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ABSTRACT 

Human Activity Recognition (HAR) has several applications in healthcare, security, and assisted living 
systems used in smart homes. The main aim of these applications or systems is to classify body movement 

read from the built in sensors such as accelerometers and gyroscopes. Some actions could be performed in 

response to the output of these HAR systems. The number of smartphone users increases, whereas the 

sensors are widely available in different sizes and shapes (internal or external sensors). Recent advances in 

sensor technology and machine learning have led researchers to conduct studies on sensor technology such 

as HAR. HAR systems typically use a combination of sensors, such as accelerometers, gyroscopes, and 

cameras, to collect images or signal data that can be classified by machine learning algorithms. HAR 
research has focused on several key challenges including dealing with variability in sensor data, handling 

missing data or noise, and dealing with large amounts of sensor-generated data. In this work, several 

machine learning algorithms were tested in predefined settings using the KU-HAR dataset in a series of 

experiments. Subsequently, various performance metrics were calculated to assess the chosen algorithms’ 

performance. The experimental findings showed that the LightGBM classifier surpassed the other machine 

learning algorithms in performance metrics, such as accuracy, F1 score, precision, and recall. Although 
Gradient Boosting has lengthy training time, the other classifiers complete their training in an acceptable 

time period.  

Keywords-Human Activity Recognition (HAR); accelerometer; gyroscope; machine learning; sensors 

I. INTRODUCTION  

The domain of Human Activity Recognition (HAR) is 
rapidly expanding, leveraging sensor data to autonomously 
detect and categorize human behaviors and actions, in 
numerous applications. The field of wearable computing is also 
experiencing rapid growth in activity recognition, thanks to 
sensors embedded in smartphones. Advances in smartphone 
technology have enabled these built-in sensors to collect time-
series data in real-time, paving the way for a variety of 
applications in health monitoring, sports, gaming, and security. 
Table I shows that the number of smartphone users in the USA 
was 307 million in 2022 and is expected to reach 311.8 million 
in 2023. Every year, there are 4 million new users added to 
these statistics [1]. Thus, HAR applications will aid smartphone 
users in terms of health monitoring, sports performance, etc. 
Human activity tracking based on computer vision has been 

widely used, but infrastructure support is required to implement 
such systems, e.g. mounting some cameras in the monitoring 
areas [2]. Alternatively, inertial sensors available in 
smartphones—such as accelerometers and gyroscopes—can be 
worn on the body to measure acceleration and orientation [3]. 
An inertial sensor is a device that measures acceleration, 
angular velocity, and, sometimes, magnetic fields. The term 
encompasses a range of sensors, including accelerometers and 
gyroscopes [4]. A triaxial sensor specifically refers to a type of 
inertial sensor that measures these parameters along three 
orthogonal axes [5]. In essence, all triaxial sensors are inertial 
sensors, but not all inertial sensors are necessarily triaxial. 
Some may measure only one or two parameters and may not be 
oriented along three axes. 

HAR based on smartphones is a supervised classification 
problem in which subjects perform activities to obtain a 
training dataset [6]. This approach involves collecting sensor 
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data from smartphones worn by individuals during their daily 
routines. Using supervised learning techniques, the data 
acquired from smartphones are used to train algorithms that can 
accurately categorize and recognize different activities 
performed by users. The success of HAR lies in its ability to 
bridge the gap between raw sensor information and meaningful 
insights into human behaviors and movements. 

TABLE I.  SMARTPHONE USERS IN THE USA [3] 

Year Smartphone users (millions) 

2022 307 

2023 311.80 

2024 316.20 

2025 320.40 

2026 324.40 

2027 328.20 

2028 331.80 

2029 335.20 

2030 338.50 

2031 341.70 

2032 344.70 

2033 347.60 

 

This study makes use of KU-HAR, a publicly available 
real-world HAR dataset [7], which contains 18 activities 
collected from 90 individuals. Our research focuses on refining 
the performance of activity recognition models through feature 
extraction and ML methods. Through this process, we aim to 
achieve optimal results, thereby enhancing the accuracy and 
effectiveness of our classification algorithms. This approach 
advances our understanding of activity recognition and 
significantly contributes to the development of robust and 
precise models for real-world applications. In conclusion, our 
goals have been met through the presentation of results 
obtained by employing 7 Machine Learning (ML) classifiers: 
Gradient Boosting (GB), K-Nearest Neighbors (KNN), 
Decision Tree (DT), Random Forest (RF), XGBoost, 
LightGBM, and Catboost. The contributions of this study are 
summarized as follows: 

 First, we explore various relevant research areas for 
collecting HAR datasets and utilizing different machines as 
well as deep learning classifiers. 

 We analyze the KU-HAR dataset, which includes a variety 
of dynamic and static activities and a large scale of 
samples. Additionally, we utilize ML algorithms to assess 
the classification performance of the HAR system. 

 Lastly, we conduct a comprehensive evaluation of our 
system across various performance metrics such as 
precision, accuracy, recall, and F1-score. We also calculate 
the training and prediction durations to provide a thorough 
understanding of the system's operational efficiency. 

II. RELATED WORK 

HAR applications are utilized across various research 
fields. Researchers present HAR applications differently due to 
the variability in the modality of human activity data [7]. One 
such dataset was published in [8] (University of California, 
Irvine (UCI)– ML Repository). This dataset consists of 30 
subjects performing 6 activities: standing, sitting, laying, 

walking downstairs, walking upstairs, and walking. A total of 
10,299 samples were collected, each with 561 features in time-
series format, using built-in smartphone sensors. This dataset 
has been widely used by researchers and has achieved high 
levels of accuracy. In 2013, a proposed system achieved an 
overall accuracy of 96% on the UCI dataset [9]. The Wireless 
Sensor Data Mining (WISDM) dataset [10] has become a 
benchmark in the field of HAR. The dataset consists of 5,424 
transformed samples collected from 29 participants who 
performed 6 activities [10]. The authors trained models using 
robust algorithms such as J48, Logistic Regression (LR), and 
Multilayer Perceptron, achieving accuracies of 85.1%, 78.1%, 
and 91.7%, respectively. In [11], the authors applied the 
ADABOOST.M1 algorithm using 6 different classifiers: 
Hoeffding Tree, Decision Stump, Random Tree, J48, RF, and 
REP Tree on the same dataset, achieving accuracies of 87.84%, 
57.31%, 95.69%, 97.83%, 94.44%, and 97.33%, respectively. 
In [12], the USC-HAD dataset focusing on daily activities was 
collected to enhance ubiquitous computing. The researchers 
enlisted 14 subjects to perform 12 different activities, resulting 
in a total of 840 samples. This dataset includes a diverse range 
of activities suitable for various applications in activity 
recognition. In [13], various techniques were employed using a 
Deep Convolutional Neural Network (DCNN) on the 
previously mentioned dataset, achieving a high accuracy of 
97.01%. 

Fall detection systems are essential for reducing healthcare 
costs and are a leading cause of severe injuries among seniors. 
The UMAFALL dataset [14] utilizes multisensory data from 
different body points of each participant, which enhances the 
performance of automatic fall detection systems. The 
UMAFALL dataset consists of sample data from 17 subjects 
using accelerometer, gyroscope, and magnetometer sensors. 
The authors employed a 200 Hz sampling rate to classify 
activities into 11 classes. Authors in [15] applied various 
methods to this dataset and achieved the highest accuracy of 
98.49% using Shallow MLP. Additional notable accuracies 
include 97.8% with RF and 95.87% with KNN. The system in 
[16] relies on an accelerometer sensor module and collects 
HAR data using the Microsoft Band 2, positioned on the wrist. 
The sensors sample data at a frequency of 62 Hz. Time-series 
data are segmented using sliding windows with a 50% overlap. 
To capture a full cycle of human activity, the sliding windows 
are set to a size of 64, covering a time span of approximately 1 
s. This experiment achieved an overall accuracy rate of 
approximately 90% using an RF model. Authors in [17] 
focused on optimizing classification algorithms for HAR 
systems that employ wearable devices. The paper takes an in-
depth look at the utilization of RF algorithms for feature 
selection. According to the findings, using RF for this purpose 
enhances the memory efficiency of the model, particularly for 
mobile applications, although there is a slight compromise in 
accuracy. The study reports achieving a high accuracy rate of 
92.7% when employing the Support Vector Classifier (SVC). 
Furthermore, accuracies of 89.99% and 92.79% were achieved 
using KNN and LR algorithms, respectively. Table II provides 
a comparative summary of the findings from previous research 
along with the results obtained from our proposed models. 
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TABLE II.  COMPARISON OF OUR WORK WITH PREVIOUSLY PROPOSED MODELS 

Ref. Year Dataset Classes Activities ML/DL Algorithms Accuracy 

[9] 2012 UCI-HAR 6 
Standing, sitting, laying, walking_downstairs, 

walking_upstairs, walking 
ML SVM (MC-SVM) 96% 

[10] 2012 WISDM 6 
Jogging, walking, downstairs, upstairs, standing, 

sitting 
BOTH J48, LR, MLP 85.1%, 78.1%, 91.7% 

[12] 2012 USC-HAD 12 

Walking left, walking forward, walking upstairs, 

walking right, walking downstairs, jumping, 

standing, running forward, sitting, sleeping, 

elevator down, elevator up 

DL DCNN 97.01% 

[14] 2017 UMAFALL 11 

Climbing stairs down, climbing stairs up, 

squatting, light jogging, lying down and getting 

up from a bed, hopping, walking, sitting down 

and up from a chair, fall activities (forward, 

backwards, lateral) 

BOTH 
Shallow MLP, RF, 

KNN 

98.49%, 97.8%, 

95.87% 

[16] 2017 Not Reported 6 
Walking, going upstairs, going downstairs, 

jumping, running, keeping static 
ML RF 90% 

[17] 2022 UCI-HAR 6 
Standing, sitting, laying, walking_downstairs, 

walking_upstairs, walking 
ML KNN, LR, SVC 

89.99%, 92.79%, 

93.47% 

Proposed 2023 KU-HAR 18 

Stand, lay, sit, talk-stand, talk-sit, stair-up, lay-

stand, stair-down, stand-sit, table-tennis, pick, 

push-up, jump, sit-up, walk-backward, walk, run, 

walk-circle 

ML 

RF, KNN, DT, 

XGBoosting, GB, 

LightGBM, CatBoost 

94%, 77%, 87%, 95%, 

94%, 96%, 91% 

 

III. DATA ANALYSIS AND PRE-PROCESSING 

The process of developing a HAR model using a specific 
dataset involves several key steps. Initially, a thorough 
understanding of the dataset is required, followed by the crucial 
task of data cleaning. Subsequently, the application of robust 
statistical methods is essential to ensure that the study's 
objectives are met and aligned with predetermined performance 
metrics. This section provides an overview of the approach 
used to analyze and pre-process the KU-HAR dataset.  

A. Dataset 

The KU-HAR Dataset [7] was collected by students from 
the Electronics and Communication Engineering Department 
of Khulna University. It consists of 18 different activities 
performed by individuals, such as stand, lay, sit, etc., and is 
presented in a time-series format. The dataset consists of three 
Comma-Separated Values (CSV) files: raw activity data, which 
include 1945 samples across 18 classes, trimmed and 
interpolated raw data, which are cleaned of natural noise 
occurring during the collection process, and a set of 20,750 
subsamples extracted from the raw data. We intend to use these 
subsamples to build our proposed system. This dataset is 
segmented into 3 s intervals for each corresponding activity, 
capturing data from each axis (x, y, z) and each sensor 
(accelerometer and gyroscope). The data were collected from 
90 subjects aged between 18 and 34 years using built-in 
smartphone sensors, namely accelerometers and gyroscopes. 
Figure 1 presents the frequency distribution of each class label. 
While the frequency of some class labels is moderately high, 
other models have comparatively lower. This variance in label 
distribution is what continues to make the KU-HAR dataset a 
subject of ongoing research interest, offering opportunities for 
contributions in both existing and new ML algorithms. Figure 2 
represents a sample of accelerometer data for each activity to 
distinguish between static and dynamic activities. Static 
activities include standing, sitting, laying, and talk-standing, 
while dynamic activities encompass actions like walking, 
jumping, running, etc. Through sampling each activity, we 

observed that static activities exhibit higher data density 
compared to dynamic activities, thereby posing challenges for 
machine classification. For this study, we utilized Python 3 to 
process the data and develop models. We also employed 
various existing packages to facilitate the classification and 
evaluation processes. Exploratory Data Analysis (EDA) was 
applied to understand and analyze the dataset using statistical 
techniques and visualizations. This enabled us to discern 
relationships between features and identify patterns and 
anomalies. EDA techniques have been employed to ensure that 
the dataset is clean and ready for classification [18]. 

 

 
Fig. 1.  Class frequency. 

B. Description of Activities 

In HAR systems, activities are generally categorized into 
static and dynamic. Static activities typically involve minimal 
or no movement, whereas dynamic activities entail significant 
motion or changes in position. Table III lists the static and 
dynamic activities featured in the KU-HAR dataset. Static 
activities involve relatively little or no change in position and 
include actions such as standing, sitting, laying, or talking 
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while being stationary. Dynamic activities, on the other hand, 
entail significant motion or changes in position, exemplified by 
walking, running, jumping, or performing exercises like push-
ups and sit-ups [19]. Categorizing activities as either static or 
dynamic is advantageous for designing and training HAR 
systems. This is because the features and algorithms employed 
for recognizing these activities may differ based on their 
motion characteristics. 

 

 

 

 
Fig. 2.  Accelerometer samples for each activity. 

TABLE III.  STATIC AND DYNAMIC ACTIVITES IN KU-HAR 

Dynamic Activities Static Activities 

Pick Sit 

Jump Lay 

Push-up Stand-sit 

Walk-circle Talk-stand 

Walk Stand 

Walk-backwards Talk-sit 

Sit-up  

Run  

Lay-stand  

Stair-up  

Stair-down  

Table-tennis  

 

C. The Proposed Model 

After reviewing the related work in HAR, we devised the 
model depicted in Figure 3. Initially, for the KU-HAR dataset, 
we utilized the 3 s subsamples created by [7] for each activity. 
We then applied a feature extraction technique to derive a new 

set of time-domain features, which are detailed later (Table 
VI). Subsequently, we conducted data cleaning and duplicate 
checks to ensure the dataset is ready for training. The data were 
then partitioned into training and testing sets, with a 
distribution of 70% for training and 30% for testing. We 
trained our HAR model using this dataset and evaluated its 
performance using various metrics, which will be elaborated 
below. 

 

 
Fig. 3. The proposed model. 

D. Evaluation Metrics 

We evaluated our work using a variety of metrics, namely 
precision, accuracy, F1-score, recall, training time, and 
prediction time. We acknowledge that a high-accuracy model 
alone does not guarantee the reliability of the classifier's 
predictions. To assess the consistency of our system's results, 
we employed additional methods, such as the confusion matrix. 
Table IV provides a simplified representation of a confusion 
matrix for a hypothetical 3-class problem, which in our case 
extends to an 18-class problem [20]. 

TABLE IV.  CONFUSION MATRIX 

 Predicted Class 

Actual Class Class A Class B Class C 

Class A TP-A-A FP-A-B FP-A-C 

Class B FN-B-A TP-B-B FP-B-C 

Class C FN-C-A FN-C-B TP-C-C 
 

TP_A_A demonstrates the true positives for Class A (have 
correctly predicted as Class A), FP_A_B demonstrates the false 
positives for Class A when predicted as Class B, FN_A_B 
demonstrates the false negatives for Class A when the actual 
class is B. The evaluation metrics can be calculated using the 
formulas outlined in Table V. 

 Precision: This metric quantifies the proportion of 
accurately identified instances of each specific activity 
among all instances classified under that particular activity. 
This is evaluated across the 18 different activities. 

 Accuracy: This represents the percentage of activity records 
correctly identified, taking into account all 18 classes. 

 F1-score: This composite metric calculates the harmonic 
mean of recall and precision for each of the 18 classes in 
the HAR problem, offering a balanced measure of 
classification performance. 

 Recall: This metric measures the proportion of correctly 
predicted instances for each specific activity relative to all 
instances of that activity. It provides a comprehensive 
assessment of the classifier's ability to accurately identify 
each of the 18 activities. 
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 Training time: Denotes the time required to train the model 
using a specific algorithm across the entire dataset. 

 Prediction time: Indicates the time taken by a specific 
algorithm to predict activities across the entire dataset, 
differentiating among various types of activities. 

E. Feature Extraction 

From each sample mentioned above, a feature vector is 
derived. These features are based on standard methods 
commonly used in HAR studies considering smartphones [21]. 
For instance, metrics like mean and standard deviation were 
utilized [22]. A total of 66 features, spanning both frequency 
and time domains, were extracted to describe each activity 
window [23, 24]. To derive features from the data, we utilized 
a window-based approach rather than relying on raw data, 
which would require classification for each individual data 
point [25]. Table VI presents the extracted features along with 
their corresponding mathematical equations. 

TABLE V.  EVALUATION METRICS 

Metric Mathematical equation 

Accuracy (ACC) 
����������������  

Precision (Pr) 
�������  

Recall (Rc) 
�������  

F1-Score (F1) 
������������  

TABLE VI.  MATHMATICAL REPRESENTATION OF THE 
EXTRACTED FEATURES 

Feature Equation 

Mean �� = 1� � �)�
���  

Max max��, �, … , �) 

Min min��, �, … , �) 

Median median�� , � , … , �) 

Standard Deviation (SD) �� = �1� ��� − ��)��
���  

Skewness 
1���� ���� − ��)��

���  

Kurtosis 
1��� ���� − ��) )�

���  

Signal magnitude area 
1� ��|"�| + |$�| + |%� |)�

���  

Interquartile range percentile ��, 75) − percentile ��, 25) 

Average energy ) = 1* � +��
,

���  

Entropy -�.) = − � /�"� )�
��� log� / �"� ) 

F. Data Processing and ML Tool 

In this experiment, we utilized the Jupyter Notebook 
running on Python version 3.11. Although the Anaconda 
platform offers various notebook applications, we chose 
Python for its efficiency, scalability, and robustness. 
Additionally, Python offers a wide array of evaluation metrics 
that aid in assessing the performance of the models we used. To 
process the data, train the models, and evaluate their 
performance, we employed several libraries, including Sklearn, 
Numpy, SciPy, Pandas, CatBoost, LightGBM, and XGBoost 
[26–32]. 

G. Data Partitioning 

The dataset was divided into separate training and testing 
subsets in a 70:30 ratio. This separation was conducted using 
randomization and stratification methods to ensure that all 
classes were represented in both subsets. Following this 
division, we employed the training data to construct various 
classification models. Ultimately, these models were evaluated 
on the testing dataset to assess their performance [33, 34]. 

IV. MACHINE LEARNING CLASSIFIERS 

This section offers a concise overview of various 
supervised ML algorithms, highlighting their significance in 
diverse domains like HAR. The ongoing advancement of 
cutting-edge technologies underscores the growing need for 
these algorithms, which are crucial for extracting knowledge 
from large datasets. In this study, we aim to utilize these ML 
algorithms to classify the extracted features from the KU-HAR 
dataset into their corresponding classes. Introduced in 2001, the 
RF algorithm has gained widespread use for classification and 
regression tasks. This algorithm involves combining multiple 
DTs that are generated in a randomized manner and then 
aggregating their predictions through averaging. It has proven 
especially effective when dealing with a high number of 
variables compared to the number of observations [35]. RF is 
well-suited for HAR applications, as it is an ensemble learning 
algorithm that can work with various types of datasets, 
including time series data. One of its primary advantages in the 
field of HAR is its ability to manage complex, high-
dimensional datasets. Moreover, RF is robust to noise and 
outliers, making it valuable for reliable activity recognition in 
real-world scenarios [36]. KNN algorithm is a form of 
supervised learning that classifies new data points based on 
their proximity to the K closest existing points. The value of K 
is a significant hyperparameter that dictates how many 
neighbors should be considered [37]. The algorithm functions 
by initially calculating the distance between a new data point 
and every other point in the training dataset. The instances with 
the shortest distances are then identified as the K nearest 
neighbors. The new instance is subsequently labeled based on 
the most common label among its K closest neighbors. One of 
the most commonly used distance metrics is the Euclidean 
distance: 

34"�, "56 = 7∑ 4"�9 − "596�:9��   

DT is a powerful algorithm used for classification and 
prediction [38]. Essentially, it is a tree-like model that serves as 
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a flowchart, consisting of branches, nodes, and leaves. The 
algorithm divides a dataset into smaller subsets while 
simultaneously constructing an associated DT. 

LR assumes a linear relationship among the features of a 
dataset. This categorizes it as a parametric learning algorithm, 
adhering to a predefined structure for the model's parameters. 
While LR is typically used for predicting outcomes with 
continuous values, it can also be adapted for classification 
tasks. Given that time-series data consist of continuous values, 
LR could yield favorable results for classification [39]. In our 
case with 18 classes, the model calculates the probability of an 
input belonging to a specific class j, as expressed by: 

;�$ = <|=)  =  ?=⋅ABCDE∑ ?=⋅AFCDGHIGJH    

GB is a powerful ML technique used for both classification 
and regression tasks. This ensemble learning approach 
constructs a predictive model by sequentially combining the 
outputs of multiple weaker models, often DTs. The overall 
performance is continually enhanced by applying a loss 
function at each iteration and optimizing it through the 
Gradient Descent algorithm [40]. The general mathematical 
form of the Gradient Descent algorithm is given by: K:�")  = K:L��") + M ⋅ ℎ:�")  

XGBoost is a form of supervised learning in the ML 
domain. It uses boosting techniques to create accurate models. 
Essentially, it employs DTs for making predictions. The term 
boosting refers to the construction of a sequence of models, 
where each new model aims to address the shortcomings of the 
previous one [41]. 

LightGBM is a sophisticated ML technique that employs a 
histogram-based algorithm and a leaf-wise strategy to enhance 
model accuracy [42]. One of the main advantages of 
LightGBM is its capability for GPU acceleration, enabling the 
model to train and make predictions faster than some other 
algorithms. 

CatBoost is a supervised ML algorithm tailored for 
classification and regression tasks. Its name is derived from 
Categorical Boosting. The algorithm incorporates advanced 
techniques to improve predictive model accuracy, making it a 
valuable tool in the field of ML for structured data analysis. 

V. MODEL PERFORMANCE AND DISCUSSION 

Table VII presents the results obtained from the various ML 
classifiers discussed above. After the evaluation of the 
performance with precision, recall, accuracy, and F1-score, the 
LightGBM classifier emerges as the top performer, followed by 
XGBoost, RF, GB, CatBoost, DT, and KNN. Notably, 
XGBoost, RF, and LightGBM excel in terms of higher 
accuracy and well-balanced precision and recall. DT, GB, and 
CatBoost also show commendable performance, while KNN 
lags slightly in accuracy and other metrics. 

During the experiment, we also measured the training and 
prediction times, as shown in Table VIII. It's evident that KNN 
requires a significantly longer duration for both training and 
testing phases. Upon analyzing the training and prediction 

times across various classifiers, we observed distinct 
differences in computational efficiency. While KNN is notable 
for its relatively quick training time, it demands considerably 
more time for making predictions. In contrast, RF has a 
lengthier training phase but excels in prediction, delivering 
quick results once trained. The DT classifier offers a balanced 
approach with both short training and prediction times, making 
it an overall efficient choice. Ensemble methods such as GB, 
XGBoost, LightGBM, and CatBoost require longer training 
durations due to their intricate ensembles but make up for it 
with efficient prediction times. This highlights the trade-offs 
between training and prediction speeds. 

TABLE VII.  CLASSIFIERS’ PERFORMANCE 

Classifier Accuracy F1 Score Precision Recall 
KNN 0.94008 0.940068 0.940751 0.94008 
RF 0.771084 0.767235 0.771158 0.771084 
DT 0.867149 0.867198 0.867774 0.867149 
GB 0.94008 0.939989 0.940512 0.94008 

XGBoosting 0.952129 0.952057 0.95238 0.952129 
LightGBM 0.958072 0.957996 0.958361 0.958072 
CatBoost 0.911004 0.910832 0.911173 0.911004 

TABLE VIII.  TRAINING AND PREDICTION TIMES 

Classifier Training Time (s) Prediction Time (s) 

KNN 0.005913 1.533868 

RF 12.077085 0.121668 

DT 1.793583 0.003753 

GB 584.24576 0.145591 

XGBoosting 50.149573 0.07401 

LightGBM 10.617264 0.196468 

CatBoost 21.677018 0.013404 

 

After feature extraction, which yielded a total of 66 
features, we compared the performance of this reduced dataset 
to the original segmented dataset. We evaluated the various 
ML classifiers on both datasets and the results are presented in 
Table IX. The findings indicate that the 66-feature dataset 
generally outperforms the 1800-feature dataset across all 
assessed metrics. Not only is the performance higher, but it is 
also more consistent for classifiers using the 66 features, as 
evidenced by lower variability. Figure 6 illustrates the 
difference in accuracy between each model using both the 
original and the extracted datasets. 

 

 
Fig. 6. Model accuracy comparison. 

Table X offers a brief analysis of the results derived from 
the confusion matrix. Firstly, the misclassified labels 
encompass both FP and FN across all classes. Secondly, the 
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error rate is determined as the ratio of the total number of 
misclassified samples to the overall count of samples in the 
confusion matrix. Our findings indicate that LightGBM has the 
lowest error rate (0.042), thereby making it the most accurate 
classifier based on this particular metric. Conversely, KNN has 
the highest error rate (0.228). 

We also noted that LightGBM has the highest number of 
true positives (5964), signifying it correctly classified more 
instances compared to other classifiers. In contrast, KNN has 
the lowest number of true positives (4800). 

 

TABLE IX.  PERFORMANCE METRICS FOR ORIGINAL AND EXTRACTED DATASET 

Classifier #Features Accuracy F1 Score Precision Recall 

RF 1800 0.783614 0.767101 0.803174 0.783614 

RF 66 0.94008 0.940068 0.940751 0.94008 

KNN 1800 0.429558 0.401098 0.506774 0.429558 

KNN 66 0.771084 0.767235 0.771158 0.771084 

DT 1800 0.470843 0.468254 0.467726 0.470843 

DT 66 0.867149 0.867198 0.867774 0.867149 

GB 1800 0.827952 0.824933 0.830015 0.827952 

GB 66 0.94008 0.939989 0.940512 0.94008 

XGBoosting 1800 0.865221 0.865221 0.862785 0.865221 

XGBoosting 66 0.952129 0.952057 0.95238 0.952129 

LightGBM 1800 0.869558 0.865922 0.873129 0.869558 

LightGBM 66 0.958072 0.957996 0.958361 0.958072 

CatBoost 1800 0.789237 0.785696 0.790512 0.789237 

CatBoost 66 0.911004 0.910832 0.911173 0.911004 

 

TABLE X.  CONFUSION MATRIX ANALYSIS 

Classifier TP 
Total 

elements 
Misclassified 

Error 

rate 

Catboost 5671 6225 554 0.089 

DT 5354 6225 871 0.14 

RF 5845 6225 380 0.061 

XGBoost 5550 5848 298 0.051 

Light GBM 5964 6223 259 0.042 

KNN 4800 6219 1419 0.228 

GB 5487 5850 363 0.062 

 

The results of this study can be summarized as follows: 

 Based on all four evaluation metrics, the LightGBM 
classifier emerged as the best model among the ones 
considered. 

 Despite having high training and prediction times, GB 
performs exceptionally well, showing results quite similar 
to those of LightGBM. 

 XGBoost ranks second in performance, with a training time 
of 50 s, compared to LightGBM's 10 s. 

 RF and LightGBM offer a good balance between 
reasonable training times and high performance. 

 Although DT and KNN have the shortest training times, 
their overall performance metrics are the lowest. 

VI. CONCLUSION 

In this paper, a series of experiments in Human Activity 
Recognition (HAR) was conducted to assess the effectiveness 
and consistency of seven distinct machine learning algorithms, 
namely Gradient Boosting, Random Forest, Decision Tree, 
KNN, XGBoost, CatBoost, and LightGBM. These experiments 
leverage the publicly available KU-HAR dataset, which 
encompasses 18 activity classes grouped into static and 
dynamic categories. The results indicate that the LightGBM 

algorithm consistently outperforms the others across many 
performance metrics such as accuracy, F1 score, recall, and 
precision. While Gradient Boosting demonstrated higher 
effectiveness but required an extended training period, the 
remaining algorithms completed their training within a 
reasonable timeframe. 
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