goods 
vehicles, heavy-goods vehicles, and articulated trucks. In 
addition to documenting traffic volume, the study 
simultaneously collected data on air pollutant concentrations, 
average vehicle speed, and meteorological data, such as 
humidity, wind speed, and temperature. Air quality was 
measured using Open-Seneca sensors for each second. Air 
quality data includes the concentrations of Particulate Matter 
(PM1.0, PM2.5, PM4.0, PM10), Typical Particle Size (TPS), 
Number of Concentrations of particles (NC1.0, NC2.5, NC4.0, 
NC10), TVOC, and equivalent CO2. The air quality data was 
then averaged to the hourly data so that a comparison could be 
made between air quality, hourly traffic, and meteorological 
data. Regarding air quality data, this study focused exclusively 
on PM2.5. 
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Fig. 2.  Data collection sites along the JKIA-Westlands Expressway 
(ArcGIS 10.5.1). 

B. Model Development  

A statistical multiple variable Linear Regression (LR) 
model and five advanced ML models (GB, XGBoost, RF, ET, 
and LGBM) were used to forecast PM2.5. Python 3.7.1 was used 
to implement the models and Bayesian optimization was used 
to tune their hyperparameters. Figure 3 illustrates the procedure 
involved in developing the ML models. 

 

 
Fig. 3.  Flow diagram of ML modeling, showing input and output 
variables. 

C. Gradient Boosting (GB) 

GB is an ML algorithm that gradually merges multiple 
weak learners into a single robust one. The following are the 
necessary steps in GB: Start by making a simple tree with only 
one root node that is the first impression of each sample. Next, 
use the flawed nodes to build a new tree. Sort the branches by 
how quickly they learn (the value is usually between 0 and 1). 
This learning rate will be used as input to the tree for the 
forecast. Then, combine the newly constructed tree with the 
older trees to make a prediction. If the fit has not improved 
after a certain number of trees was added, return to the second 
step. The combined set of trees is the prediction model. 

D. Random Forest (RF) 

The RF regression model is a collection of multiple 
decision trees that function as parallel estimators. The result is 
determined by aggregating the majority vote of the results 
obtained from each decision tree. The efficiency of an RF 
model depends on the utilization of uncorrelated decision trees. 
The training phase for each decision tree is improved by 
incorporating bootstrapping and feature randomness. The 
bootstrapping process involves the random selection of samples 
from a given training dataset with replacement. On the other 
hand, feature randomness is achieved by randomly selecting a 
subset of features for each decision tree within the RF model. 
Consequently, the base estimators exhibit independence and 
identical distribution, which leads to improved performance 
when subjected to the bagging technique. 

E. Extreme Gradient Boosting (XGBoost) 

XGBoost regression employs the technique of gradient 
descent on decision trees to iteratively generate a series of 
models. These models are subsequently combined sequentially, 
with each model aiming to rectify the errors made by the 
previous models. The ultimate objective is to produce a final 
model that is optimized for the given task. XGBoost 
demonstrates high efficiency in terms of computational 
resource utilization and processing speed. 

F. Light Gradient Boosting Machine (LGBM) Regression 

This framework uses tree-based learning to achieve 
efficient and distributed boosting. LGBM employs a leaf-wise 
growth strategy to construct the tree, in which a tree is 
generated for each individual sample. The selection of the leaf 
is determined by the maximum potential for growth inhibition. 
The leaf-wise algorithm exhibits less loss compared to the 
level-wise tree algorithm due to the fixed nature of the leaf. 
Therefore, the growth of trees in a leaf-wise manner results in 
heightened complexity in the model and occasionally results in 
overfitting when applied to datasets of limited size. LGBM 
aims to decrease complexity through the use of gradient-based 
one-side sampling and exclusive feature bundling. 

G. Multivariate Linear Regression (MLR) 

MLR is a widely used technique in supervised ML that 
examines the relationship between a group of independent 
variables or features and a singular outcome variable. This 
technique uses mathematical equations to represent and predict 
outcomes, particularly in cases where the correlation 
coefficient between the variables suggests a statistically 
significant association. 

H. Extra Tree (ET) Regression 

The ET algorithm was created to mitigate the risk of 
overfitting the dataset. Like RF, ET uses a random subset of 
features to train each base estimator. The selection of the 
optimal feature and value for node partitioning is carried out 
randomly. 

I. Bayesian Optimization 

Bayesian optimization strategy was used to fine-tune the 
hyperparameters in the models. This algorithm uses ideas from 
the Bayesian theorem and is recognized as a prominent method 
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for achieving global optimization. Bayesian optimization has 
been extensively used in various disciplines [40]. Optimization 
of the hyperparameters of the model involves maximization or 
minimization of the objective function. Consequently, the 
algorithm identifies the suitable combination of 
hyperparameters that guarantees that the model's performance 
is maximized to its utmost potential. This study uses R2 as the 
evaluation metric. 

J. SHapley Additive exPlanations (SHAP) 

SHAP is a post hoc evaluation of ML models based on the 
game theory [18]. SHAP employs an additive factor attribution 
method to generate a coherent model. SHAP values improve 
the model's transparency and give insight into the functioning 
of the prediction model. Through the SHAP feature importance 
plot, significant features are selected based on the Shapley 
values. The feature effects and feature importance are 
combined in the summary plot, which indicates the correlation 
between a feature's value and its impact on the prediction. In 
this study, SHAP calculates the contribution of each feature to 
the prediction, which seeks to explain the prediction of an 
instance of air quality. 

III. RESULTS AND DISCUSSION 

Table I presents the descriptive statistics of multiple input 
factors. 

TABLE I.  DESCRIPTIVE STATISTICS OF INPUT FACTORS 

Factors 
Statistics 

Mean St. Dev. Min Max 

Humidity 35.52 12.95 13.33 68.16 
Temperature 26.75 4.53 16.86 42.07 

Average traffic volume 1377.05 653.16 340 3211 
Average vehicle speed 44.41 7.71 22.70 60.18 

Wind speed 4.61 1.83 0.95 9.75 
Location 0.98 0.81 0 2 

 
The dataset used to predict air pollutant concentrations was 

divided into two subsets: a training-validation set, which 
accounted for 70% of the total data, and a testing/holdout set, 
which was 30% of the total data. The training-validation 
dataset was used for the development of the ML models and 
Bayesian optimization. The objective of Bayesian optimization 
was to determine the optimal hyperparameter configuration for 
different ML models to maximize the R2 value within a 
specified sample space. Table II presents the optimal 
hyperparameter values obtained for PM2.5. 

TABLE II.  ML ALGORITHMS WITH THEIR OPTIMAL 
HYPERPARAMETERS FOR THE ESTIMATION OF PM2.5 

Models Hyperparameters Range Optimal values 

LGBM 
{(learning rate), 
(n_estimators)} 

{(0.01-0.1), (50-500)} {0.01, 92} 

GB 
{(learning rate), 
(n_estimators)}  

{(0.01-0.2), (50-500)} {0.08, 100} 

RF {(max_depth)} {2-16)} {7} 

XGBoost 
{(learning rate), 
(n_estimators)} 

{(0.01-0.2), (50-500)} {0.07, 160} 

ET {(max_depth)} {2-16)} {11} 

 

A. Prediction of PM2.5 

Following the determination of the optimal 
hyperparameters, the holdout or testing data was used to 
compare the performance of the models. The dataset was 
divided into partitions after randomization, with 40% and 50% 
of the data allocated for testing. This analysis showed that the 
metric values for model testing remained consistent within the 
95% confidence interval. This precautionary step was 
implemented to mitigate the risk of overfitting. No anomalies 
were observed in the performance metrics, regardless of the 
size of the test data. Table III presents the efficiency metrics for 
PM2.5 prediction, using both training and test datasets. The ET 
model exhibited superior performance compared to the others, 
as shown by its lower Mean Absolute Error (MAE) of 1.69, 
Mean Squared Error (MSE) of 5.91, Root Mean Squared Error 
(RMSE) of 2.43, and higher R2 of 0.711. The linear regression 
model showed the poorest performance, having 3.57 MAE, 
19.11 MSE, 4.37 RMSE, and 0.064 R2. Prediction error plots 
were used, as shown in Figure 4, to evaluate the efficiency of 
the ML regression models in predicting PM2.5 and their ability 
to make predictions on unobserved data. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

 
(e) 

 
(f) 

Fig. 4.  Prediction Error for PM2.5: (a) XGBoost, (b) RF, (c) LightGBM, 
(d) GB, (e) ET, and (f) LR. 
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TABLE III.  PERFORMANCE USING ML AND STATISTICAL 
MODELS FOR PREDICTING PM2.5 

Training dataset 

Model MAE MSE RMSE R2 

RF 1.73 5.5 2.35 0.73 
XGBoost 1.36 4.78 2.18 0.77 
LGBM 1.73 5.56 2.35 0.73 

GB 2.03 6.89 2.62 0.67 
ET 1.48 4.92 2.22 0.76 
LR 3.53 19.1 4.37 0.09 

Testing dataset 

Model MAE MSE RMSE R-Square 

RF 2.06 7.11 2.66 0.652 
XGBoost 1.64 6.57 2.56 0.678 
LGBM 2.04 7.19 2.68 0.648 

GB 2.35 8.69 2.94 0.575 
ET 1.69 5.91 2.43 0.711 
LR 3.57 19.11 4.37 0.064 

 

B. Global Interpretation by SHAP 

The decision to employ ET as a fitting method for PM2.5, 
considering the given factors, was determined based on its R2 
value. The analysis of the ET prediction for PM2.5 yields 
insights into the global factor interpretation, as shown in Figure 
5, which illustrates the significance and contribution of the 
SHAP factors. The mean absolute SHAP value shown in 
Figure 5(a) signifies the average influence on the magnitude of 
the model's output.  

 

(a) 

 

(b) 

 

Fig. 5.  Global factor interpretation: (a) Factor importance plot, and (b) 
contribution plot for PM2.5. 

Humidity had the highest SHAP significance score of 1.35, 
while temperature had 0.84 and Wind Speed had 0.55. The dots 
that exhibit a color gradient from purple to red, descending to 
the right of the vertical reference line denoting humidity, 
indicate an elevated level of PM2.5 risk. Similarly, the dots that 
symbolize low-temperature values are situated to the right of 
the vertical reference line, suggesting a higher likelihood for 
PM2.5 to escalate. The findings indicate higher accuracy and 
reliability due to the use of ML, which is consistent with the 

findings from earlier studies on air quality prediction [27-31]. 
SHAP was useful in determining the degree to which the input 
parameters had an impact on the forecasts, which is consistent 
with prior studies that used SHAP analysis to gather local 
information about the factors causing either greater or lower 
pollutant concentrations [41-42]. Therefore, SHAP analysis 
provided an effective method for addressing the issue of 
limited interpretability inherent in ML regression models. 

IV. CONCLUSION 

From the analyzed results, the following deductions can be 
made: 

 According to the collected dataset, ET exhibited superior 
performance compared to the other models, as 
demonstrated by its lower MAE (1.69), MSE (5.91), RMSE 
(2.43), and higher R2 value (0.711). The linear regression 
model exhibited the poorest performance, as shown by its 
MAE (3.57), MSE (19.11), RMSE (4.37), and R2 (0.064). 

 In the context of PM2.5 humidity, temperature, and wind 
speed were found to have the most significant influence. 

 Bayesian optimization improved the prediction by selecting 
the important features, which resulted in better predictive 
results. This is in agreement with [43], who obtained better 
results using an improved collection of characteristics to 
predict cardiovascular diseases. 

 Undoubtedly, ML is a highly valuable resource with many 
benefits in different fields, including medicine [43-44], 
information technology [45], and transportation [23, 25]. 
The findings indicate that ML has the potential to be used 
to predict roadside air pollution. 

However, it is important to consider several suggestions for 
future research endeavors: 

 Although this study employed various input parameters to 
predict PM2.5, it is important to note that several additional 
factors could be considered in future investigations. 

 This study focused solely on predicting PM2.5. However, it 
should be noted that future studies could potentially explore 
the prediction of CO, NO2, TVOCs, and SO2. 
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