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ABSTRACT 

The Inverted Pendulum On a Cart (IPOC) system poses a challenge in control engineering due to its 

inherent instability, nonlinearity, and underactuation. This addresses the fundamental issues arising from 

its underactuated nature and introduces an approach that combines Takagi-Sugeno (T-S) fuzzy control 

with an awareness of real-world constraints to create a control system ensuring both stability and 

practicality. By aligning theoretical insights with extended considerations, the Linear Matrix Inequality 

(LMI)-based control design is demonstrated in a comprehensive framework. Theorems are introduced and 

validated, leading to the derivation of LMI conditions. The simulation results are assessed with 

accompanying comments to demonstrate the effectiveness of the theorems. Through this integration of T-S 

fuzzy control with additional considerations, the paper aims to bridge the gap between theory and 

practical applications, advancing the field of control engineering. 

Keywords-Takagi-Sugeno fuzzy control; inverted pendulum on a cart; linear matrix inequality; decay rate; 

constraint on the output  

I. INTRODUCTION 

The IPOC system [1-3] stands as a captivating and 
challenging problem within the realm of control engineering, 
attracting the attention of researchers and engineers. This 
intricate system, characterized by its inherent instability, 
nonlinearity, and underactuation, has long been a crucible for 
testing and advancing control theories. The unique appeal of 
the IPOC system goes beyond theoretical fascination. It 
extends to practical applications that touch our daily lives, from 
the domain of self-balancing two-wheeled vehicles [4-5] to 
human balance modeling [6]. This paper explores the 
complexity of the IPOC system, emphasizing the core 
challenges stemming from its underactuated nature. As an 
underactuated system, controlling the IPOC presents 
challenges. Firstly, the system has a single input, the force 
applied to the cart, yet it must manage two output variables: the 
cart position and the pendulum angle. Secondly, this system is 
both nonlinear and unstable, making it susceptible to collapsing 
even under minimal disturbances. Consequently, the 
implementation of control methods becomes necessary to 
stabilize the pendulum. 

Over the years, the research community has diligently 
explored numerous control methods to address the challenges 
of this system. Control strategies like Proportional-Integral-
Derivative (PID), Sliding Mode Control (SMC), Linear 

Quadratic Regulator (LQR), and Fuzzy Logic Control (FLC) 
have been examined. Authors in [7, 8] utilized LQR and a PID 
controller, respectively, to stabilize the inverted pendulum. In 
[9], the authors used the IPOC as an object to test and compare 
the efficiency between SMC, Integral SMC and Terminal 
SMC. Besides those methods, FLC [10-12], has gained 
attention for its ability to handle the system's nonlinearity and 
ensure pendulum stability. While several studies have 
acknowledged FLC's potential in stabilizing the pendulum in 
the IPOC system, many of these studies have omitted practical 
considerations. The real-world environment often imposes 
limitations, including track boundaries and stabilization time. 
This brings us to the core of the current research. 
Acknowledging the merits of FLC, the untapped potential lies 
in adapting this method to consider real-world conditions. This 
paper introduces an approach using the T-S fuzzy control [13-
15] to the control design of the IPOC. The objective is to 
combine the strengths of T-S fuzzy control with an awareness 
of external constraints, such as track limits and stabilization 
time, in order to create a control system that not only 
guarantees stability, but also respects the boundaries of 
practical application. Authors in [16] elaborated the 
establishment and substantiation of stability using Lyapunov's 
theorem. This work is primarily concerned with achieving 
stability for the inverted pendulum while disregarding external 
factors such as track limits and stabilization time. The aim is to 
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align theoretical insights with extended considerations. 
Therefore, the primary contributions of this paper include: 

 Pendulum stabilization control design based on the T-S 
fuzzy model. 

 Design of the controller with additional conditions through 
the LMI form. 

 Result comparison and evaluation of the theorems both 
before and after the inclusion of additional conditions. 

In this paper, the IPOC model will be introduced, stability 
theories both with and without the consideration of these 
conditions will be present, simulation results for validation and 
comparative analysis will be shown, and a comprehensive 
conclusion will be offered. 

II. MODELING 

The IPOC system is illustrated in the Figure 1. It includes a 
cart with mass denoted as m0 

and a pendulum with mass 
denoted as m1. The rotation angle of the pendulum from the Y-
axis is represented as φ and the connecting rod has a length 
denoted as l. The force that moves the cart is expressed as u, 
and the acceleration due to gravity is represented by g. The 
travel distance of the cart is denoted as xd and the coordinates 

of the pendulum are denoted as  ,x yɶ ɶ  with sin
d

x x l  ɶ , 

cosy l ɶ . 

 

 

Fig. 1 Inverted pendulum on a cart. 

Assuming that the mass of the connecting rod is negligible, 
the Lagrange equation can be obtained as: 
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where the system’s kinetic energy and potential energy are 
denoted as EK and EP, respectively. Using the Euler-Lagrange 
equations: 
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the dynamics equations are derived: 
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After applying specific transformations, the cart position 
and pendulum angle dynamics are: 
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III. CONTROL DESIGN 

A. The Takagi-Sugeno Fuzzy Model 

The T-S fuzzy model depicts a nonlinear system through its 
division into subsystems. Each subsystem is described using a 
local linear input-output relation through an IF-THEN rule. The 
overall system is derived by synthesizing the linear system 
models as follows: 
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where the system’s state vector is denoted as x(t), the input 
vector is represented as u(t), the output vector is described by 
y(t), Ai, Bi, Ci are subsystem matrices, r is the number of rules, 

and ( ( ))
i

n s t  represents the membership functions, which, with 

their convex sum property, are defined as: 
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where  1 2 p
s s s s …  is a premise variables vector, p  

is the number of premise variables such that 2
p

r  , and 

( ( ))
i

w s t  are calculated by: 

max

0 1 0
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i i i
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Applying to the IPOC system, the premise variables are 
defined as: 
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The system's state equation takes the following form: 
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x Ax Bu ɺ      (9) 

where: 
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B. LMI-based Control Design 

Upon constructing the T-S fuzzy model, the Parallel 
Distributed Compensation (PDC) [17] is structured to calculate 
the control signal u(t). Each subsystem has a control rule 
corresponding to its T-S model. The fuzzy controller is 
designed using the identical fuzzy set as the premise part of the 
fuzzy model. With Ki being the feedback gain of the ith

 
subsystem, the overall PDC can be obtained as: 

1

( ) ( ( )) ( )
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i i
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

  .   (10) 

The PDC is derived through theorems in the form of linear 
matrix inequality. Some abbreviations used in the LMI context 

are: I is the identity matrix, 0Q  , 0  , 0  , 
1

Z Q
 , 

i i
G K Z . To design a controller with the aim of stabilizing 

the system, the following theorems should be held: 

1) Theorem 1 [16]: Stability Conditions 

The fuzzy system (5) achieves globally asymptotically 

stability when there is a common positive definite matrix Z  
such that: 
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Proof: 

A Lyapunov function ( ( )) ( ) ( )V x t x t Qx t
  is chosen. For 

the system (5) to achieve global asymptotic stability, the 
following condition must be satisfied: 
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Multiplying on both sides of (12) with Z  results in: 
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This concludes the proof. 

2) Theorem 2: Stability Conditions, Decay Rate, and 
Constraint on the Output 

Regarding the IPOC system, stabilizing the inverted 
pendulum in an upright position is insufficient. Practical 
considerations, like constraining the cart position or 
stabilization time of the pendulum, come into play. Therefore, 
theorem 2 will be introduced to account for these additional 
conditions. 

 Stability conditions: 
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 Decay rate: The response’s speed is related to decay rate. 

Maximize   subject to: 
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Proof: 

We chose a Lyapunov function as ( ( )) ( ) ( )V x t x t Qx t
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Following stability conditions in theorem 1, it is inferred: 
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Multiplying Z  on both sides of (15), then (14) is obtained: 
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 Constraint on the output: With the assumption of knowing 

the initial condition (0)x , the constraint 
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Proof: Following [17]. A Lyapunov function is chosen as 
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So, 
2

( )y t  holds if: 

1

2

1
0i iC C Z


       (19) 

Multiplying Z  on both sides of (19): 
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
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Using the Schur complement procedure for (18) and (20), 
LMI conditions (16) and (17) are derived. 

By employing theorem 1 to the IPOC system, stability is 
achieved. Even though the inverted pendulum is maintained in 
a vertical position, the dynamics of the system requires 
additional conditions due to practical limitations. The length of 
the cart track is being limited and the stability duration should 
be kept relatively short. Consequently, theorem 2 is more 
applicable into this system. To validate the effectiveness of 
both theorems as well as demonstrate the superior performance 
of theorem 2 compared to theorem 1, the simulation results will 
be presented in the following section. 

IV. SIMULATION 

The parameters for simulation are chosen as: m0 =1.5 kg, 
m1 =0.3 kg, l = 0.3 m, g =0.3 m/s

2
. The system’s initial 

conditions are:  
0 0 0 0

(0)
d d

x x x   ɺɺ , 
0d

x  = 0, 
0d

xɺ = 0, 
0

π

6
   

(rad), ɺ  = 0. The boundaries are 
-π π

3 3
   (rad), -6 ≤ ɺ  ≤ 6 

(rad/s). Additionally, the parameters in theorem 2 are given as 
a = 0.9, λ = 7. The calculated values of si max and  
si min are shown in Table I. 

TABLE I. PREMISE VARIABLES VALUES  

i si max si min 

1 0.6667 0.5797 

2 1 0.5 

3 1 0.827 

4 5.1962 -5.1962 

 

The simulation results when employing both theorems are 
shown in Figures 2-6. The blue line depicts the system’s states 
and control signal for theorem 1, whereas the red line 
represents those for theorem 2. Figures 2 and 3 illustrate cart 
position and cart velocity, respectively. The pendulum angle is 
described in Figure 4 and the pendulum angle velocity is 
shown in Figure 5. Figure 6 presents the control signal. 

 

 

Fig. 2 Cart position. 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12670-12675 12674  
 

www.etasr.com Nguyen & Tran: A T-S Fuzzy Approach with Extended LMI Conditions for Inverted Pendulum on a Cart 

 

In Figure 2, the position of the cart under theorem 1 and 
theorem 2 are compared and the difference is evident. The 
results show that theorem 2 achieves a significantly faster cart 
position stabilization time (approximately 2 s) compared to 
theorem 1 (about 30 s). It's worth noting that the cart position 
response curve for theorem 2 reaches a maximum value of 
approximately 0.6 m, whereas under theorem 1, this maximum 
value is as high as 1.7 m. This confirms the earlier assertion 
that theorem 2 provides results that align more closely with real 
mechanical constraints. 

 

 

Fig. 3 Cart velocity. 

 

Fig. 4 Pendulum angle. 

 

Fig. 5 Pendulum angle velocity. 

Similar to the cart position results, the pendulum angle also 
exhibits faster stabilization when applying theorem 2 compared 
to theorem 1 (2.5 s compared to 5 s), as shown in Figure 4. 

Once again, these results further bolster the points mentioned 
earlier. In Figures 3 and 5, respectively, the speed of the cart 
and the angular speed of the inverted pendulum are shown for 
both theorems. Although there are differences between the 
results, these state variables remain within the prescribed 
limits. Figure 6 illustrates the force acting on the cart, reflecting 
a subjective judgment aimed at finely regulating the system's 
dynamics. This translates to a higher energy exchange. 
Consequently, the force applied to the cart in theorem 2 is 
greater than that in theorem 1. 

 

 

Fig. 6 Control signal. 

V. CONCLUSION 

This paper presents the control design through two 
theorems and their application to the inverted pendulum on a 
cart system. Simulation results have been presented after 
introducing the theorems and proving their effectiveness, 
highlighting the superiority of theorem 2 over theorem 1. This 
research represents a significant step towards applying these 
theorems to control design for experimental systems, 
potentially contributing to advancements in control 
engineering. 
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