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ABSTRACT 

High surface quality is an important indicator for high-performance machining during the manufacturing 

process. The surface roughness generated in machining can be affected by cutting parameters and 

machining vibration. To achieve processing efficiency, monitoring surface quality within the desired range 

is important. This study aimed to develop a surface roughness prediction system for the milling process. 

The predictive model was established based on data collected from machining experiments with the 

response surface methodology. The surface roughness is related to independent variables, including cutting 

parameters and machining vibration, in terms of nonlinear functions by regression analysis and the neural 

network approach, respectively. To be implemented in a CNC milling machine for online application, a 

predictive model was introduced in the Virtual Machine Extension (VMX) intelligent software 

development platform. This model can acquire the cutting parameters from the controller via the Open 

Platform Communications Unified Architecture (OPCUA) interface as well as the vibration features from 

the sensory module. The system can calculate the roughness based on these data and issue alert when the 

predicted value exceeds the preset threshold or abnormal vibration is detected. 

Keywords-artificial neural networks; cutting conditions; machining vibration; surface roughness 

I. INTRODUCTION  

With high demand of processing efficiency and high quality, 
high speed machining technology has been widely applied in 
the cutting process of machine components used in aerospace 
industry and 3C industry among others. In addition to high 
material remove rate, high surface quality is another important 
indicator in the manufacturing process for achieving high 
performance machining. Machining quality basically can be 
characterized by surface roughness. Basically, poor surface 
roughness will affect the tribological characteristics of the 
contact surfaces, wear behavior, and the fatigue strength of 
components [1-3]. The surface roughness generated on the 

machined parts can be influenced by many factors such as 
geometry and material of cutter, workpiece material, cutting 
parameters, coolant conditions, machine conditions, etc. [4-7]. 
Cutting parameters such as axial depth of cut, spindle speed, 
and feed rate were shown to have great impacts on surface 
quality [8-10]. The optimization of cutting conditions is a 
prerequisite for producing better surface accuracy [11-14]. 
Therefore, monitoring the surface quality within the desired 
range is of great importance and worthy of investigation. For 
this purpose, authors in [14] proposed a two-pronged approach 
combining Machine Learning (ML) and Nondominated Sorting 
Genetic Algorithm (NSGA-II) to model and optimize surface 
roughness and tool flank wear. The experimental verification 
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showed that the absolute percentage errors of roughness and 
flank wear were 2.5% and 1.5%, respectively. Authors in [15] 
applied multivariable regression analysis to establish a 
prediction model of surface roughness based on the cutting 
parameters, tool wear and tool vibration. They found that feed 
rate is the main factor affecting surface accuracy, and spindle 
speed is the main factor affecting tool vibration in machining. 
Authors in [16] proposed a multi-objective optimization 
algorithm to minimize vibration amplitude and surface 
roughness. The objective functions and the second-order 
response surface models for surface roughness and vibration 
amplitude were created by performing regression analysis 
based on experimentally collected data. Authors in [17] also 
presented regression models in the form of nonlinear 
polynomial function and power-law functions to predict the 
surface roughness of milled surface, which were verified with 
higher prediction accuracy of about 90%. These studies show 
that the influence extent of cutting parameters on the surface 
roughness is different, which is dependent on machine spindle 
tool system, geometry characteristics and material of the cutter, 
workpiece material and selected cutting parameters in the 
experimental conditions. On the other hand, the high-speed 
cutting process is prone to induce chattering phenomena by the 
excitation of cutting force under inappropriate cutting 
parameters. Chatter vibration will adversely affect the surface 
quality and dimension accuracy of the workpiece, and cause 
noise and premature tool failure. In order to avoid chatter 
vibration, an appropriate cutting condition is necessary, which 
basically can be determined by the machining stability of the 
cutter. A cutting condition within a stable region can ensure 
machining without chatter and hence improve surface quality. 
In addition, critical cutting parameters with larger cutting depth 
can achieve maximum removal rate with high efficiency, but it 
may lead to poor surface quality due to excessive tool vibration 
or wear damage. Therefore, monitoring of the workpiece 
surface accuracy and tool damage are major concerns [18-21]. 
Authors in [18-19] applied sensing modules to measure the tool 
vibration and to detect possible damage of the tool. Authors in 
[21] developed a dynamic monitoring system of surface 
roughness by applying a neural network model. The roughness 
prediction model was established based on spindle speed, depth 
of cut, feed rate, and tool vibration in X and Z axes. Authors in 
[22] reported that workpiece surface morphology is affected by 
the vibration of the cutter in machining. They found that an 
increased cutting force with an increasing cutting depth and 
feed rate leads to higher vibration, and it accordingly augments 
surface roughness. Authors in [23-25] reported that surface 
roughness is greatly affected by the vibration amplitude of the 
machine tool and the axial cutting depth. The vibration levels 
are closely related to the cutting parameters and they become 
greater with an increase in the cutting speed and feed rate. 
Authors in [26] considered the influence of machining 
vibration on surface quality when establishing the surface 
prediction model. The input variables included cutting 
parameters, tooling condition, and tool vibration and were 
assessed in the turning process.  

For improving machining quality, it is important and 
necessary to develop a reliable prediction model of the surface 
roughness, which can help engineers to detect the variation of 

the surface quality in process and further confirm whether the 
workpiece really meets the accuracy requirements without off-
line physically measurements. Online monitoring can help to 
immediately prognose the poor accuracy causes, making 
improvements and adjustments of cutting parameters, and 
enhance machining efficiency. This concept is also an 
important core technology for the development of intelligent 
manufacturing. Based on this concept, this study aims to 
develop an online surface quality monitoring system, 
attempting to predict the surface roughness variation in milling 
machining considering the machining vibration, which may be 
affected by tool wear with machining cycles. In this study, a 
series of machining experiments were conducted under various 
combinations of cutting conditions. The dataset collected from 
the experiments, including machining parameters and vibration 
features of the spindle tool and surface roughness of the 
machined parts, were used to establish the prediction model by 
multivariable linear regression analysis and artificial neural 
network modeling. Finally, a monitoring system, including the 
data sensing modules and data processing software, was 
constructed and implemented in the milling machine. The 
system can automatically detect the vibration state and predict 
the variation of surface roughness in process.  

II. EXPERIMENTAL CONFIGURATION AND 

PROCESS 

Figure 1 shows the machining experiments conducted on a 
vertical milling machine, in which a tungsten carbide end cutter 
with a diameter of 10 mm and 60 mm overhang was installed 
in spindle with the BT tool holder. The workpieces are Al6061 

aluminum alloy blocks with dimension of 150  150  80 mm. 
The machining process was carried out by full slot milling on 
the workpieces along the X-direction under different cutting 
parameters. In order to establish a surface roughness predictive 
model, valid for low speed rough machining and high speed 
finish machining, the cutting parameters, such as cutting depth, 
spindle speed, and feed rate were defined in a wide range with 
several levels as presented in Table I. The axial cutting depth 
(Z) was 1, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mm. It was defined in 
the stable region based on the machining stability lobe diagram 
of the cutter. There are 168 machining conditions defined by 
the different levels of cutting parameters, including 8 spindle 
speeds, 3 feed rates, and 7 cutting depths.  

 

 

 

 

Fig. 1.  Machining test and workpiece. 
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TABLE I. CUTTING PARAMETERS AND THEIR LEVELS 

Parameters Symbol Levels 

Spindle speed (rpm) S 
3000, 4000, 5000, 6000 

7000, 8000, 9000, 10000 

Cutting depth (mm) Z 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 

Feed rate (mm/flute) F 0.05, 0.075, 0.10 

 

To assess the vibration of the spindle tool in machining, 
accelerometers (Wilcoxon, Model 787, 500 mV/g, 22kHz) 
were mounted on the spindle housing to measure the vibration 
signals in X, Y, and Z directions simultaneously. For each slot 
machining, the Root Mean Square (RMS) value of the 
vibration signals during the milling period was calculated for 
further data analysis. For each machined slot, the surface 
roughness value (Ra) was measured at 5 equally spaced points 
along the feeding direction with a white light interferometer 
(Zygo, NewView™ 8000 Series). The mean value of the 5 
measurements was calculated and collected along with the 
cutting parameters for subsequent analysis. The morphologies 
of machined surfaces and the vibration spectrum of the milling 
tool under specific machining conditions are illustrated in 
Figure 2. For example, for machining at cutting depth of 1.0 
mm and speed of 4000 rpm, the surface roughness was 
measured as 0.834 μm. When cutting depth was increased to 
2.0 mm at 7000 rpm, the roughness Ra was 2.227 μm.  

 

 

Fig. 2.  Surface morphologies and vibration spectrum. 

III. MODEL DEVELOPMENT 

A. Regression Analysis 

Basically, the roughness generated on the machined surface 
is mainly determined by the cutting parameters and can be 
affected by tool vibrations induced during the machining 
process. The dependence of surface roughness on the process 
parameters can be mathematically formulated in different 
functions through multivariable regression analysis. Based on 
previous studies [17, 27], the surface roughness (Ra) can be 
successfully related to various parameters such as axial cutting 
depth (Z), spindle speed (S), feed rate (F), and machining 
vibration (Vb) by a nonlinear model in the form of a power law 
formula: 

31 2 4Ra bCZ S F V       (1) 

The power-law model can be expressed in logarithmic 
transformation form: 

1 2 3 4lnRa ln ln ln ln ln bC Z S F V         (2) 

The influences of the parameters and their interactions on 
the surface roughness were considered. The regression 
coefficients βi (i = 0, 1, 2) are to be estimated from the 
experimental data by the method of least squares regression 
analysis.  

B. Artificial Neural Network Model 

Artificial Neural Networks (ANNs) have been recognized 
as a powerful tool to establish a high nonlinear correlation 
between dependent and independent variables and the 
interactive effects among variables. In this study, cutting 
parameters, such as spindle speed and cutting depth were 
selected at 8 and 7 levels, respectively. This eventually yields 
the nonlinear characteristic of the surface roughness with 
cutting parameters. Therefore, ANN modeling approach was 
employed to establish the predictive model of surface 
roughness [27-30]. A three layered ANN with one input layer, 
one hidden layer, and one output layer was considered the 
appropriate architecture to model the surface roughness during 
the machining process. The variables or the neuron used input 
layer are spindle speed, feed rate, axial cutting depth, and 
machining vibration of the spindle tool. The target to be 
predicted in the output layer is the surface roughness of the 
machined parts. The neuron in hidden layer provides the 
relationship between the input and the output layers and 
delivers the processed data from the neurons in the input layers 
to neurons in the output layer. A general form characterizing 
the relationship between input data and the neurons in the 
hidden layer is given by: 

ji

n

i
ijjhidden θuWx  

1
,    (3) 

where Wij is the weight coefficient between the input and the 

hidden neurons, ui is the value of the input, and j denotes the 
biases of the hidden neurons. 

The effectiveness of ANN models is dependent on various 
characteristics such as network architecture, activation 
functions, and training algorithms. Essentially, the Multilayer 
Perception (MLP) network was used to establish the predictive 
model, which was trained with the application of the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method, conjugate 
gradient, and the steepest descent training algorithm. Another 
ANN network is the Radial Basis Function (RBF) network, 
which has equivalent capabilities to the MLP model, but with 
faster training [30]. To realize the best network, the activation 
functions—Rectified Linear Unit (ReLU), tanh, logistic were 
chosen based on their ability to introduce non-linearity and 
facilitate learning complex patterns of the data. A trial and 
error scheme was used to determine the appropriate number of 
hidden neurons. Further, the error function was used to 
determine errors between the actual and the calculated values 
during learning, testing, and validation: 
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The prediction performance of the regression models can be 
evaluated with the Root Mean Squared Error (RMSE), 
determination coefficient (R), and Mean Absolute Percentage 
Error (MAPE): 
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where t is the target value, y is the predicted value, and N is the 
number of samples. 

IV. RESULTS AND DISCUSSIONS 

A. Variation of Surface Roughness  

Variations of the surface roughness with changing of 
cutting parameters are illustrated in Figure 3. In addition to 
fewer samples with significant roughness generated at certain 
cutting parameter value, the roughness value of all machined 
surfaces essentially ranges from 0.6 to 3.7 μm, depending on 
the cutting conditions used in machining. At specific speed, 
poor surface roughness was generated under a larger cutting 
depth (Figure 3(a)). At a certain cutting depth, there is no 
significant trend in the effect of spindle speed on the surface 
roughness, but it is clearly shown that when machining was 
conducted under speed between 6000 and 8000 rpm with 
cutting depth above 3.0 mm, the surface roughness increases 
significantly.  

 

 

 

Fig. 3.  Distribution of surface roughness under different cutting 

conditions: (a)speed and depth, (b) feed and depth. 

Figure 3(b) shows the surface roughness generated at 
different feed rates and depths. Obviously, the surface finish 
produced under high feed rates (> 2500 mm/min) and spindle 
speeds between 6000 and 8000 rpm is significantly worse. 
Similarly, the surface finish produced by high feed rates 
(>2500 mm/min) and spindle speeds between 6000 and 8000 
rpm is also significantly worse. Overall, the surface roughness 
increases as the depth of cut increases. A higher feed rate 
generates higher roughness on the machined surface, which 
means that the feed rate has a certain influence on the surface 
roughness. Basically, appropriate values of spindle speed, feed 
rate, and depth of cut can be selected to improve the machining 
quality and processing efficiency from the response surface 
plot against different combination of the cutting parameters.     

B. Variation of Machining Vibration 

Figure 4 shows the variation of the machining vibration 

generated at different cutting conditions. When the specific 

speed is 6000 to 8000 rpm and the depth of cut is above 3.0 

mm, the vibration of the tool increases significantly, resulting 

in a significant increase in surface roughness. The same 

phenomenon of significant increase in tool vibration was 

observed for high feed rate (> 2500 mm/min) and large depth 

of cut (> 2.5 mm), affecting the machining quality with higher 

roughness value. 

 

 

 

Fig. 4.  Response surface of tool vibration under different conditions:  

(a) speed and depth, (b) depth and feed. 

C. Regression Model of Surface Roughness 

From the statistical analysis based on the experimental 
results, the influence of machining parameters and tool 
vibration on the surface quality of the workpiece was clearly 
examined. The statistical coefficients of regression analysis are 
shown in Tables II. The resulting regression equation of surface 
roughness is: 

0.24585 0.6628 0.4907 0.20573
Ra 20.345 bZ S F V   (8) 
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It should be noted that the regression model in explicit form 
clearly shows the influence of the individual parameters and 
their interactive effects on surface roughness. The spindle 
speed has a negative effect on roughness, while the cutting 
depth and feed rate show a positive influence. In other words, 
the roughness shows a tendency to increase with the increase of 
feed rate or cutting depth, but it decreases with increasing 
spindle speed. The scatter plots between the measured 
roughness and the predicted values of all 168 samples are 
shown in Figure 5, which indicates the close correlation 
between them. The correlation coefficient between the 
measured and the predicted values is around 0.79 and the 
average prediction error is 14.5%. The results demonstrate that 
the regression model based on cutting parameters (spindle 
speed, cutting depth, and feed rate) and machining vibration 
displays certain accuracy in predicting the surface roughness. 
This also indicates that the tool vibration induced in machining 
process substantially affects the surface quality of the machined 
parts.   

TABLE II. REGRESSION PARAMETERS OF NONLINEAR 

POWER-LAW Ra MODEL  

Parameter Coefficient Standard deviation P-value 

Intercept 3.01287 0.45928 6.81E-10 

Cutting depth (Z) 0.24584 0.04472 1.46E-07 

Spindle speed (S) -0.6628 0.06959 2.25E-17 

Feed rate (F) 0.49073 0.05326 1.52E-16 

Vibration (Vb) 0.20577 0.02853 1.95E-11 

 

 
Fig. 5.  Comparison of the surface roughness between measurements and 

regression predictions. 

D. ANN Predictive Model 

A dataset collected from machining tests was used to create 
the ANN predictive models, in which 80% of the records were 
selected for model training, 10% of the records were used for 
testing, and the rest for validation. The ANN modeling was 
conducted utilizing MLP and RBF networks, respectively by 
Statistica Neural Networks software [31]. After many attempts, 
the ANN models were evaluated by observing prediction 
performance and correlation coefficient. In the MLP 
architecture, the activation functions, logistic and tanh are 
found to have good performance, enhancing the learning 
efficiency and accuracy. RBF networks typically have three 
layers: an input layer, a hidden layer with a non-linear 
activation function, and a linear output layer. To initialize the 
network, the weights are set to random values. Subsequently, 
through the application of a training algorithm, these weights 
are iteratively adjusted until they converge to specific values 

employing the training algorithm and activation functions. This 
iterative process refines the network, enhancing its ability to 
accurately model and learn from the training data.  

In this study, four ANN models with optimum performance 
were selected, as listed in Table III. The ANN models are 
labeled with the number of neurons in each layer, and the 
optimized number of neurons in the hidden layer. For example, 
MLP 4-14-1 and MLP 4-30-1, were optimized with 14 and 30 
neurons in the hidden layer, respectively. The sensitivity levels 
of the constructed ANN input parameters are also given in 
Table III. Essentially, a parameter with small sensitivity value 
has more influence on the output parameter and a parameter 
with larger sensitivity value shows less influence. As a whole, 
the spindle speed has the larger sensitivity values. 

TABLE III. SENSITIVITY LEVEL OF THE INPUT VARIABLES 

OF THE SELECTED ANN MODELS 

ANN model 
Sensitivity of input variables 

Speed 

(rpm) 

Feed 

(mm/min) 

Depth  

(mm) 

Vibration level 

(g) 

MLP 4-14-1 6.687  5.540  4.014  2.278  

MLP 4-16-1 7.506  7.473  4.697  2.877  

MLP 4-22-1 5.370  5.290  5.792  3.649  

MLP 4-30-1 5.453  5.032  5.407  2.194  

 

Figure 6 depicts the variations of MSE values of the MLP 
network with the training cycles. It was found that MLP 
networks with activation functions tanh and logistic show 
similar learning efficiency with slow convergence performance 
(around 120 epochs). Both activation functions yield a good 
convergence to small prediction errors of about 0.002. Besides, 
the changes of error functions for training and testing dataset 
are relatively consistent. This indicates that there is no obvious 
over- or under-fitting problem in establishing MLP predictive 
models with tanh and logistic functions.  

 

 

 

Fig. 6.  Variations of the loss function of different MLP networks. 

The variations of the MSE value of RBF networks with 
training cycles are shown in Figure 7. The RBF models show 
an efficient learning rate with fast convergence performance 
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(around 20-30 training cycles) which is faster than that of the 
MLP networks. According to the training results presented in 
Figures 6 and 7, both MLP and RBF models are well trained. 
However, the prediction error of RBF models is around 0.01, 
which is higher than that of the MLP models, indicating that 
the MLP network has better fitting capability to the dataset. In 
addition, the number of neurons slightly affects the 
convergence process. Basically, more neurons increase the 
complexity of the model, easily generating the over-fitting 
problem. But this phenomenon was not observed in the MLP 
and RBF models considered in this study. As seen in Table IV, 
the prediction performance of the ANN models does not reveal 
any substantial variation across different configurations of 
hidden neurons. 

 

 

Fig. 7.  Variations of the loss function of different RBF networks. 

Figure 8 shows the comparison between the measured 
surface roughness and the predicted values of all samples, 
clearly indicating that roughness values predicted by the MLP 
models agree well with the measurements.  

The prediction performance of the ANN models, evaluated 
in terms of determination coefficient R, RMSE, and MAPE, 
can be seen in Table IV. The values of R for the 4 MLP models 
with training, validation, and testing data are in the range 
0.887–0.937, which means that for the selected ANN models, 
the MAPE of all datasets is about 9.47– 12.5% and the RMSE 
around 0.21-0.30. Nevertheless, for the RBF models, the 
MAPE and RMSE values are around 15.3–20.8% and 0.3–
0.458, respectively. Comparing the statistical values listed in 
Table IV, the MLP models have significantly higher prediction 
accuracy than the RBF models. This result indicates that the 
MLP network is more suitable for establishing a predictive 
model based on the collected dataset from the machining 
process with a wide range of cutting conditions. This 
conclusion is similar to the findings reported in [30]. In 
addition, comparisons of prediction accuracy of multiple 
regression models and ANN models clearly reveal that the 
ANN models provided better results with higher accuracy of 
around 90%. 

TABLE IV. STATISTICAL VALUES OF ANN MODELS 

ANN model 

Training dataset Validation dataset Testing dataset Activation function 

R RMSE MAPE R RMSE MAPE R RMSE MAPE 
Hidden  

layer 

Output 

layer 

MLP 4-14-1 0.908 0.216 10.10% 0.897 0.298 11.80% 0.909 0.300 9.47% Tanh Logistic 

MLP 4-16-1 0.902 0.222 11.64% 0.880 0.253 10.78% 0.937 0.290 11.54% Logistic Identity 

MLP 4-22-1 0.900 0.224 10.73% 0.908 0.270 10.69% 0.928 0.270 9.99% Tanh Logistic 

MLP 4-30-1 0.886 0.238 12.02% 0.910 0.297 9.64% 0.903 0.290 12.50% Logistic Identity 

RBF 4-16-1 0.799 0.300 16.80% 0.816 0.330 20.80% 0.784 0.458 18.20% Gaussian Identity 

RBF 4-30-1 0.781 0.310 15.30% 0.795 0.325 19.00% 0.782 0.447 17.90% Gaussian Identity 
 

 
Fig. 8.  Surface roughness value comparison between measurements and 

ANN predictions.  

E. Model Verification 

Additional machining experiments were carried out to 
validate the prediction model of surface roughness. Cutting 
operation was processed under different speeds, cutting depths, 
and feed rates, which were defined in the high stable region 
based on the stability lobes diagram [17]. Details of the cutting 
parameters are given in Table V. It should be noted that the 
dataset collected for model verification was not included in 
model training. Surface roughness was measured for each 
machined surface. As illustrated in Figure 9, the surface 
roughness under cutting depth of 3.5 mm and speed of 5500 
rpm was measured as 1.668 μm. For cutting depth of 2.5 mm at 
a speed of 7500 rpm, the measured Ra was 1.985 μm. 

TABLE V. EXPERIMENT PARAMETERS AND THEIR 

LEVELS. 

Parameter Level 1 Level 2 Level 3 

Spindle speed (S, rpm) 5500 7500 9500 

Cutting depth, (Z, mm) 1.5 2.5 3.5 

Feed rate, (F, mm/min) 0.05 0.075 0.1 
 

 

The roughness values obtained by prediction and 
measurement are summarized in Table VI, which also 
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compares the prediction results of regression models and the 
selected ANN models.  

TABLE VI. DATASET FOR MODEL VERIFICATION 

No 

Cutting  parameters 
Measured 

vibration 

Measured 

Ra 

(μm) 

Predicted Ra (μm) 

Depth Speed Feed 
Power 

law  

ANN 

model 

1 1.5 5500 2200 0.026 1.59 1.54  1.63  

2 2.5 5500 2200 0.051 1.92 2.00  2.09  

3 3.5 5500 2200 0.087 2.45 2.43  2.57  

4 1.5 7500 3000 0.071 1.98 1.79  2.13  

5 2.5 7500 3000 0.068 2.07 2.01  2.16  

6 3.5 7500 3000 0.063 2.19 2.16  2.17  

7 1.5 9500 3800 0.027 1.64 1.41  1.51  

8 2.5 9500 3800 0.050 1.97 1.82  1.80  

9 3.5 9500 3800 0.068 2.21 2.10  2.11 

10 1.5 5500 1650 0.023 1.19 1.30  1.27  

11 2.5 5500 1650 0.036 1.44 1.62  1.49  

12 3.5 5500 1650 0.052 1.67 1.90  1.73 

13 1.5 7500 2250 0.057 1.46 1.49  1.43  

14 2.5 7500 2250 0.079 1.99 1.81  1.87 

15 3.5 7500 2250 0.121 2.60 2.14  2.58  

16 1.5 9500 2850 0.030 1.29 1.25  1.18  

17 2.5 9500 2850 0.065 1.56 1.67  1.43  

18 3.5 9500 2850 0.074 1.64 1.86  1.67  

19 1.5 5500 1100 0.018 1.01 1.02  0.88  

20 2.5 5500 1100 0.022 1.01 1.21  1.02  

21 3.5 5500 1100 0.031 1.10 1.40  1.19  

22 1.5 7500 1500 0.035 1.17 1.11  0.87  

23 2.5 7500 1500 0.052 1.49 1.36  1.43  

24 3.5 7500 1500 0.063 1.88 1.53  1.50  

25 1.5 9500 1900 0.021 0.98 0.96  0.93  

26 2.5 9500 1900 0.047 1.35 1.28  1.02  

27 3.5 9500 1900 0.055 1.66 1.43  1.19  

     
MAPE 8.87% 8.11% 

     
RMSE 0.179 0.169  

     
R  0.916 0.946 

 

 

 

Fig. 9.  Surface morphologies and vibration spectrum. 

As shown in Figure 10, the correlation coefficients for 
ANN and regression models range between 0.946 and 0.916, 
which means that the predictions are in good agreement with 
the measurements for the verification dataset. Besides, based 
on MAPE and RMSE values, it is found that the ANN and 

regression models can predict roughness with high prediction 
accuracy of about 92%. Basically, the ANNs can generate 
different models based on the training data and training 
algorithm, yielding different prediction results. The number of 
neurons in the hidden layer will affect the prediction error and 
overall prediction performance. The verification tests again 
demonstrate that the established predictive models based on the 
machining parameters and vibration assessed from the milling 
process can accurately forecast the surface roughness generated 
at various cutting conditions. 

 

 

 
Fig. 10.  Surface roughness comparison between measurements and 

predictions. 

V. CONSTRUCTION OF THE MONITORING SYSTEM  

In order to achieve online machining monitoring and real-
time prediction, the processing parameters must be obtained 
from a controller. At present, the VMX intelligent software 
development platform developed by the Industrial Technology 
Research Institute in Taiwan can be connected to different 
controllers. The monitoring APPs developed with C language 
were implemented on the IIOT-VMX system in an industrial 
PC, including the data processing module and the surface 
roughness predictive model. The cutting parameters and 
various servo parameters in the controller can be easily 
accessed through the OPCUA communication interface. In 
addition, the machining vibration can be acquired from the 
accelerometers mounted on the spindle through a data 
acquisition device. The surface roughness model can be 
established through ANNs or regression analysis for model 
training and verification. In the milling process, the processing 
parameters and real-time vibration signals and features, which 
were fed as inputs into the prediction model, were directly 
extracted and processed. As illustrated in Figure 11, the user 
can preset the desired roughness and threshold of the vibration 
levels. The cutting parameters assessed from the controller and 
the time domain vibration levels in the 3 axes are 
simultaneously displayed on the screen. To monitor the 
variation of machining quality during the milling process, the 
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system continuously outputs the roughness based on the input 
parameters with vibration features. At the same time, the 
system will issue an alert signal when the predicted roughness 
exceeds the threshold or vibration abnormalities are detected. 

 

 

 
Fig. 11.  Schematics of the surface quality monitoring system and the 

visualization interface.  

VI. CONCLUSION 

This study aimed to develop an online surface quality 
monitoring system, attempting to predict the variation of the 
surface roughness based on the cutting parameters and the 
vibration features during milling machining. Based on the 
acquired results, the following conclusions can be drawn: 

 The cutting parameters for establishing the prediction 
model should be defined within the stable boundaries of the 
stability lobes diagram. This can ensure practical 
applicability for a variety of cutting process from low speed 
rough machining to high speed finishing machining. 

 A surface roughness predictive model can be well 
developed by regression analysis with nonlinear power-law 
function or an MLP network with adequate defined training 
algorithm and activation functions, yielding superior 
prediction accuracy about 90%.   

 The vibration assessed from the machine tool is a critical 
factor influencing surface roughness. It should be integrated 
along with the cutting parameters in the predictive model of 
the surface quality of the machined parts. 

 The predictive model and the data processing module were 
integrated into the IIOT-VMX platform. This platform 
facilitates direct assessments of cutting parameters through 
the OPCUA interface and captures vibration features via a 

sensory module on the spindle tool. Subsequent testing 
results demonstrated the system's effectiveness, establishing 
its potential as an online surface quality monitoring system 
for practical machining processes. 
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