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ABSTRACT 

Machine Learning (ML)'s growing role in process industries during the digitalization era is notable. This 

study combines Artificial Neural Networks (ANNs) and Aspen Plus to predict exergy efficiency, exergy 

destruction, and potential improvements in a cumene plant under uncertain process conditions. An 

optimization framework, using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), was 

developed to enhance exergy efficiency amid uncertainty. Initially, a steady-state Aspen model evaluates 

exergy efficiency, irreversibility, and potential improvements. The proposed model is transitioned to a 

dynamic mode, introducing artificial uncertainties into key variables. An ANN model predicts exergy 

efficiency and exergy destruction under uncertainty. The PSO and GA-based optimization methods 

improve exergy efficiency and reduce exergy destruction. This work demonstrates the potential real-time 

application of intelligent methods in plant analysis. 

Keywords-exergy analysis; digitalization; industry 4.0; machine learning; process uncertainties 

I. INTRODUCTION  

Cumene, a key chemical reagent, finds extensive 
applications in phenol and acetone production, forming the 
basis for about 98% of acetone and phenol manufacturing [1]. 
The world's 80% plastic demand is met by phenol and acetone-
derived polymers, while about 98% of acetone and phenol 
production is based on cumene [2-4]. Forecasts indicate a 
substantial rise in global cumene demand, expected to reach 
USD 17.63 billion by 2025. To address this demand and 
enhance product quality while optimizing resource utilization, 
efforts are focused on exploring efficient cumene production 
processes. Computational methods play a crucial role in this 
endeavor, enabling the investigation of various aspects, 
including design enhancements, yield improvements, process 
control, and environmental impact [1]. Notable changes in 
design optimization have led to a 47% reduction in Total 
Annualized Cost (TAC) through the replacement of 
conventional distillation columns with reactive distillation and 
topological changes [5, 6]. Single dividing wall columns have 

replaced traditional ones, saving up to 18.75% in TAC [5]. 
Process parameter optimization, utilizing Response Surface 
Methodology (RSM) and Genetic Algorithm (GA), has 
achieved higher net present values and yield improvements [5-
7]. Plant-wide control structures ensure production stability, 
with two advanced approaches offering superior performance 
[8, 9]. Multi-Objective Optimization (MOO) addresses 
environmental, safety, and economic aspects, optimizing 
material losses and process safety [14, 15]. Dynamic 
simulations identify key factors in cumene conversion and 
downstream distillation column overpressure [16]. The 
comparative study in [17] highlights intensified processes' 
economic attractiveness and environmental friendliness. 

Exergy analysis is emerging as a prominent approach to 
enhance energy efficiency in cumene production, with potential 
applications from other industries [18-23]. Exergy analysis was 
performed on a cumene production plant utilizing Aspen Plus 
and MATLAB in [24]. The plant was divided into preheating, 
reaction, and separation segments, and physical and chemical 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12892-12899 12893  
 

www.etasr.com Ahmad et al.: Machine Learning-assisted Prediction and Optimization of Exergy Efficiency and … 

 

exergy computations were conducted. The overall plant exergy 
efficiency achieved an impressive 84.93%. 

The integration of machine learning into AI for exergy 
analysis has been explored in the literature. In [25], a Machine 
Learning (ML) model was devised to predict the exergy 
efficiency of a blast furnace. Subsequently, an Artificial Neural 
Network (ANN) model was developed to forecast exergy 
efficiency, relying on 11 uncertain process variables. In [26], a 
combination of Straight Run (SR), GA, and ANN models was 
employed to evaluate the impact of uncertainty in process 
conditions and crude composition on furnace exergy efficiency. 
Similarly, a study involved the development and comparison of 
Bootstrap Aggregating (bagging) and Random Forest (RF) 
models for predicting VDU exergy efficiency under uncertain 
process parameters [24]. Another study delved into the 
repercussions of process condition uncertainty on the overall 
exergy efficiency of naphtha reforming, employing an RF 
model with a Bootstrap Filter (BF) [27]. The present study 
builds upon the foundation laid in [24], introducing ML-based 
prediction and optimization concepts to enhance exergy 
efficiency and minimize exergy destruction. The major 
contributions of this study are: 

 Development of dynamic modeling of the cumene 
production process through incorporation of uncertainty in 
a steady state process model and calculation of variations in 
exergy efficiency and exergy destruction.  

 Development of an ANN-based model for the estimation of 
the process exergy efficiency and destruction.  

 Development of an optimization framework based on GA 
and PSΟ to achieve higher exergy efficiency of the process. 

II. THEORETICAL FUNDAMENTALS 

A. Process Description 

This study considers the process that involves feed 
preheating, reactor reactions, and component separation in the 
depropanizer and benzene columns, as shown in Figure 1. In 
the Preheating and Reactive segment, the process involves 
warming propene, benzene feeds, and recycled benzene from 
the separation section using heat from the reactor's outlet 
stream (Reac-Out). Propene is heated by the heat exchanger (E-
2), while benzene feeds and recycled benzene are warmed by a 
separate heat exchanger (E-1). After preheating, the streams are 
blended to reach the required reaction temperature. Then, a 
furnace (H-1) further raises the temperature before introducing 
the stream into the reactor (R-1) for alkylation and 
transalkylation reactions. The reactor effluent's heat is 
exchanged with incoming feeds in heat exchangers (E-3 and E-
2) for energy efficiency. Effluent temperature is reduced to the 
propene column temperature via a Waste Heat Boiler (WHB). 
Moving to the Separation phase, the reactor effluent enters the 
depropanizer column for component separation based on 
boiling points. The upper output provides unreacted propylene 
and inert propane, while the lateral output supplies fuel gas. 
The lower stream (Sep-1 Bottom) from the depropanizer 
column containing benzene, cumene, and DIPB 
(diisopropylbenzene), exchanges heat with other process 
streams using the heat exchanger (E-1) before entering the 

benzene column. The unreacted benzene is the upper output in 
the benzene column, while cumene and DIPB comprise the 
lower output. DIPB-containing lower stream is treated as 
waste, and cumene is collected from the upper part of the 
cumene recovery column.  

 

 

Fig. 1. Cumene process flow diagram. 

B. Exergy Performance Indicators 

Exergy analysis is a fundamental tool utilized in assessing 
the thermodynamic performance of a system. It encompasses 
the evaluation of system exergy efficiency and exergy 
destruction. Irreversibility serves as a quantification of the 
exergy destroyed within a processing unit, measured by the 
disparity between exergy inflows and outflows from the unit 
streams, as defined by:  

� � ��� ���	
���� � ∑ ��� �� � ∑ ��� ��	               (1) 

The irreversibility of a distillation column, on the other 
hand, is determined by (2) which considers the heat duty of the 
reboiler and condenser (�
  and ��) as well as the respective 
temperatures (�
 and ��). 
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The concept of exergy efficiency, on the other hand, gauges 
the degree of system proximity to an ideal state. In reversible 
conditions, exergy efficiency denotes the system's effectiveness 
relative to optimal performance. While various exergy 
efficiency formulas exist in the literature, the widely adopted 
and straightforward approach is the universal exergy efficiency, 
which represents the ratio of useful exergy output to input, as 
expressed in (3):  

 ���!�
�"# � $�%&
$'(

      (3) 

This metric provides a concise measure of system 
performance and aids in assessing the effectiveness of energy 
utilization within the analyzed process. 
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C. Artificial Neural Networks 

ANNs encompass a suite of algorithms that replicate human 
brain operations, enabling quantitative data interpretation 
through training/learning procedures. Comprising three layer 
types -input, hidden, and output- an ANN incorporates 
interconnected neurons to model intricate and nonlinear 
functions. The input layer receives external environmental 
information or features, while neurons within the hidden layers 
extract system-related data. Neurons process inputs via 
predetermined activation functions, employing associated 
weights for calculations. For each input variable, the neuron's 
output is determined through a nonlinear amalgamation of 
inputs (x1, x2, ..., xn) and corresponding weights (w1, w2, ..., wn). 
Conclusively, the output neuron layer generates and showcases 
the network's ultimate outputs, derived from prior-layer neuron 
processing activities. 

III. METHODOLOGY 

This study employed an integrated environment consisting 
of Aspen Plus and MATLAB to conduct an exergy analysis of 
a cumene producing plant. The following steps were followed: 

1. The EXERGYFL property set of Aspen Plus was utilized 

to calculate the physical energy of the system. 

2. MATLAB was integrated with Aspen Plus through their 

interface to determine the chemical exergy of the process. 

3. The cumene production process was divided into sections 

treated as control volumes. The exergy entering each 

section was computed by considering the streams entering 

the control volume, while the energy leaving the section 

was considered as the outlet energy of the streams. 

4. Irreversibility equations were utilized to calculate the 

values of irreversibility for each section. 

5. The exergy efficiency, which represents the potential for 

exergetic improvement, was calculated based on the 

obtained exergy analysis results. 

6. Data sets for ANN training and testing were generated by 

introducing artificial uncertainties of ± 10% in the steady 

state values by integrating MATLAB and Aspen PLUS. 

The 80% of the data were used for training the ANN and 

20% for testing.  

7. Finally, an optimization framework based on GA and PSO 

was developed for achieving higher exergy efficiency and 

lower exergy destruction of the process. 

IV. RESULTS AND DISCUSSIONS 

This section presents the results and discussion of the 
prediction of exergy destruction and exergy efficiency in the 
cumene production process using an ANN. The ANN model 
was trained and validated using a comprehensive dataset. The 
trained model was then utilized to predict the exergy efficiency 
and destruction of the process for various operating conditions. 
The results obtained from the ANN predictions are analyzed 
and compared with the actual exergy analysis data to assess the 
accuracy and reliability of the model. The implications and 

significance of the findings are discussed, along with potential 
areas for process optimization and improvements based on the 
predicted exergy values. 

In this study, the initial step involves performing a steady-
state exergy analysis of a cumene production plant, achieved 
through an integrated framework of Aspen Plus and MATLAB. 
Subsequently, an uncertainty analysis of the cumene 
production plant is conducted within an integrated setting 
encompassing Aspen Plus, MATLAB, and Microsoft Excel's 
Aspen Simulation Workbook. The physical exergy is 
calculated with the use of MATLAB and Aspen Plus interface.  

A. Exergy Efficiency 

The overall plant exergy efficiency was calculated with (4) 
and its value is 84.89. In (4), Eout is the overall total exergy out 
from the system and Ein is the overall total exergy entering the 
system. 

) � $�%&
$'(

          (4) 

For the analysis of a cumene production plant, 9 input 
variables which are affecting the production and the efficiency 
of the cumene plant are selected. In these 9 input variables, an 
uncertainty of ± 10% is introduced for the analysis (Table I). 
These input variables include the entering flow rates of 
propylene and benzene, the outlet pressures of Pump-1 and 
Pump-2, the heater outlet temperature, the mole fractions of 
propylene and propane, and the outlet pressure and temperature 
of the Heat Exchanger-1. The data distribution of all the input 
variables is shown in Figures 2-10. 

 

 

Fig. 2. Propylene feed flow vs number of samples. 

 

Fig. 3. Propylene μole fraction vs number of samples. 
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Fig. 4. Propane mole fraction vs number of samples. 

 
Fig. 5. Outlet pressure of Pump-1. 

 
Fig. 6. Benzene flow rate vs number of samples. 

 
Fig. 7. Heat Exchanger-1 outlet pressure vs number of samples.  

 
Fig. 8. Heater-1 outlet temperature vs number of samples. 

 
Fig. 9. Heat Exchanger-1 outlet values vs number of samples. 

 
Fig. 10. Heat Exchanger-1 outlet pressure vs number of samples. 

Table I shows the original values of the process conditions 
and their corresponding modified values by inserting 
uncertainty. From Table I we can see the effect of the 
uncertainty on the overall exergy efficiency of the cumene 
plant. For instance, in case of the heater outlet temperature at 
steady state and after introducing the uncertainty, there is a 
significant difference between the reported values. For 
instance, the steady state heater outlet temperature is 623.15 K 
and in case 1 and case 2 it is 640.79 K and 592.61 K, 
respectively.  

TABLE I. ORIGINAL AND MODIFIED (WITH UNCERTAINTY) INPUT AND OUTPUT PROCESS VARIABLES 

 
Variable Values Case 1 Case 2 Case 3 Case 4 Case 5 

Input 

Propylene flowrate 0.029 0.028251 0.028686 0.029324 0.028262 0.029537 

Propylene mole fraction 0.95 0.9082 0.90649 0.909245 0.95209 0.911715 

Propane mole fraction 0.05 0.0918 0.09351 0.090755 0.04791 0.088285 

Outlet pressure of Pump-1 2451662.5 2537716 2557084 2499960 2472011 2528890 

Benzene flowrate 0.027 0.028006 0.028806 0.027125 0.027272 0.026719 

Outlet pressure of Pump-2 2533125 2548070 2494622 2519446 2420148 2451305 

Heater-1 outlet temperature 623.15 640.7851 592.6157 644.524 649.4469 640.0374 

Heat Exchanger-1 outlet temperature 363.15 347.1714 346.5177 347.5709 363.9489 348.5151 

Heat Exchanger-1 outlet pressure 245166 246612.5 241439.5 243842.1 234231.6 237247.1 

Output Overall plant exergy efficiency 84.888 84.79163 84.95358 84.78349 84.80763 84.806 
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To carry out the analysis of cumene production plant we 
developed a data set consisting of 200 samples, with changes in 
the selected 9 input variables. From physical and chemical 
exergy we found the total exergy of each piece of equipment 
and then with these values we found the overall plant exergy 
efficiency. After calculating all the respective values, 
MATLAB environment was used to develop the ANN model. 
The model has 5 hidden layers with 18, 13, 11, 13, and 18 
neurons, respectively. The utilized model training method was 
Levenberg-Marquardt. The values of RMSE, MSE, and R

2
 of 

the model are 0.115, 0.0133, and 0.1466, respectively. Figure 
11 shows the training state of the model. The training R

2
 value 

is 0.996. After training the ANN model, for testing we gave the 
input data to the ANN for predicting the output against those 
values. Figure 12 shows the result. Figure 13 is a regression 
graph of the ANN model predicted versus the targeted values 
of exergy efficiency. The testing R value is 0.923. Figure 14 
shows the performance of the ANN model in the prediction of 
the targeted Aspen model values. 

 

 
Fig. 11. Performance of the ANN model on the training data for the 

prediction of exergy efficiency. 

To boost the exergy efficiency of the cumene production 
process, PSO and GA algorithms are employed, utilizing a 
trained ANN model for optimization under uncertainty. The 
exergy efficiency comparison is detailed in Table II, 
encompassing the SA, GA, and PSO models. Figures 14 and 15 
illustrate the exergy efficiency disparities among the models. 
The SA model, an unoptimized Aspen first-principle model 
under uncertainty, exhibits lower exergy efficiency compared 
to GA and PSO models. For example, in data sample 1, the SA 
model achieves 84.89% exergy efficiency, while the GA and 
PSO optimizations result in 89.46% and 89.54%, respectively. 
Similar trends are observed in data sample 2, with the SA 
model at 85.47% and the GA and PSO optimizations reaching 
86.09% and 88.20%, respectively. 

 

Fig. 12. Performance of the ANN model on the testing data for the 

prediction of exergy efficiency. 

 

Fig. 13. Performance of the ANN model vs the number of samples. 

TABLE II. EXERGY EFFICIENCY COMPARISON 

Data sample 
Exergy efficiency (%) 

SA GA-optimized PSO-optimized 

1 84.89 89.46 89.54 

2 85.47 86.09 88.20 

3 84.83 89.49 89.66 

4 84.68 89.72 89.81 

5 85.09 86.22 86.26 

6 85.39 89.24 89.54 

7 84.80 88.95 89.54 

8 84.93 89.29 89.57 

9 85.12 89.47 89.62 

10 84.80 88.96 88.97 

 

B. Exergy Destruction 

Again, we created a dataset with 200 samples with changes 
in the selected 9 input variables. From physical and chemical 
exergy, we found the total exergy of each piece of equipment 
and with these values we find out the overall plant exergy 
destruction.  
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Fig. 14. Comparison of SA and GA exergy efficiency. 

 

Fig. 15. Comparison of SA and PSO exergy efficiency. 

 
Fig. 16. Performance of the ANN model on the training data for the 

prediction of exergy destruction. 

After calculating all the respective values, the ANN model 
was constructed in MATLAB. The model has 5 hidden layers 
with 18, 18, 12, 18, and 18 neurons. The Levenberg-Marquardt 

training method was utilized. The values of RMSE, MSE, and 
R

2
 of the model are 1.4790e+03, 2.1875e+06, and 0.8930, 

respectively. Figure 17 shows the training state of the model. 
The training R value is 0.998.  

 

 
Fig. 17. Performance of the ANN model on the testing data for the 

prediction of exergy destruction. 

Figure 18 shows a regression graph of the ANN model 
predicted exergy destruction values versus the targeted values. 
The testing R-value is 0.932. Figure 18 shows how efficient the 
ANN model is for the prediction of the targeted values. 

 

 
Fig. 18. Performance of the ANN model on the testing data for the 

prediction of exergy destruction. 

To optimize the process of cumene production exergy 
destruction, PSO and GA algorithms were used with the trained 
ANN model for surrogate optimization under uncertainty. The 
comparative exergy destruction analysis is shown in Table III. 
Figures 19 and 20 show the exergy destruction differences 
between the SA, GA, and PSO models. It can be seen that the 
SA model, representing the initial unoptimized Aspen first-
principle modeling under uncertainty, yields higher exergy 
destruction values than the GA and PSO models. 
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TABLE III. EXERGY DESTRUCTION COMPARISON  

Data 

sample 

Exergy destruction (%) 

SA GA-optimized PSO-optimized 

1 104236.21 94039.73 93917.13 

2 100564.41 89896.23 89832.06 

3 97807.401 77742.91 77374.90 

4 103897.21 78950.98 78461.67 

5 99689.17 92298.68 92159.99 

6 94773.92 88431.85 88415.37 

7 105077.15 81670.35 81332.63 

8 104235.50 94178.04 93917.13 

9 100564.37 90241.66 89832.06 

10 105077.29 82050.40 81332.63 

 

 
Fig. 19. Comparison of SA and GA exergy destruction. 

 

Fig. 20. Comparison of SA and PSO exergy destruction. 

V. DISCUSSION 

The current study assessed overall plant exergy efficiency 
in cumene production, achieving a value of 84.89%. With 9 
key input variables under ± 10% uncertainty, visualized in 
Figures 2-10. The data distribution highlighted variable impact. 
A dataset of 200 samples was constructed. The 5-layer ANN 
model with Levenberg-Marquardt training in MATLAB, 
showed robust performance (RMSE: 0.115, MSE: 0.0133, R²: 
0.1466). PSO and GA optimizations enhanced exergy 
efficiency, surpassing the unoptimized Aspen model, as 
evidenced in Table II and Figures 14-15 across various data 
samples. 

For the cumene production plant's uncertainty analysis, the 
MATLAB-built ANN efficiently predicted the exergy 
destruction. The training results, illustrated in Figure 16, 
showed a high correlation (R = 0.998), with the testing results 

displaying the effectiveness of the model (Figure 17, R-value: 
0.932). PSO and GA optimizations, outlined in Table III and 
Figures 19-20, consistently outperformed the unoptimized 
Aspen model (SA), achieving reduced exergy destruction 
values across different data samples. 

VI. CONCLUSION 

In this study, steady-state exergy analysis of a cumene 
production plant was performed using Aspen Plus and 
MATLAB. Nine input variables influencing production and 
exergy destruction were selected for uncertainty analysis. An 
optimization framework with Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO) was developed to enhance 
exergy efficiency under ± 10% uncertainty. The analysis 
involved 200 data samples with variations in the 9 input 
variables. An ANN model with 5 hidden layers was created 
using Levenberg-Marquardt training. The model showed 
RMSE and MSE values of 0.115 and 0.0133, respectively, with 
a correlation coefficient of 0.92 for predicting exergy 
efficiency and 0.93 for exergy destruction. Both the GA and 
PSO-based frameworks outperformed the non-optimized model 
by increasing exergy efficiency and decreasing exergy 
destruction. 

Utilizing the Artificial Neural Network (ANN), the research 
underscores the transformative potential of digital tools for 
real-time prediction of exergy efficiency and destruction, 
redefining process optimization and control. The current study 
introduces a sustainable optimization framework, employing 
GA and PSO for enhanced energy efficiency in manufacturing 
processes. 
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