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ABSTRACT 

In recent years, cryptocurrencies have experienced rapid growth and adoption, revolutionizing the 

financial sector. However, the rise of digital currencies has also led to an increase in fraudulent 

transactions and illegal activities. In this paper, we present a comprehensive study on the detection of 

fraudulent transactions in the context of cryptocurrency exchanges, with a primary focus on the Ethereum 

network. By employing various Machine Learning (ML) techniques and ensemble methods, including the 

hard voting ensemble model, which achieved a remarkable 99% accuracy, we aim to effectively identify 

suspicious transactions while maintaining high accuracy and precision. Additionally, we delve into the 

importance of eXplainable Artificial Intelligence (XAI) to enhance transparency, trust, and accountability 

in AI-based fraud detection systems. Our research contributes to the development of reliable and 

interpretable models that can significantly improve the cryptocurrency ecosystem security and integrity. 

Keywords-blockchain; Ethereum; fraudulent transactions; machine learning 

I. INTRODUCTION  

The rapid growth of cryptocurrencies and the adoption of 
blockchain (BC) technology have revolutionized the financial 
sector, offering new opportunities for investment and secure 
online transactions [1]. BC, an advanced and rapidly evolving 
technology, offers a more secure alternative by providing a 
distributed, decentralized, and immutable ledger for recording 
transactions [2]. Despite the advantages of decentralized 
systems, cryptocurrencies face significant challenges in 
detecting and preventing fraudulent transactions [3]. These 
illicit activities not only harm the economy but also erode 
public trust in BC-based solutions. BC networks aim to detect 
and mitigate fraudulent transactions as quickly as possible to 
maintain community integrity and security [4]. The anonymous 
nature of BC transactions and the decentralized nature of 
cryptocurrencies make fraud detection a complex and 
challenging task [5]. The rise of digital currencies has led to an 
increase in financial transactions conducted online [6], with 
traditional currencies being converted into their digital 

counterparts. Although this modernization offers convenience 
and efficiency, it also exposes transactions to potential security 
breaches, such as fraud, anomalies, and privacy violations. As 
the volume of transactions increases, so does the risk of 
fraudulent activities, resulting in significant financial losses. 
Even within BC networks, malicious actors can exploit 
vulnerabilities and engage in fraudulent activities [7, 8]. 
Therefore, it is crucial to develop and implement robust 
techniques to detect and prevent fraudulent transactions in 
cryptocurrencies. This paper aims to explore and evaluate ML 
models for Ethereum Fraud Detection (EFD), focusing on 
ensemble learning and XAI to improve system accuracy and 
transparency. By addressing these challenges, we hope to 
contribute to the development of more secure and trustworthy 
BC-based financial solutions.  

II. BACKGROUND  

A. Blockchain and Decentralized Applications 

At its core, BC is a manifestation of Distributed Ledger 
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Technology (DLT) [9]. This revolutionary technology 
facilitates consensus and validation of transactions across a 
computer network, thereby eliminating the need for a central or 
intermediary authority [10]. Each validated transaction, along 
with others, forms a new "block" that is added to an existing 
chain of transactions, giving rise to the term Blockchain [11, 
12]. BC networks are typically categorized into permissioned 
and permissionless BCs. Permissioned BCs are exclusive 
networks utilized by specific individuals or entities, such as a 
consortium of banks conducting financial transactions [13]. On 
the other hand, permissionless or public BCs, like the Bitcoin 
network where transactions are conducted using Bitcoin as an 
exchange medium, are open source networks accessible to 
anyone [14]. A key feature of these networks is the use of 
smart contracts. These are self-executing contracts with the 
agreement terms directly written into code. Smart contracts 
automate and secure transactions, making them an integral part 
of decentralized applications (dApps). dApps are applications 
that run on a peer to peer computer network, leveraging BC 
technology principles to create secure, transparent, and 
resistant to censorship systems [9]. BC operates as a 
decentralized peer to peer network, where control over the data 
is not concentrated in any single node or group of nodes [15]. 
Instead, all nodes connected to the BC network share equal 
authority over the latter. Immutability is a defining 
characteristic of BC, safeguarding against data alteration [16]. 
BC maintains an append-only digital ledger, meaning that once 
data are added to the network, they cannot be edited or deleted. 
Every connected node in a BC network has a copy of the 
current ledger [11], making the data within the specific network 
accessible to all connected participants and ensuring system 
transparency and availability. The foundational understanding 
of BC technology, along with the use of smart contracts, paves 
the way for the development and application of dApps. These 
applications have a wide range of uses, from decentralized 
finance (DeFi) [17] where they provide financial services in a 
more open, accessible, and equitable manner. They are also 
used in voting systems [18], enhancing the voting process 
transparency and security. Furthermore, dApps are utilized in 
supply chain management, where they provide real-time, 
transparent tracking of goods, enhancing efficiency and 
accountability [19]. They are also making inroads into the 
gaming industry, creating decentralized gaming platforms that 
offer true ownership of game assets [20]. In the content 
management field, dApps enable creators to publish and 
monetize their content without the need for intermediaries [21]. 

B. Ethereum 

Ethereum is a decentralized, open-source BC platform 
known for its smart contract functionality [20]. It was proposed 
in 2013 by programmer Vitalik Buterin and its development 
was crowdfunded in 2014, with the network going live on July 
30, 2015 [22]. In contrast to Bitcoin, which is primarily a 
digital currency, Ethereum’s primary goal is to serve as a 
platform for decentralized applications (dApps). These dApps 
are designed to operate without any downtime, fraud, control, 
or interference from a third party. Ethereum’s platform specific 
cryptographic token, Ether, is the fuel that powers these 
applications [44]. Ether serves two main functions: it acts as a 
digital currency exchange similar to Bitcoin, and it is used 

within the Ethereum platform to run applications and even 
monetize work. A significant innovation of Ethereum is the 
Ethereum Virtual Machine (EVM), a Turing complete software 
that operates on the Ethereum network. The EVM allows any 
program to be run, regardless of the programming language, as 
long as sufficient time and memory are provided. The EVM 
streamlines the creation of multiple diverse BC applications on 
a single platform [45]. As other cryptocurrencies, Ethereum 
functions on a decentralized network, which makes it a 
compelling platform for implementing smart contracts and 
developing decentralized applications (dApps). However, this 
decentralization also opens up avenues for fraudulent activities. 
For instance, Ethereum is susceptible to a 51% attack, where if 
a miner or a group of miners possesses more than half of the 
network’s computing capability, they can rewrite the BC, 
leading to potential fraud [23] 

C. Explainable AI (XAI) 

XAI is a research area that aims to design algorithms and 
methods which allow AI models to offer clear and human 
understandable explanations for their predictions and decisions 
[24]. The primary objective of Interpretable AI is to improve 
transparency, accountability, and trust in AI systems by helping 
humans comprehend the rationale behind model outcomes [25]. 
Within the realm of cybersecurity, Interpretable AI plays a 
crucial role in detecting and mitigating cyber threats [26]. AI 
models are utilized by cybersecurity professionals to analyze 
vast quantities of data and pinpoint potential threats. However, 
due to the opaque nature of these models, understanding their 
decision-making process can be challenging, leaving experts 
uncertain about the appropriate response to identified threats 
[27]. By incorporating Interpretable AI, cybersecurity 
specialists can gain a better understanding of the AI model’s 
predictions, which allows them to make well informed 
decisions when addressing cyber threats [25]. 

Locally Interpretable Model Agnostic Explanations(LIME) 
is designed to create an intelligible model that utilizes an easily 
understandable representation while preserving local fidelity to 
the original classifier[28]. Given an instance with its original 

representation, x Rd , and an explanation model, g   G, 

where G represents a set of visually expressible, interpretable 
models (e.g. a linear model), the explanation provided by 
LIME can be formulated as follows: 

φ(x) = arg min L [(f, g, ωx) + Ω(g)]         (1) 

In (1), f symbolizes the classification model, ωx denotes a 
similarity measure between the original and new instances 
(with higher values indicating greater similarity), L is the loss 
function that assesses the proximity of the predictions between 
the explanation and original models, and Ω(g) quantifies the 
complexity of model g. LIME strives to develop a model that is 
both locally focused and interpretable. To accomplish this, 
LIME minimizes the function L[(f, g, ωx) + Ω(g)], where f is 
the original model, g is the locally derived interpretation 
model, and ωx is a weight vector for instance x. The 
regularization term Ω(g) assists in preventing overfitting of the 
interpretation model. Upon minimizing the objective function, 
LIME generates an explanation for a specific instance using the 
locally derived interpretation model ϕ(x). The interpretation 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12822-12830 12824  
 

www.etasr.com Taher et al.: Advanced Fraud Detection in Blockchain Transactions: An Ensemble Learning and … 

 

model ϕ(x) is intended to be straightforward and transparent, 
which makes it more accessible for humans to grasp the 
reasoning behind a particular prediction. By employing a 
locally focused and interpretable model, LIME offers insights 
into the decision making processes of complex models. 

D. Ensemble Techniques 

Ensemble techniques combine the predictions of multiple 
base models to improve the performance and accuracy of the 
final predictions [29]. In this study, we employed two widely 
used ensemble methods: Hard Voting and Soft Voting. Both 
methods utilize the outputs of multiple classifiers to produce a 
more robust and accurate final decision. 

 Majority Voting: Majority Voting, also known as Hard 
Voting, is a straightforward ensemble method that considers 
the class labels predicted by individual base models. For 
each input, the class label that receives the majority of votes 
from the base models is chosen as the final prediction [30]. 
This approach is particularly effective when the base 
models have complementary strengths and weaknesses, as 
it enables the ensemble to collectively capitalize on their 
individual advantages. 

 Probabilistic Voting: Probabilistic Voting, or Soft Voting, 
is a more sophisticated ensemble technique that takes into 
account the predicted class probabilities generated by the 
base models [31]. Instead of simply counting the votes for 
each class label, Soft Voting computes the average of the 
predicted probabilities for each class and selects the class 
with the highest average probability as the final prediction 
[32]. This method can yield better performance than Hard 
Voting, especially when the base models provide well 
calibrated probability estimates. 

III. ETHEREUM FRAUD DETECTION USING 

MACHINE LEARNING 

BC technologies are being implemented across various 
public and private sectors due to their ability to secure and 
monitor auditing systems effectively [14]. These technologies 
facilitate the evaluation of data repositories, allowing auditors 
to submit queries in a secure and user-friendly manner without 
disclosing their identities to unauthorized parties [33]. In [34], 
consensus algorithms are utilized to confirm the validity of 
conducted transactions; however, they fall short in accurately 
identifying transactions. Consequently, solely depending on 
BC for fraud detection is not a comprehensive solution. To 
tackle this issue, alternative strategies, such as the application 
of ML algorithms, are explored to eliminate existing system 
vulnerabilities. Multiple supervised ML techniques are 
deployed to detect fraudulent transactions, and an extensive 
comparison of these approaches is conducted. KaRuNa [35] is 
a decentralized framework that leverages BC technology fr 
sentiment analysis to detect fraudulent cryptocurrency 
schemes. Operating on a public BC, KaRuNa is composed of 
three trust modeling phases involving stakeholders. The initial 
phase includes transaction execution on the BC, which fosters 
trust, auditability, and transparency among participants. The 
subsequent phase proposes a sentiment analysis of 
cryptocurrencies, employing a unique hashing algorithm for 
addresses to produce classification scores. This phase takes into 

account various factors such as social trends, cryptocurrency 
price volatility, calculated standard deviation, and peak and 
trough values. These factors are integrated into a novel Long-
Short Term Memory (LSTM) classifier to generate 
recommendations. Impressively, the LSTM classifier 
demonstrates an accuracy of 98.99% in evaluating investment 
risks based on the generated classification scores. 

By analyzing 2,179 accounts flagged for illicit activity and 
2,502 normal accounts within the Ethereum community, 
authors in [3] aim to detect malicious accounts based on their 
transaction history using the XGBoost classifier. Through 10-
fold cross-validation, XGBoost achieved an average accuracy 
of 0.963 (± 0.006) and an average AUC of 0.994 (± 0.0007). 
The most influential features for the final model were identified 
as "Time diff between first and last (μins)," "Total Ether 
balance," and "Min value received." Authors in [36] explore 
the application of various supervised ML approaches to 
identify and differentiate between fraudulent and legitimate 
transactions. An in depth comparative analysis of several 
supervised ML algorithms is conducted for this purpose. It was 
found that the most effective results (accuracy: 97%) were 
achieved using Ada Boost, Support Vector Machine (SVM), 
and Random Forest (RF) classifiers, outperforming the other 
seven algorithms examined. In [37], the researchers focused on 
extracting more comprehensive features from Bitcoin 
transaction data to improve the detection of fraudulent 
activities. To address the issue of imbalanced data, measures 
were taken to equalize the dataset. Several supervised methods, 
including KNN, SVM, RF, AdaBoost, and MLP, were 
employed. Additionally, three unsupervised methods, namely 
the One Class SVM (OCSVM), Local Outlier Factor (LOF), 
and Mahalanobis Distance Based (MDB) approach, were 
utilized for detection purposes. The best performing algorithm 
among these approaches was the RF, exhibiting impressive 
recall, precision, and F1 scores of 95.9%. These findings 
demonstrate the efficacy of the RF algorithm in accurately 
identifying fraudulent activities in Bitcoin transactions. In a 
related study [33], supervised methods including RF, SVM, 
and XGBoost were employed to detect fraudulent accounts in 
the Ethereum BC. The study successfully achieved high recall 
and precision values, which enabled the design of an effective 
antifraud rule for digital wallets or currency exchanges. This 
study introduces a novel detection mechanism called Ethereum 
Phishing Scam Detection (Eth-PSD) aimed at identifying 
phishing scam related transactions using an ML based 
approach [38]. Eth-PSD addresses various limitations present 
in existing works, including imbalanced datasets, complex 
feature engineering, and lower detection accuracy. 
Additionally, an investigation was conducted into constructing 
a new, updated, and balanced dataset specifically designed for 
effectively evaluating Eth-PSD performance. The experimental 
results demonstrate that Eth-PSD exhibits high efficiency in 
detecting phishing scams on the Ethereum platform, achieving 
a remarkable detection accuracy of 98.11% while maintaining a 
very low False Positive Rate of 0.01. By mitigating the 
shortcomings of previous approaches, Eth-PSD presents a 
promising solution for combating phishing scams in the 
Ethereum ecosystem. Authors in [40] present an innovative 
approach that leverages the integration of ML techniques and 
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BC technology to combat fraud in the healthcare sector, 
specifically in claims processing. The proposed methodology 
revolves around the utilization of a decision tree classification 
algorithm to accurately categorize the original claims dataset. 
Subsequently, the acquired knowledge is translated into a smart 
contract deployed on the Ethereum BC, facilitating the 
detection and prevention of healthcare fraud. Through 
meticulous comparative experiments, the results underscore the 
remarkable performance of the proposed system, achieving an 
impressive classification accuracy of 97.96% and an 
exceptional sensitivity of 98.09%. These outcomes highlight 
the profound impact of the BC smart contract in fortifying 
fraud detection capabilities, leading to an unparalleled accuracy 
rate of 97.96%. Authors in [40] introduce ContractWard, an 
original approach aimed at identifying vulnerabilities in smart 
contracts through the utilization of machine learning 
techniques. By leveraging bigram features extracted from 
simplified operation codes of smart contracts, ContractWard 
constructs robust detection models using a combination of five 
distinct ML algorithms and two sampling algorithms. Notably, 
the evaluation conducted on a comprehensive dataset of real-
world smart contracts deployed on Ethereum showcases 
ContractWard’s exceptional performance, achieving 
remarkably high predictive scores of over 96% for both Micro-
F1 and Macro-F1 metrics. Moreover, ContractWard 
demonstrates impressive efficiency, with an average detection 
time of 4 s per smart contract when trained with XGBoost 
whereas it was balanced with the SMOTE Tomek. These 
findings unequivocally underscore the efficacy and proficiency 
of ContractWard in effectively identifying vulnerabilities and 
fortifying the security of smart contracts. 

IV. PROPOSED SCHEME  

In our methodology (Figure 1), we will begin by collecting 
the EFD dataset. This dataset will undergo preprocessing to 
prepare the data for analysis. Following that, we will use three 
different algorithms for making predictions: Random Forest 
(RF), AdaBoost, and Decision Tree (DT). Each of these 
algorithms will produce its own prediction (Pred1, Pred2, and 
Pred3, respectively). Once the predictions are made, we will 
apply Hard Voting and Soft Voting, leading to two sets of 
predictions (Pred_H and Pred_S). The predictions will then be 
evaluated to assess the performance of our ensemble method. 
As part of the evaluation, we will also employ techniques from 
XAI to interpret the results and provide insights into how the 
decisions were made by the ensemble. 

A. Dataset 

The dataset [41] we used in our study provides a 
comprehensive view of Ethereum transactions, with a specific 
focus on identifying fraudulent activities. It encompasses 
various attributes ranging from basic account information to 
more detailed transactional data. Each record in the dataset 
represents an Ethereum account and includes the unique 
account address and a flag indicating whether transactions from 
the account are fraudulent. Transaction timings are dissected 
into average minutes between transactions, both sent and 
received, as well as the time difference between the first and 
last transaction, illustrating account activity over time. 

The dataset quantifies the number of transactions sent and 
received, including the creation of contract transactions, which 
are crucial for understanding account behavior. It also delves 
into the uniqueness of interaction by accounting for the total 
unique addresses involved in both incoming and outgoing 
transactions. The transactional values are broken down into 
minimum, maximum, and average Ether values sent and 
received, providing a financial profile of each account's 
activity. This extends to transactions involving contracts, with 
separate metrics for Ether sent to contracts, thus highlighting 
the role of smart contracts in the transactional ecosystem of an 
account. 

 

 

Fig. 1.  The proposed methodology. 

Moreover, the dataset provides a holistic view of an 
account's Ether flow, summarizing total transactions, total 
Ethers sent and received, and the overall balance of Ether post-
transactions. It paints a detailed picture of an account's 
engagement with ERC20 token transactions, including the total 
number of these transactions, the Ether value of ERC20 tokens 
sent and received, and interactions with contract addresses 
specifically for ERC20 tokens. The dataset does not just stop at 
quantity but also explores the diversity of tokens associated 
with the accounts, listing the number of unique ERC20 tokens 
sent and received, as well as the most frequently sent and 
received token types. This rich dataset serves as the backbone 
of our analysis, providing us with the necessary depth and 
breadth of data to accurately model and detect fraudulent 
transactions in the Ethereum network. 

B. Data Pre-processing 

Data preprocessing stands as a pivotal phase in the 
deployment of ML methodologies, aiming to enhance model 
accuracy and accelerate the learning process. This stage is 
critical for the elimination of non-contributing attributes, the 
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resolution of missing values, and the rectification of 
imbalances within the dataset, which are essential to optimize 
the predictive prowess of the algorithms employed. In the 
realm of data cleansing, we judiciously excised three variables 
from our dataset deemed non-essential for the task of EFD. 
These excluded features—specifically the "Address," "ERC20 
most sent token type," and "ERC20 most received token type" 
were identified as extraneous in the context of our analytical 
objectives, thereby streamlining the feature space to those of 
greater pertinence[43]. Addressing the prevalence of 
incomplete records, we invoked the capabilities of the datasets 
library, a Python toolkit tailored for facile data operations and 
exploration. We engaged the "fill missing num" functionality to 
impute voids within numerical attributes, substituting absent 
values with the feature's mean. Concurrently, the "fill missing 
cats" mechanism was employed to rectify gaps in categorical 
features, defaulting missing entries to the mode of the 
respective attribute. 

Given the inherent challenge posed by skewed class 
distributions, our dataset's imbalance was manifest, with a 
scant proportion of fraudulent transactions (2,179 out of 9,841). 
To mitigate the bias towards the predominant class and 
enhance the model sensitivity to the minority class, we 
implemented two resampling strategies: Random Under 
Sampling (RUS) and Synthetic Minority Over-sampling 
Technique (SMOTE). These techniques are instrumental in 
recalibrating the dataset to a more balanced composition, 
thereby facilitating a more equitable and nuanced learning 
process 

C. Model Implementation 

In our ensemble framework, we methodically implemented 
three machine learning models: RF, DT, and AdaBoost, each 
chosen for its distinct characteristics and ability to uncover 
patterns of fraudulent activity in the Ethereum dataset. 

The RF model, known for its proficiency in managing 
datasets with numerous features, was applied by constructing a 
series of DTs, each on different data and feature subsets. This 
ensemble approach reduces overfitting risks inherent in single 
DTs by averaging out biases and errors, which results in 
improved prediction accuracy. We tailored the RF 
hyperparameters, such as the number of trees and the 
maximum depth of the trees, to suit the complexity of our data. 

In the case of the DT model, we capitalized on its 
straightforward structure to build a model that splits the data 
based on certain feature thresholds. These splits were carefully 
chosen to maximize the differentiation between fraudulent and 
non-fraudulent transactions. The simplicity of a single DT 
allows for easy interpretation of decision paths but requires 
careful monitoring to prevent overfitting to the training data. 

The AdaBoost algorithm was chosen for its adaptive 
qualities, boosting the classification capabilities of weak 
learners, typically DTs in our case. AdaBoost focuses on 
instances that have been challenging for previous models, 
iteratively adjusting the weights of these instances. By doing 
so, subsequent models prioritize these difficult cases in the 
training process. The final model is then a composite of these 
individual learners, weighted by their accuracy, to form a 

robust classifier. For AdaBoost, we selected an appropriate 
number of DTs to serve as weak learners, ensuring they 
collectively form a strong predictive model without 
overcomplicating the learning process. 

For each model, we meticulously adjusted their respective 
hyperparameters, such as the number of estimators for RF and 
AdaBoost and the depth for DT, according to the specific 
demands of our dataset. This fine-tuning was essential to 
balance the bias-variance tradeoff, aiming to maximize the 
predictive performance while maintaining the models’ abilities 
to generalize new data. The individual strengths of RF, DT, and 
AdaBoost, when integrated within our ensemble strategy, 
resulted in a comprehensive and robust fraud detection 
mechanism. 

D. Ensemble Learning 

Ensemble learning in the context of our fraud detection 
system is the strategic combination of multiple machine 
learning models to improve the overall predictive performance. 
This approach leverages the strengths of individual models to 
create a collective decision-making entity that is more accurate 
and reliable than any single model alone. The ensemble 
technique is particularly effective in complex problems like 
fraud detection, where the nuances of fraudulent behavior can 
be difficult for a single model to capture. 

Our ensemble consists of three well-established algorithms, 
RF, DT, and AdaBoost. The RF model contributes its ensemble 
of DTs that individually assess different aspects of the data, 
thus offering a comprehensive view through majority voting. 
The strength of this model lies in its ability to mitigate the 
overfitting problem commonly seen in individual DTs by 
averaging multiple decision paths. The DT model brings clarity 
and interpretability to the ensemble. It offers a depth of 
analysis at each decision node, which is valuable for 
understanding the specific conditions that lead to a 
classification of fraud. The tree's structure provides clear rules 
and criteria for decision-making, which can be crucial for 
stakeholders requiring insight into the model's reasoning. 
AdaBoost complements the ensemble by focusing on instances 
that are difficult to classify. It operates by sequentially applying 
weak learners and adjusting their focus on misclassified 
instances from the previous models. The learning algorithm 
adapts by giving more weight to the misjudged instances, 
ensuring that subsequent learners give them more attention. 
The resulting combination of these learners forms a potent 
model that can handle varied and complex fraud patterns. 

In our ensemble, each model votes on the outcome of a 
transaction being fraudulent or not, with the final decision 
achieved through aggregation methods, like hard voting or soft 
voting. Hard voting considers the most common outcome 
predicted by the models, while soft voting takes into account 
the confidence level of each prediction. This harmonization of 
diverse models and voting mechanisms ensures that the 
ensemble captures an expansive spectrum of data patterns and 
anomalies, leading to a robust and nuanced fraud detection 
system. By integrating these models' predictions, we aim to 
harness their collective intelligence, thereby enhancing the 
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accuracy and reliability of detecting fraud within the Ethereum 
network. 

V. MODEL TRAINING AND EVALUATION  

The dataset was divided into two portions: one for training 
and evaluation, accounting for 80% of the data, and the other 
for testing with unseen data, comprising the remaining 20%. 
For our experiments, we employed Google Colab, a 
collaborative Jupyter notebook platform, to conduct our ML 
research. We utilized Keras (version 2.12.0) and TensorFlow 
(version 2.12.0), as a backend engine. Our experimental setup 
in the Google Colab environment provided us with 13.62 GB 
of available RAM, offering a powerful and accessible resource 
for implementing and testing our models. The primary 
objective of our study was to design and evaluate ML models 
using the EFD dataset to categorize Ethereum transactions into 
two groups: legitimate and fraudulent. The "Flag" feature 
served as the target variable for training and evaluation. We 
assessed the performance of various ML methods by measuring 
metrics such as accuracy, training time, recall, precision, and F-
score. 

The performance results for the three individual ML 
classifiers and two ensemble voting strategies used in EFD can 
be seen in Table I. The RF classifier showcases the highest 
accuracy of 98.7%, with a precision, recall, and F1 score of 
0.99 for both fraudulent and legitimate labels. It, however, 
requires a considerable training time of 3.35 s. The DT 
classifier exhibits an accuracy of 97.3%, with corresponding 
precision, recall, and F1 scores of 0.97. Despite its slightly 
lower accuracy, it has the benefit of a relatively shorter training 
time of just 0.2 s. The AdaBoost classifier aligns closely with 
the DT classifier, with accuracy of 97.6% and similar precision, 
recall, and F1 scores, but at a longer training time of 2.32 s. 
When we consider the ensemble methods, both soft and hard 
voting mechanisms show promising results. The Soft Voting 
method achieves an accuracy of 98%, albeit with the longest 
training time of 4.59 s. The Hard Voting method, in contrast, 
achieves the highest accuracy of 99%, surpassing all individual 
classifiers and the Soft Voting method, while requiring a 
moderate training time of 3.85 s. 

TABLE I.  ETHEREUM FRAUD DETECTION RESULTS 

Classifier ACC 
Training 

Time (s) 
Label PREC REC F-S 

RF 98.7% 3.35 
Fraudulent 0.99 0.99 0.99 

Legitimate 0.99 0.99 0.99 

DT 97.3% 0.2 
Fraudulent 0.97 0.97 0.97 

Legitimate 0.97 0.97 0.97 

AdaBoost 97.6% 2.32 Fraudulent 0.98 0.97 0.98 

 

Based on these outcomes, the Ensemble Hard Voting 
classifier emerges as the most effective model for EFD due to 
its highest accuracy of 99%. Although its training time is not 
the shortest, the superior accuracy compensates for the extra 
computational resources, given the critical nature of fraud 
detection in BC transactions.  

The results underscore the importance of ensemble methods 
in enhancing the robustness and accuracy of fraud detection 

models, thus contributing significantly to the security aspect of 
BC technologies. 

The comparative evaluation of our proposed Ensemble 
Hard Voting classifier against other methods presented in the 
existing literature further underscores its superior performance 
(Table II). With an ACC of 99%, the proposed model surpasses 
the accuracies reported in [3, 36, 38, 39, 42]. Not only does this 
comparison illustrate the efficiency of the proposed model, but 
also demonstrates its contribution to the ongoing research in 
EFD. The incorporation of ensemble methods and specifically 
the Hard Voting classifier enhances the robustness and 
accuracy of the detection system, thereby strengthening the 
security framework of BC transactions. These findings 
emphasize the growing potential of ML-driven solutions in 
managing the intricate cybersecurity challenges within the 
constantly evolving BC sphere. 

TABLE II.  COMPARATIVE ANALYSIS OF EFD ACCURACY: 
PROPOSED VS. EXISTING METHODS 

Reference ACC 

Proposed 99% 

[3] 96.3% 

[36] 98% 

[42] 80.2% 

[38] 98.11% 

[39] 97.96% 

 

The significance of explainability in AI cannot be 
overstated, particularly when it pertains to high-stake domains, 
such as fraud detection. A fundamental step towards achieving 
transparency in AI models is the examination of feature 
importance, which sheds light on the variables that most 
significantly influence the model's predictions. 

In our analysis (Figure 2), the RF classifier has highlighted 
the differential impact of various features. The prominence of 
"Time diff between first and last (mins)" at the apex of 
importance underscores its pivotal role in identifying potential 
fraud. Such insights are invaluable, as not only do they inform 
the model's predictive behavior, but also provide stakeholders 
with an understanding of the underlying factors that the AI 
considers indicative of fraudulent activities. The feature 
importance graph also accentuates the relevance of ERC20 
token transactions, with features such as "ERC20 min val rec," 
"ERC20 max val rec," and "ERC20 avg val rec" ranking 
highly. The significance attributed to these features reveals the 
model's sensitivity to the nuances of smart contract interactions 
on the Ethereum platform. By delineating the hierarchy of 
feature importance, XAI demystifies the model's decision-
making process, enabling a more informed and transparent 
evaluation of the model's outputs. Not only does this approach 
ensure that the most impactful features are incorporated into 
the model, enhancing its accuracy, but also fosters trust and 
credibility in the AI system by making its inner workings more 
accessible to users and practitioners. 

The LIME technique stands as a pivotal tool in the realm of 
explainable AI, providing clarity on how predictive models 
make their decisions. It achieves this by generating local 
surrogate models that approximate the predictions of the 
complex model in a comprehensible way. The bar chart 
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produced by LIME offers an intuitive visualization of the 
importance of individual features for a particular prediction. In 
the context of our fraud detection model, LIME elucidates the 
contributions of specific features to the classification of a 
transaction (Figure 3). For instance, the "Unique received from 
addresses" feature has a significant positive impact on 
classifying a transaction as class 1, which could represent a 

fraudulent transaction. Similarly, "ERC20 min val sent" and 
"ERC20 total Ether sent contract" are also influential in the 
model’s prediction, as depicted by their weight in the chart. 
The negative weight of "Time diff between first and last 
(mins)" suggests that shorter time differences may decrease the 
likelihood of a transaction being classified as class 1. 

 

 

Fig. 2.  Feature importance rankings utilizing the RF classifier. 

 

Fig. 3.  Feature importance rankings utilizing the LIME technique. 

LIME's granular explanations offer valuable insights, 
particularly in scenarios where model trustworthiness and 
understanding are critical. By dissecting the model's 
predictions into interpretable contributions from each feature, 

stakeholders can gain a nuanced understanding of the model's 
behavior, which is instrumental for validation and trust in AI 
applications. 

VI. CONCLUSION AND FUTURE WORK 

This study has underscored the power of ML techniques, 
notably the Hard Voting ensemble model, in detecting 
fraudulent transactions within the complex world of 
cryptocurrencies. The research has illuminated the capability of 
these methodologies in identifying questionable activities, 
while simultaneously underscoring the value of Explainable AI 
(XAI) in ensuring transparency, trust, and accountability within 
AI- empowered fraud detection systems. One significant 
direction is the proposed model application in real-time 
scenarios. With its exceptional performance, implementing the 
Hard Voting ensemble model to oversee live transactions 
within the BC could prove to be profoundly beneficial. This 
real-time deployment could potentially deliver immediate and 
accurate fraud detection, thereby substantially improving the 
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security and dependability of BC ecosystems. Not only does 
the research showcase the theoretical potential of ML solutions, 
but also underscores the imperative need to translate these 
theories into practice to enhance the burgeoning domain of 
digital currencies. 
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