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ABSTRACT 

Cloud computing has revolutionized the way businesses operate by offering accuracy in Normalized 

Mutual Information (NMI). However, with the growing adoption of cloud services, ensuring the accuracy 

and validation of common processes through machine learning and clustering of these common concepts as 

well as of the processes generated by cloud forensics experts’ data in cloud environments has become a 

paramount concern. The current paper proposes an innovative approach to enhance the data collection 

procedure in cloud environments by applying a Cloud Forensic Meta-Model (CFMM) and integrating it 

with machine learning techniques to improve the cloud forensic data. Through this approach, consistency 

and compatibility across different cloud environments in terms of accuracy are ensured. This research 

contributes to the ongoing efforts to validate the clustering process for data collection in cloud computing 

environments and advance the field of cloud forensics for standardizing the representation of cloud 

forensic data, certifying NMI and accuracy across different cloud environments. 

Keywords-cloud forensics; data collection; cloud environment; cloud computing; data integrity 

I. INTRODUCTION  

Cloud computing has transformed the landscape of IT 
infrastructure, enabling businesses to harness the benefits of 
scalable, efficient, accurate, and flexible resources [1]. 
However, as organizations increasingly migrate their critical 
data and applications to cloud environments, concerns about 
data security, integrity, and the ability to effectively investigate 
and respond to accurate data collection incidents have grown 
due to redundancy during the interoperability process regarding 
NMI [2, 3]. Establishing the trustworthiness of accurate data 
collection in cloud environments is essential and it necessitates 
the development of innovative approaches that not only 
enhance data collection, but also enable intelligent analysis and 
proactive validation process [4]. Numerous studies introduced 
an improved Machine Learning (ML) method that leverages 

the Cloud Forensic Meta-Model (CFMM) to significantly 
ameliorate the data collection process in cloud environments 
but accuracy issues, such as classifications and NMI emerge [5, 
6]. Traditional data collection practices in the cloud often lack 
the structured and standardized approach needed to address 
data collection, validation, and accuracy concerns 
comprehensively [7]. The integration of CFMM with ML for 
data collection offers a promising solution to these setbacks. 
The adoption of cloud computing has introduced unique 
challenges to data collection and validation [8, 9]. Traditional 
methods and tools designed for on-premises environments are 
often ill-suited for cloud-based systems. Cloud environments 
are dynamic, distributed, and virtualized, making data 
collection and analysis a complex and costly endeavor [10]. 
Additionally, the dynamic nature of accurate data collection in 
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cloud systems makes tracking data provenance and maintaining 
the integrity of critical information rigorous. 

 

 
Fig. 1.  Cloud forensic process. 

Furthermore, Figure 1 explains the Cloud Forensic (CF) 
process divided into the ML techniques that are integrated into 
several procedures to enable intelligent data analysis, anomaly 
detection, and predictive analytics. ML meta-models can 
automatically identify patterns, anomalies, and potential 
validation extortions in real-time interoperability process by 
enhancing the proactive accuracy posture of cloud 
environments [11, 12]. Not only does this integration 
strengthen the ability to detect and manage to validate data 
collection promptly, but also provides valuable insights for 
forensic investigations [13]. 

In this study, we present the development of a prototype 
system that implements CFMM and integrates ML algorithms 
for data analysis to improve accuracy in terms of NMI. The 
system is rigorously evaluated in a simulated cloud 
environment employing various use cases and scenarios 
applied for classification. The results of this research indicate 
substantial improvements in data collection, accuracy, and the 
ability to detect and respond to NMI [14] incidents proactively. 
Problems related to the classification performed during the 
digital investigation process in cloud environments lead to a 
discussion of incident response strategies [15, 16]. Some of 
them propose new tools, procedures, and meta-models to 
accomplish accurate data collection investigation in the cloud 
[17, 18]. In summary, by introducing an improved ML method 
and by applying a CF meta-model, this article contributes to an 
enhanced data collection process in cloud environments. The 
critical need for upgraded data collection procedures in cloud 
environments is tackled by proposing an innovative method 
that combines the CFMM and ML techniques to ensure NMI. 
The main target of this paper is to propose a forensic model to 
organize and structure a CF field among forensic domains. The 
proposed abstract model combines and unifies redundant and 
different common CF processes and terminologies from 
different CF models. 

II. RELATED WORK 

A. Cloud Forensics and Investigations 

Previous research has extensively explored challenges such 
as classification regarding NMI [19, 20]. Authors in [21] 
provided an overview of various forensic techniques and 

approaches in cloud environments, offering valuable insights 
into the field of establishing NMI. Digital forensics in cloud 
computing environments face unique difficulties related to data 
collection, preservation, and analysis, laying the foundation for 
the need to develop structured models [22-24]. 

Data provenance in cloud meta-model environment plays a 
crucial role in forensic investigations [25]. Research on data 
provenance in cloud environments explores methods for 
tracking data lineage and warranting its integrity, which aligns 
with the goals of the proposed CFMM approach. ML for 
anomaly detection in cloud data collection has been widely 
applied in cloud data classifications [26, 27]. Studies on 
anomaly classification and data collection using ML techniques 
[28-30] can inform the integration of such methods with 
CFMM to enhance data collection process and accuracy. 
Standardization efforts in cloud data classification bodies and 
organizations [31, 32] have proposed guidelines and standards 
for cloud classification and forensics. These standards can 
inform the development of CFMM and its compatibility with 
existing best practices on a medium and large scale. 

B. Cloud NMI and Compliance Frameworks 

Various frameworks and models, like the Cloud NMI 
Matrix [33], provide guidelines for the classification of cloud 
environments [34]. Understanding these frameworks can help 
in designing CFMM to align with industry best practices. 
Research on cloud metadata management and studies in cloud 
environments can provide insights into the types of metadata 
that are crucial for forensic investigations [35]. The proposed 
CFMM's reliance on forensic metadata makes these studies 
relevant. Cloud incident response framework research can 
elucidate the data collection, analysis, and response phases, 
which are integral to CFMM's objectives. Forensic tools and 
platforms have also emerged to address the unique challenges 
of cloud environments. Research on these methods can identify 
gaps that CFMM aims to fill. Although much research has been 
conducted on CF, a large scale systematic review on the 
challenges, solutions, and methodologies does not exist [36]. 
On the other hand, as far as cloud services are concerned, they 
have not been given the proper attention even though they are 
the most important aspects in the field, since cloud computing 
is based on the services offered [37]. Software designers and 
engineers, in many cases do not design and implement cloud 
services to be cloud forensic and enabled for accurate data 
collection. This is a major issue in CF investigation since the 
former cannot be conducted in a forensically data collection 
accurate manner [38, 39].  

Authors in [40, 41] proposed various investigation models 
for the CF domain. However, the models suggested are limited 
in scope and do not encompass the entire CF field. Therefore, 
other researchers [42, 43] point out the need for a unified 
model to include all CF terms with an organized data collection 
process [44]. These works collectively offer a foundation for 
the CFMM development and integration. They underscore the 
significance of structured data collection, data provenance, and 
the application of ML in addressing the challenges posed by 
cloud environments, contributing to the growing body of 
knowledge regarding the accuracy in CF. 
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III. METHODOLOGY 

Data collection and processing in CFMM often involves 
working with datasets to analyze and investigate data collection 
incidents or forensic cases in cloud computing environments. A 
step-by-step overview of how data collection and processing 
can be conducted using datasets within the CFMM follows. 

A. Clustering Process using Datasets and Concept Datasets 

To reduce the redundant complexity of the existing 
evidential clustering data and so improve the accuracy in terms 
of data collection, a new alternative version, named CFMM is 
proposed in this paper. CFMM is based on the following two 
expectations: 

 For the same data set, the centers obtained in the partition 
and those of singleton clusters are very similar. This means 
that the meta-clusters can be ignored in the initial iterations 
because the centers of meta-clusters are defined based on 
the instant information of the related redundant clusters. 

 Some of the objects in the dataset are difficult to be 
accurately assigned to specific clusters. They are then 
assigned to the related meta-clusters composed of only 
several close specific clusters. Thus, it is not necessary to 
expose all the objects under the power-dataset. 

By the above assumptions, the CFMM method can be 
summarized as: (1) preliminary sorting partition, (2) partial 
organization data rearrangement. 

B. Data sorting and Organization 

The purposes of this subsection are to preliminary sort and 
assign each object in the dataset as the outlier, precise or 
imprecise, adaptively. To derive such a proposal, let us 
consider a query set X including n objects in p dimensions with 
Ω = {ω1, . . . , ωc }. The support degrees of each object 
belonging to different singleton (specific) cluster and the noise 
cluster, called the mass of beliefs in specific partition, can be 
minimized by an FCM-like objective function at first. There are 
many methods to obtain the mass of beliefs. For example, the 
noise clustering method can be applied for the dataset, and we 
have modified it as the version of the specific partial 
organization data arrangement to facilitate the presentation. 
The objective function can be expressed as: 

���� − �� (	1, �1)  =  ∑� � = 1 ∑� � = 1  (1) 

m β ij ·  d 2 ij +  ∑n i = 1 δ 2 ·  mi∅ β  (2) 

∑c j = 1 mij +  mi∅ =  1, ∀i =  1, n     (3) 

where M1 = (m1, . . . , mn) ∈ R n×(|Ω|+1) is the mass of the 
belief matrix for n objects in X, and V1 ∈ R c×p is the matrix 
of the centers of single clusters. dij is the Euclidean distance 
between the object xi and the center of singleton cluster ωj. 
Parameters β, δ are adjustable. 

This research utilized four distinct datasets, each sourced 
from separate investigations by the Brazilian Federal Police 
Department. These datasets, originally in varied formats, were 
converted to a consistent plain text format and underwent 
extensive preprocessing in order to be prepared for analysis. To 
assess the quality of the data partitions, each dataset was 

compared against a "ground truth" reference partition, 
established by an expert in the field. This comparison was 
crucial in evaluating the data's organizational structure and its 
relevance to the study's objectives. The datasets were 
quantitatively characterized using several metrics, as detailed in 
Table I, namely the number of documents (N), groups (G), 
attributes (A), singletons (S), and the distribution of documents 
across groups. For instance, Dataset A included 37 documents 
across 23 groups, with an attribute count of 1744 and 12 
singletons, the largest group comprising 3 documents. Dataset 
B, contained 111 documents in 49 groups, with a significantly 
higher attribute count of 7894 and 28 singletons. This 
analytical approach provided in-depth insight into the structural 
and thematic elements of the documents, offering a 
comprehensive understanding of the data.  

TABLE I.  DATASET CHARACTERISTICS 

Dataset N G A S Largest cluster 
A 37 23 1744 12 3 
B 111 49 7894 28 12 
C 68 40 2699 24 8 
D 74 38 5095 26 17 

 

Utilizing several meta-modeling methodologies, we were 
able to validate the generated datasets consistency as well as 
their applicability (comparison against other models, 
frequency-based selection). Based on the findings, it can be 
concluded that the built FCMM is consistent and coherent. This 
allows domain forensic practitioners to simply instantiate new 
solution models by picking and combining concept elements 
(attributes and operations) based on the requirements of their 
models. From a scientific perspective, the use of reference 
partitions for evaluating data clustering algorithms is 
considered a principled approach. In controlled experimental 
settings, reference partitions are usually obtained from data 
generated synthetically according to some probability 
distributions. From a practical standpoint, reference partitions 
are usually acquired in a different way, but they are still 
employed to choose a particular clustering algorithm that is 
more appropriate for a given application, or to calibrate its 
parameters. In our case, parameter partitions were constructed 
by a domain expert and reflect the expectations that (S) has 
about the clusters that should be found in the datasets. In this 
sense, the evaluation method that we used to assess the 
obtained data partitions is based on the Adjusted Rand Index, 
which measures the agreement between a partition P, attained 
from running a clustering algorithm, and the reference partition 
given by the expert examiner. More specifically, the greater its 
value, the better the agreement between P and R is. 

Table II elucidates the stratification of processes into five 
discrete clusters using the CFMM methodology, further 
delineating into 30 principal categories. The dataset 
systematically organizes the sequences of actions within a 
protocol tailored for incident response and data governance. 
The inaugural cluster delineates the preliminary arrangements 
and the pinpointing of evidence. The subsequent cluster, 
Cluster 2, is dedicated to data verification and authentication, 
with a pronounced consideration for privacy. The third cluster 
is centered around data analysis and structuring, incorporating 
procedural steps for system deployment. Cluster 4 is exhaustive 
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in its detail on the collection phase, encapsulating data 
acquisition and the safeguarding of digital evidence. 
Culminating the clusters, Cluster 5 is comprehensive of 
documentation and reporting mechanisms, safeguarding of 
records, and the presentation of findings, signifying a 
meticulous blueprint for incident management and regulatory 
compliance. 

TABLE II.  CLUSTERING CHARACTERISTICS 

Sequence 

No 
Processes 

Cluster 

Number 

1 

1. Pre-preparation 
2. Pre-incident data collection 
3. Incident detection 
4. Initial response 
5. Identification 
6. Evidence source 

identification 
7. Log collection 

1 

2 

1. Verifications 
2. Authenticating 
3. Confirmation 
4. Data validation 
5. Incident confirmation 
6. Concurrent activities 
7. Privacy 

2 

3 

1. Data analyzing 
2. Analysis 
3. Implementation on open 

stack 
4. Organization 
5. Matching 
6. Examination 

3 

4 

1. Collection 
2. Data acquisition 
3. Data extraction 
4. Collect digital evidence 
5. Gathering data 
6. Storage 

4 

5 

1. Documentation 
2. Reporting 
3. Preservation 
4. Presentation 

5 

 

 
Fig. 2.  CFMM partition results. 

In Figure 3, the flowchart of the adaptive CFMM 
partitioning can be seen. By doing this, one can easily find that 
only a few objects need to be further reassigned. It can greatly 
reduce the computational complexity, with each imprecise 
object having a specific dynamic edited forensic meta-model. 

The diagram outlines a structured framework for data 
classification within a CFMM designed to optimize the sorting 
of data elements. The process commences with the introduction 
of the data set into the system, which then undergoes 
evaluation using a clustering function. The mass of belief (Bel) 
for the object � is assigned to the cluster ∅ or !. This function 
determines a "#$ for each data element, reflecting its affinity to 
a particular cluster. Data elements whose Bel strongly 
surpasses the threshold are confidently allocated to a cluster, 
while those with less definitive scores are marked as imprecise 
and set aside for further analysis. 

 

 
Fig. 3.  CFMM partitioning process. 

This initial sorting results in a preliminary categorization, 
separating data elements into precise and imprecise groups. 
Precise elements are those with clear cluster alignment, 
whereas imprecise elements undergo a more detailed review. A 
specialized dynamic edited forensic meta-model is then 
employed to reassess the imprecise elements, considering their 
individual characteristics to assign them to the appropriate 
cluster. This method greatly reduces computational load by 
quickly classifying elements with clear cluster associations, 
thereby focusing resources on elements with more ambiguous 
status. Such an approach is particularly advantageous in cloud 
forensics, where the vast amounts of data make identifying 
relevant information a challenging and resource-intensive task. 
The CFMM Algorithm is shown in Figure 4. The CFMM 
Clustering Algorithm is a methodical process for organizing 
data specifically for forensic analysis. Required inputs include 
a dataset labeled dataset to cluster: X = {x1, ..., xn} in Rp. 
Parameters: c, β, δ, ϕ ensure the cluster decision results. An 
object is constructed without meta-clusters, containing n 
entities, each within p dimensions, alongside c, β, δ, ϕ, which 
guide the clustering. The procedure is twofold. It begins by 
establishing objects devoid of meta-clusters and updating each 
object's belief mass through iterative calculations. Based on 
these beliefs, objects are first sorted as outliers, or as belonging 
distinctly or ambiguously to clusters. This establishes an initial 
separation of the data. Subsequently, the method recalculates 
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meta-cluster centers and modifies the CFMM for a more 
equitable distribution of belief. It then focuses on the 
previously ambiguous objects, re-evaluating and reassigning 
them to the most fitting clusters. The algorithm concludes with 
a dynamic partition that offers a detailed and nuanced 
categorization of the data, tailored for forensic applications. 

 

Algorithm 1: CFMM Clustering Algorithm 

1. Require: Dataset to cluster: X = {x1, ..., xn} in Rp; Parameters: c, 
β, δ, ϕ  

2. Ensure: Cluster decision results 
3. Step 1 
4. Construct the object without meta-clusters using (1)–(2); Iterate the 

mass of beliefs for each object by (2)–(3);  
5. For  
The 1th to nth query object preliminary assign the object as the outlier, 
either precise or imprecise using (3);  

End 
6. Sub-return: Preliminary partition.  
7. Step 2 Calculate the centers of meta-cluster using (1);  
8. Reconstruct the objective method CFMM for credal redistribution 

using (3);  
9. Reiterate the mass of beliefs for the q imprecise objects using (1), 

(2);  
10. For the 1th to qth imprecise object reassign the object to a singleton 

cluster or meta-cluster.  
End  

11. Sub return: Partial specific redistribution.  
12. Return: Dynamic partition 

Fig. 4.  Pseudo code of CFMM. 

 
Fig. 5.  CFMM clustering process. 

Figure 5 explains the CFMM clustering process, which is 
divided into 2 major portions to sort and organize the clustered 
data. The flowchart illustrates a structured method for 
identifying shared processes and concepts within a dataset 
collected from 18 different metamodels. Initially, the data are 
gathered and then segregated into two distinct datasets—one 
for processes and the other for concepts. These are then 
methodically sorted and organized. Subsequently, two 
simultaneous approaches are undertaken to determine the 
commonalities: an algorithmic approach, which incorporates 
methods such as the Elbow method, co-clustering, DBSCAN, 
K-means, Hierarchical, and GMM algorithms, along with a 
manual approach. The latter involves extracting the most 
frequently occurring concepts and processes. Following the 
identification stage, the results procured from both approaches 
undergo expert validation. The final step involves a 
comparative analysis of the findings from the algorithmic and 
manual methods. The culmination of this procedure is the 
determination of the agreed-upon common processes and 
concepts, signifying the end of the process. This flowchart 
depicts a comprehensive approach, melding algorithmic 
computation with manual scrutiny to validate the outcomes 
through expert review, ensuring the findings are reliable and 
accurate. 

IV. RESULTS AND DISCUSSION 

Cloud environments can vary significantly based on the 
service providers, configurations, and technologies used. 
Creating a unified metamodel helps standardize the 
representation of cloud forensic data, ensuring consistency and 
compatibility across different cloud environments. A unified 
metamodel enables different tools and systems to exchange and 
share cloud forensic data seamlessly. Usually, interoperability 
is crucial for the collaboration between multiple organizations 
or teams involved in cloud forensic investigations. Cloud 
forensics often requires data from various sources, such as logs, 
network traffic, virtual machine snapshots, and configuration 
data. A unified metamodel allows investigators to integrate and 
analyze diverse data types more efficiently, leading to a more 
comprehensive understanding of the incident to improve 
accuracy and NMI. The results of the proposed CFMM are 
explained below. 

A. Artifact-wise Clustering Results 

Table III explains the Artifact-wise Clustering Results 
which are selected from datasets and are the most meaningful 
in terms of accuracy to NMI. Table IV contains clusters no, 4, 
5, 6, 7, 8, 9, 10, and 11 from the datasets mentioned in Table I. 
Figure 6 explains the results of Table III. The Elbow method is 
utilized to determine the optimal number of clusters in a 
dataset. The frequency values indicate how often each cluster 
number was identified as the optimal choice in different 
iterations. Notably, cluster number 5 emerges as the most 
frequent optimal choice, being identified 3 times, which 
suggests it might be the most suitable number of clusters for 
the dataset. Cluster numbers 4 and 6 also appear as potentially 
optimal, but less frequent, each with a frequency of 2. In 
contrast, the rest cluster numbers are considered suboptimal for 
the given data. Table IV illustrates the selected clusters and 
compares them with existing approaches in terms of accuracy. 
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A total of 8 iterations were performed for comparison. We can 
see how the proposed CFMM approach is significantly more 
accurate than the existing techniques. Figure 7 exhibits the 
superb accuracy of the proposed CFMM approach. Figure 7(i) 
states the overall average % results between the proposed 
CFMM and existing approaches. 

TABLE III.  RESULTS OF THE CFMM METHOD 

Cluster No. 4 5 6 7 8 9 10 11 

Frequency 2 3 2 0 1 0 2 1 

 

 
Fig. 6.  CFMM clustering results. 

TABLE IV.  RESULT COMPARISON 

 

K-Means 

[28] 

Hierarchical 

[24] 

DBSCAN 

[24] 

GMM 

[45] 
CFMM 

Cluster No 4 0.46 0.56 0.23 0.65 0.96 
Cluster No 5 0.7 0.15 0.15 0.24 0.83 
Cluster No 6 0.11 0.18 0.2 0.26 0.85 
Cluster No 7 0.13 0.16 0.19 0.24 0.73 
Cluster No 8 0.15 0.18 0.22 0.24 0.71 
Cluster No 9 0.17 0.13 0.25 0.24 0.89 
Cluster No 10 0.19 0.11 0.26 0.24 0.79 
Cluster No 11 0.21 0.14 0.23 0.19 0.81 

 
Figure 7(a) illustrates the comparison for cluster no 4. 

Clustering quality metric accuracy is used. It rates the 
performance on a scale from 0 to 1, where 1 signifies the ideal 
clustering arrangement. The CFMM algorithm emerges as the 
most effective, with a near-perfect score of 0.96, indicating its 
superior ability to cluster the given dataset. The GMM method 
registers a moderate effectiveness with a score of 0.6. The other 
algorithms, have a lower clustering performance. The 
DBSCAN algorithm's performance is not depicted, suggesting 
a negligible score. 

Figure 7(b) compares the same set of algorithms, however, 
the performance scores vary from Figure 7(a). The proposed 
CFMM maintains its lead with a score of 0.83, affirming its 
robustness in effectively clustering the dataset. K-means 
clustering is still a competitive method, with a score of 0.7, 
denoting a high level of effectiveness. Conversely, DBSCAN, 
GMM, and Hierarchical show considerably lower scores, all 
either at or below 0.26, which implies these methods are less 
suitable for the dataset based on the metric used. The CFMM 
algorithm's consistent high performance across both figures 
indicates its potential as the preferred method for the dataset. 
For the rest of the cluster numbers mentioned in Figure 7, the 
accuracy of the proposed approach is always better than that of 
the compared methods.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

(i) 

 

Fig. 7.  (a) Cluster 4, (b) Cluster 5, (c) Cluster 6, (d) Cluster 7, (e) Cluster 
8, (f) Cluster 9, (g) Cluster 10, (h) Cluster 11, (i) overall average ratio. 

B. Clustering of Digital Forensics Results 

Table IV illustrates the selected cluster results of the 
proposed CFMM and compares them with the ones of known 
approaches such as K-Means, Hierarchical, DBSCAN in terms 
of NMI. A total of 8 iterations have been performed. We can 
see that the proposed CFMM approach had significantly 
improved NMI in comparison to the other techniques. Figure 8 
shows the result comparison (NMI).  

TABLE V.  NMI RESULTS OF SELECTED CLUSTERS 

Algorithms/ 

Clusters 

K-

Means 
Hierarchical DBSCAN GMM CFMM 

Cluster No 4 0.41 0.51 0.23 0.64 0.91 

Cluster No 5 0.62 0.09 0.2 0.38 0.79 

Cluster No 6 0.65 0.11 0.22 0.33 0.78 

Cluster No 7 0.62 0.09 0.26 0.38 0.79 

Cluster No 8 0.58 0.13 0.16 0.31 0.77 

Cluster No 9 0.72 0.14 0.31 0.39 0.85 

Cluster No 10 0.74 0.16 0.29 0.41 0.88 
Cluster No 11 0.75 0.17 0.27 0.43 0.89 

 

Considering the performance scores across the approaches, 
the average effectiveness of each algorithm can be estimated. 
CFMM appears to be the most efficient on average, given its 
leading scores in both evaluations. K-Means, despite its lower 
score, shows a moderate average performance, potentially 
indicating its versatility across different experiment settings. 
Hierarchical and GMM algorithms present a consistent, though 
not leading, performance, suggesting their utility in certain 

contexts. DBSCAN appears less effective on average, which 
could be due to its sensitivity to density parameters or the data 
nature. These averages provide insight into the general 
applicability of each algorithm, though the specific choice 
would depend on the particularities of the dataset and the 
clustering objectives. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

 

(h) 

 

(i) 

 

Fig. 8.  (a) Cluster 4, (b) Cluster 5, (c) Cluster 6, (d) Cluster 7, (e) Cluster 
8, (f) Cluster 9, (g) Cluster 10, (h) Cluster 11, (i) overall average ratio. 

V. CONCLUSION 

In this paper, we introduced the innovative Cloud Forensic 
Meta-Model (CFMM), seamlessly integrated with advanced 
machine learning algorithms, to significantly enhance data 
collection and analytical capabilities within cloud computing 
environments. Not only does this approach set a new standard 
for cloud forensics in terms of data processing and reliability, 
but also distinctly differentiates itself from the existing 
theoretical models. A key contribution of our research is the 
standardization of CFMM processes, which guarantees 
consistent and precise forensic data analysis across diverse 
cloud platforms. Furthermore, we outlined the common 
investigation processes within the CFMM framework, 
identifying five core stages: pre-preparation, verification, data 
analysis, collection, and documentation. Our study also 
effectively categorized and extracted several pivotal concepts 
from the dataset-CFMM. In addition, this study identified 
several concepts that were gathered from the dataset-based 
CFMM. On the other hand, these processes differ and have 
diverse meanings and synonyms. After that, the frequency 
feature was employed to choose the most prevalent concepts 

for each category. As a result, a total of 5 common concepts 
were chosen based on machine learning approach and the 
results were compared with the ones of known approaches. 
Several concept definitions were reconciled using the CFMM 
method.  
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