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ABSTRACT 

Blind image deblurring aims to recover an output latent image and a blur kernel from a given blurred 

image. Kernel estimation is a significant step in blind image deblurring and requires a regularization 

technique to minimize the cost function and the edges of objects to generate a sharp image in a better way. 

This study proposes a new image regularization technique called Weber's Law Regularization (WLR) 

based on the Weber law phenomenon. The Weber ratio was used to preserve the edges of small salient 

objects and to minimize the cost function to obtain a sharp image while minimizing the ringing effect. To 
validate the WLR, experiments were conducted on benchmark synthetic and real word images and 

compared with existing state-of-the-art methods. The experimental results showed that WLR can 
effectively and efficiently deblur images even in the absence of prior knowledge. 

Keywords-image deblurring; regularization; Weber's law; Weber's Law Regularization (WLR) 

I. INTRODUCTION  

Blurring can potentially degrade the quality of an image. In 
this regard, many techniques have been developed in the field 
of image processing and computer vision. Motion blur is the 
most common artifact, which is produced by shaking the 
camera while capturing an image. Image deblurring is mainly 
divided into two types: (1) blind image deblurring, where a 
Point Spread Function (PSF) is not known, and (2) nonblind 
image deblurring, where a PSF is known. However, the 
estimation of the PSF or a blur kernel plays a significant role in 
deblurring the image in both cases. After the estimation of the 
blur kernel, the sharp image is obtained by using several non-
blind deconvolution methods. Blur kernel estimation is further 
categorized into three types: Variational Bayes (VB)-based 
methods [1-7], Maximum A Posterior (MAP)- based methods 
[8-35], and neural network-based frameworks [36-40]. VB 
methods avoid trivial solutions and are considered to be more 

robust theoretically. However, since VB-based approaches are 
computationally expensive, more efficient methods are 
required for approximation [5]. Naive MAP-based methods 
may produce trivial solutions. Convolution Neural Networks 
(CNNs) are used to recover sharp images from blurry images 
without predicting the blur kernel [36-38]. These methods 
cannot properly eliminate blur without using the blur kernel 
and model [39]. Due to certain properties of MAP, VB, and 
CNN-based methods, this study only considered the first type 
of deblurring methods. 

Salient structures have been used to estimate kernels [8,16, 
18-19, 21, 23-25, 41-43]. In [8], two types of filters were used 
to extract the edges of the salient image, a bilateral filter and a 
shock filter. In [18-19], an extension of filters was proposed by 
refining the edges while using data-driven priors. In [21], the 
informative structures of the edges were selected, while the tiny 
edges were removed using the relative total variation. In [24], 
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high-level scene-specific priors were detected for the edges of 
an image. In [16], a Generalized Shrinkage-Thresholding 
(GST) operator was used to solve the problem of minimizing 
the lp-norm. In [40], a deep generative network regularization 
was proposed for blind image deconvolution. Sparse 
regularizations on image gradients have been successfully 
applied for kernel estimation [2, 9-13, 15, 26-29, 44]. In [26], 
the l1-norm was used to detect the salient edges of objects in a 
gradient image. The methods proposed in [12-13, 17, 26, 30] 
produce effective results under certain prior conditions. In [31], 
the hyper-Laplacian distribution was used to model the image 
gradients, while the lp-norm was used as a regularization term. 
In [9], the quality of an image was improved by combining the 
l1-norm and a ring-suppressing term. In [11], the l1/l2-norm 
regularization suppressed small and redundant structures, while 
reweighted norms were also used in [15]. In [10], a new 
approximation of the l0-norm regularizer based on gradients 
was proposed. In [18], the normalized color-line prior was used 
to enhance the edge contrast. In [6], a method was proposed to 
remove the uniform blur shake of the camera from images. 
Camera shake blur was estimated from image regions without 
saturation effects selected by users. However, saturated regions 
of the recovered image had strong artifacts and ringing artifacts 
near regions of significant object motion. In [7], a fast motion 
deblurring method was proposed by introducing a prediction 
step, using image derivatives instead of original pixel values to 
accelerate the kernel estimation and the latent image. However, 
the proposed method may not find the global optimal solution 
if the image has a strong impact on local regions different from 
other local regions. In [11], a novel type of image 
regularization for blind deconvolution based on the normalized 
sparsity measure was proposed. The ratio of l1 to l2 norm was 
proposed for the high-frequency components of an image. The 
normalized sparsity measure reduced the cost of sharp images. 
However, this may not work well for objects with sharp edges 
in an image, because the l1to l2 cannot possess this property. 

In [5], a simple modification of the MAP algorithm was 
proposed, considering the covariance near the latent image with 
the central pixel x itself. The main drawback of this approach 
was that it used the standard expectation minimization 
framework. In [10], an effective method with a generalized l0-
norm regularizer on gradients was proposed, eliminating the 
need for extra filtering and reducing the number of iterations 
required for convergence. However, a moderate ringing effect 
was still present in the recovered images. In [19], before 
restoring sharp edges, an external dataset was used to learn the 
patch and estimate the blur kernel. However, this method may 
be ineffective when there is a difference between the selected 
patch and the external dataset. In [18], the contrast was 
increased to obtain sharp edges utilizing the normalized color 
line prior. Salient structures were predicted by sharp 
intermediate patches and further used to estimate the blur 
kernel. However, this method may not be suitable if the patches 
have more than two primary colors. In [32], l0-regularized 
priors were used for kernel estimation and to avoid complex 
filter or explicit edge selection methods. In addition, an 
alternative minimization method was used to estimate the 
kernel for convergence in a suitable time. Simplified total 
variation was used for nonblind deblurring. However, any 

better nonblind image deblurring method can be used to 
improve the results. Dark channel priors capture the changes 
caused by the blurring process and favor clear over blurred 
images in the deblurring process [44]. However, this can be 
less effective in the case of clear images that do not have dark 
pixels. In [45], extreme channel priors, named Bright Channel 
Priors (BCPs), were considered because the bright parts of 
clear images will not remain intact after applying the blurring 
process. The proposed method also used the benefits of bright- 
and dark-channel image priors. In addition, in [46] the effect of 
outliers was minimized when estimating the blur kernel, but at 
the expense of an increased computational cost. In [47], 
Probability Weighted Moments Regularization (PWMR) was 
proposed to better estimate the kernel, using probability-
weighted moments in the x and y directions. However, 
probability weight moments can only perform well for small 
sample sizes. In [48], a Local Maximum Gradient (LMG) prior 
was proposed, since the maximum value of the gradient in the 
local patch will be diminished after the blurring process. 
Additionally, the proposed method exploited the l1-norm. 
However, this method was computationally inefficient and did 
not perform well in the presence of Gaussian noise. In [49], a 
graph-based technique was proposed for blind image 
deblurring of a single-image photograph, using the Reweighted 
Graph Total Variation (RGTV) prior as the weight function. 
This method was unable to handle the defocus blur when not 
considering the separation of image parts. In [23], a new 
learning iterative method for blind deconvolution was 
proposed, using an extended version of the GST operator to 
minimize lp-norms that have negative values of p. A GST 
parameter was defined iteratively to dynamically select the 
salient edges and time-varying regularization. GST iteratively 
sharpens the image, ignoring its local details. In [50], the ratio 
of the Dark Channel Prior (DCP) to the Brilliant Channel Prior 
(BCP) was considered. In particular, the two-channel priors 
were obtained from RGB images and used to create an original 
sparse channel prior first, and then the learned prior was 
applied to the BID.  

Weber's Law (WL) aims to obtain the size of a small 
difference having a constant proportion to the actual stimulus, 
i.e. the value of change. In addition, the image affected by 
camera shake has a small difference between the original and 
affected pixel values. Moreover, it is difficult to find such a 
small difference between the affected and original pixels. This 
study proposes a novel image regularization method, named 
Weber's Law Regularization (WLR), for blind image 
deblurring. According to WL, there is a constant difference 
between the increment threshold and the background intensity. 
This property was used to estimate the kernel and obtain the 
sharp image efficiently and effectively. The main contributions 
of this study are: 

 A novel regularization method is proposed based on the 
WL phenomenon to minimize a cost function to obtain the 
sharp image. 

 The WLR effectively preserves the small texture of an 
image that was neglected in previous approaches. 

 WLR reduces computational cost.  
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II. BACKGROUND KNOWLEDGE 

WL is extensively used in various image processing and 
computer vision applications such as to compute image feature 
descriptors [51], identify impulse noise [52], etc. According to 
E. Weber, "the size of just noticeable difference is a constant 
proportion of the original value" [52]. Mathematically, WL is 
expressed as follows: 

∆�
� = �     (1) 

where I is the original value, ∆I is the noticeable Difference 
Threshold (DT), and ∆I/I is Weber's fraction. DT is considered 
the lowest quantity to change stimulus intensity and vary the 
sensory experience. Moreover, K specifies that Weber's 
fraction remains stable irrespective of variations in I. By 
rearranging (1), ∆I= IK is obtained, which signifies the linear 
relationship of the incremental threshold and the background 
intensity in WL. 

III. WEBER'S LAW REGULARIZATION (WLR) 

To estimate the blur kernel, most techniques neglected the 
small textures of an image that over-smoothened it. However, 
ignoring small textures may also eliminate the salient regions 
of an image. WL provides the relationship between the central 
pixel and the pixels in a compact neighborhood. In this study, 
the value of each pixel in the sliding window was calculated. 
Let xc be the central pixel in the sliding window, and two filters 
fc and fn, as defined in [52], for the central and neighboring 
pixels in the sliding window, respectively. Additionally, the 
central pixel, xc represents the fraction of two filters obtained 
by convolving the fc and fn with the current sliding window Sw. 
After convolving the fc and fn with Sw, pc and pn are obtained, 
respectively. Equation (2) computes the differences between 
the central and neighboring pixels within the sliding window Sw 
by convolving the filter fn with Sw. 

�� = ∑ ∆	�
�� = ∑ ��
 − 	��,�
��   (2) 

where: 

�� = �	� 	� 	�	� 	� 	�	� 	� 	�
�,   �� = �1 1 11 −8 11 1 1�,   

and  �� = �0 0 00 1 00 0 0�.  

where n is the total number of neighbors in the sliding window, 
and Swi (i=1, 2, ..., n) denotes the i

th
 neighbor of xc. Then, pn 

and pc are combined to compute the ratio of differences to the 
intensity of the central pixel in the sliding window. Therefore, 
the WLR value of the current sliding window (central pixel) is 
given by: 

"#$ = arctan *+,-.
+/-01     (3) 

where ε controls the difference between neighbors and γ is 
added to not allow the value of the central pixel to be zero. 
However, the value of WLR may abruptly increase or decrease 
as the input becomes larger or smaller. Therefore, the arctan 
function is used to control the value of WLR from being too 

large or too small due to its simplicity. Other functions may be 
used instead of the arctan function. As the fraction pn/pc can 
give some negative values, the logarithm function cannot be 
used. Discriminative information can be effectively preserved 
if pixel intensities in the neighborhood are less than the central 
pixel. 

"#$ = 2< 0, 4� 	� > 6�
> 0, 4�  	� < 6�
    

Otherwise, the central pixel in the sliding window is lighter 
than the neighboring pixels. 

IV. PROPOSED ALGORITHM 

Blind image deblurring models can be described as: 

7 = 89 + ;     (4) 

where v is the blurred image, k is the unknown blurring matrix, 
u is the sharp image, and N is the Gaussian noise, which is i.i.d. 
The main purpose is to blindly estimate the blur matrix k, 
which will be used to deblur the image. The complete proposed 
algorithm for image de-blurring is shown in Algorithm 1. 

 
Algorithm 1 

Input: Blurred image v, Maximum kernel size kmax 

Output: Estimated Kernel k, deblurred image u 

1. Apply derivative filter to blurry input image v  

  and get a high-frequency image a 

2.Blind Estimation of blur matrix k. Update the 

  sharp high-frequency image by using (6) 

  Update the blurry matrix k 

  Continue this step until the fine level is 

  obtained  

3.Use matrix k to deblur v and get the sharp image  

  u 
 

A. Blind Kernel Estimation 

Kernel estimation plays a significant role in image 
deblurring. The estimation of the kernel in high frequency 
provides a better estimation compared to the estimation in the 
normal image [11]. The high frequencies of noisy and blurred 
images are used as a prior for kernel estimation. The high 
frequencies of the noisy and blurry image are obtained by (5). 
The following filters are used to obtain the high-frequency 
image: 

∇== > 1, −1?;  ∇A= > 1, −1?B   (5) 

After convolving the aforementioned filter with blurry input 
image v, the following is obtained: 

C = D ∇=E,  ∇AEF  
For spatially invariant blurring, the cost function can be 

modeled as: 

"#$ = CGHICJ *+,-.
+/-01  

min=,M N‖	 ⊗8 − C‖�� + " + Q‖8‖�  (6) 

where k is the unknown blurring kernel with the constraint that 
k ≥ 0 and ∑ki = 1, x is the unknown sharp image in the 
frequency domain, ⊗ is a 2D convolution operator, and W is 
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the proposed regularization term based on the WL 
phenomenon: 

" = ∑ RSTURSTV     (7) 

where: 

"#$= = "#$∇=� and "#$A = "#$∇A� 

The blur is normally caused by the interaction of the 
horizontal with the vertical axis or can be a motion on one axis. 
The proposed regularization method based on the WL 
phenomenon is shown in (7), indicating that the Weber ratio 
provides a small distance among the pixels in an image. The 
first term in (6) shows the likelihood relationship among the 
kernel, the high-frequency image x, and the unknown sharp 
image. In (6), the second term shows the novel regularization 
term proposed in WLR. The third term in (6) is added to 
remove the noise from the kernel. The constant weights λ and β 
are used to control the strength of the kernel and the 
regularization terms. The compact relationship between the 
central and the neighboring pixels within the sliding window is 
given by WLRx and WLRy, which are obtained by applying a 
derivative filter along the horizontal and vertical directions. To 
find a better estimation of the blur kernel, the fraction of WLRx 
and WLRy is computed, and then the summation of the fraction 
term is used as the regularization term. 

Equation (6) is highly non-convex. By initializing the initial 
kernel k and the high-frequency image x, the problem of high 
no-convexity can be solved by switching between x and k [6]. 
The cost function in (6) can be divided into two parts for 
updating x and k: 

min= N‖	� − C‖�� + "   (8) 

where K is the blurring matrix and: 

W4JM N‖	 ⊗ 8 − C‖�� + Q‖8‖�   (9) 

In each iteration, the Iterative Shrinkage-Thresholding 
Algorithm (ISTA) [53] was used to update the values in the 
sharp image using the following parameters: To update x, the 
regularization parameter λ was set to 20, and the threshold 
value t was taken as 0.001. Moreover, the observed image a 
and the maximum iterations N, both inner and outer, were 
taken as 2 each. The following algorithm was used to update x 
and the ISTA algorithm was also used for the inner iteration. 

 
Algorithm 2: updating x 

For l = 1: M NX = N‖	X‖� 
    x

l+1 
=ISTA(k, λ', x

l
, t, N) 

    The ISTA algorithm is as follows 

    for I = 1: N  

        c = a-tk
T
(x

i
 - a) 

        x
i+1
 = St λ(c) 

    end for N 

end for M 

Updated image x
M
 

 

where S represents the soft shrinkage operation on a vector, and 
k is the blurring matrix k. ISTA involves the simple 
multiplication of the blurring matrix k with the sharpening 

image x, followed by the shrinkage operation computed 
component-wise. Each component of the input vector is 
reduced/shrinked to zero by using the soft shrinkage operator S 
given by: 

�=	�
 = WC	|	
| − Z, 0�64[J	
�  (10) 

After updating x, kernel k is estimated by using the 
unconstrained Iterative Re-weighted Least Squares (IRLS) 
method [11]. IRLS is just used for one iteration, in which the 
weights are computed from the previous updated k. At the 
finest level, the estimated kernel may have a few values that are 
negligible or so small that they are normalized to 0. These 
values may appear likely due to noise. Some previous studies 
also have used similar blind de-convolution techniques [6]. For 
a multi-scale estimation of the kernel, a coarse-to-fine pyramid 
of image resolutions was used to overcome the problem of 
estimating the large kernel. 

B. Image Deblurring  

After kernel estimation, different nonblind deconvolution 
methods can be used to recover the sharp image at the finest 
level [10, 23, 30]. Richardson-Lucy (RL) is the most used 
method for non-blind image deconvolution. However, if the 
estimated kernel is not estimated correctly, then RL can 
produce ringing effect in the deconvolved image. To avoid this 
problem, fast image deconvolution was used with hyper-
laplacian priors after kernel estimation, which is fast and robust 
against small kernel errors [30]. 

W4J= N‖	 ⊗ 8 − \‖�� + ‖∇=‖] + ^∇A^]  (11) 

where ∇=  and ∇A are the same derivative filters used in (5). The 

above cost function is solved by lp-type regularization. The 
values of λ and b were 3000 and 0.8, respectively, as in [11]. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

Real-world and synthetic images were used to compare the 
performance of the proposed WLR method and state-of-the-art 
deblurring methods, such as those in [2, 5-6, 8, 10-11, 13, 19, 
20-21, 23, 25, 27, 44, 47, 54]. Two quantitative measures were 
used to evaluate performance. 

A. Synthetic Data 

A standard benchmark dataset [12] was used to validate the 
effectiveness of the proposed method. This dataset consists of 
four 255×255 images and eight different blur kernels with sizes 
varying from 13×13 to 27×27. After convolution, there were 32 
images in total. Blurred images, ground-truth images, and 
ground-truth kernels were also provided. The parameter 
settings in [11] were followed by using the same nonblind 
deconvolution algorithm to evaluate the estimated kernels. It 
was seen that the kernel estimated by WLR produced better 
results compared to other methods. The experimental results 
showed that the kernel estimated using WLR effectively 
preserves the edges of an object compared to various state-of-
the-art methods [5-6, 7-14, 18, 21, 44]. Table I shows a detailed 
comparison of WLR with other methods in terms of PSNR, 
SSIM, and computational time, showing that the proposed 
method outperformed the others in terms of optimal error 
ratios. 
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TABLE I.  COMPARISON OF DIFFERENT METHODS ON 
SYNTHETIC IMAGE DATASET [12] USING DIFFERENT 

PARAMETERS 

Method/ Image PSNR SSIM Time (s) Error ratio 

Known k 32.32 0.9385 --- 1.0000 

[8] 28.87 0.8845 2.3942 1.4082 

[10]  29.41 0.9000 2.9371 1.4071 

[11] 28.22 0.8586 10.1178 2.1369 

[12] 28.73 0.8916 80.5917 1.5531 

[14]  30.1332 0.9119 12.7206 1.2198 

[19]  30.60 0.9190 192.5495 1.2234 

[44] 30.87 0.9203 28.37 1.1934 

[47] 30.14 0.9122 25.1276 1.2271 

[54] 30.32 0.9034 10.11 1.23 

WLR 30.37 0.9123 7.3562 1.2693 

 

B. Real-World Images 

Real-world standard benchmark images were also used to 
evaluate the performance of the proposed WLR regularization 
method and compare it with [2, 5-6, 8, 21, 10-11, 13-14, 19-20, 
23, 25, 27, 44], using the same parameters for all real-world 
images. The proposed method effectively restored the image 
edges compared to the other methods, as it provided less 
ringing effects and better texture preservation in the zoomed 
part of the image. The methods from [2, 6, 11, 14, 21] over-
smoothened the image while ignoring the small textures, while 
the proposed method preserved the small salient regions. WLR 
was effective in preserving the edges and provided sharper 
images than the other methods. WLR can capture the compact 
relationship between the pixels in the sliding window. The 
methods in [23, 44] over-smoothed the images eliminating 
small textures. Moreover, they only considered the prominent 
textures from the image and ignored the local information of 
the patches. The method in [23] also gave high contrast and a 
strong ringing effect. WLR reduced the ringing effect and 
preserved the underlying edge details. This is most likely 
because WLR incorporates even the smallest information of the 
objects. The image recovered by the method in [25] has a 
strong blurring effect. The image recovered by the method in 
[13] had an increased contrast and was brighter. The method 
proposed in [11] uses the fraction l1/l2 as a regularization term. 
The difference of each point from all other points was 
computed with this type of fraction and resulted in an increased 
computational cost. Furthermore, the relationship in the local 
sliding window was not considered. 

VI. CONCLUSION 

This study proposed a new regularization method based on 
Weber's law for blind image deconvolution. The Weber law 
tends to minimize the cost function. In addition, the proposed 
regularization method produced sharp images effectively and 
efficiently. To validate the effectiveness of WLR, experiments 
were conducted on both synthetic and real-world images. The 
experimental results showed the effectiveness of the WLR 
compared to other state-of-the-art blind image deblurring 
methods. WLR was found to be efficient and effective for the 
analysis of real-world images even though sometimes it did not 
perform that well for synthetic images. In the future, the WLR 
may be incorporated with a neural network to estimate the 
kernel. 

ACKNOWLEDGMENT 

This work was funded by the University of Jeddah, Saudi 
Arabia, under grant No. (UJ-23-DR-98). The authors thank the 
University of Jeddah for its technical and financial support. 

REFERENCES 

[1] S. D. Babacan, R. Molina, M. N. Do, and A. K. Katsaggelos, "Bayesian 
Blind Deconvolution with General Sparse Image Priors," in Computer 

Vision – ECCV 2012, Florence, Italy, 2012, pp. 341–355, 
https://doi.org/10.1007/978-3-642-33783-3_25. 

[2] D. Wipf and H. Zhang, "Analysis of Bayesian Blind Deconvolution," in 

Energy Minimization Methods in Computer Vision and Pattern 

Recognition, Lund, Sweden, 2013, pp. 40–53, https://doi.org/ 

10.1007/978-3-642-40395-8_4. 

[3] S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Variational Bayesian 
Blind Deconvolution Using a Total Variation Prior," IEEE Transactions 

on Image Processing, vol. 18, no. 1, pp. 12–26, Jan. 2009, 
https://doi.org/10.1109/TIP.2008.2007354. 

[4] D. Wipf and H. Zhang, "Revisiting Bayesian Blind Deconvolution," 
Journal of Machine Learning Research, vol. 15, no. 111, pp. 3775–

3814, 2014. 

[5] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, "Efficient marginal 
likelihood optimization in blind deconvolution," in CVPR 2011, 

Colorado Springs, CO, USA, Jun. 2011, pp. 2657–2664, 
https://doi.org/10.1109/CVPR.2011.5995308. 

[6] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, 

"Removing camera shake from a single photograph," in ACM 

SIGGRAPH 2006 Papers, Boston, MA, USA, Apr. 2006, pp. 787–794, 

https://doi.org/10.1145/1179352.1141956. 

[7] L. Guo, X.-L. Zhao, X. M. Gu, Y. L. Zhao, Y. B. Zheng, and T. Z. 
Huang, "Three-dimensional fractional total variation regularized tensor 

optimized model for image deblurring," Applied Mathematics and 

Computation, vol. 404, Art. no. 126224, Sep. 2021, https://doi.org/ 

10.1016/j.amc.2021.126224. 

[8] S. Cho and S. Lee, "Fast motion deblurring," in ACM SIGGRAPH Asia 

2009 papers, Yokohama, Japan, Sep. 2009, pp. 1–8, 

https://doi.org/10.1145/1661412.1618491. 

[9] Q. Shan, J. Jia, and A. Agarwala, "High-quality motion deblurring from 
a single image," ACM Transactions on Graphics, vol. 27, no. 3, pp. 1–

10, May 2008, https://doi.org/10.1145/1360612.1360672. 

[10] L. Xu, S. Zheng, and J. Jia, "Unnatural L0 Sparse Representation for 

Natural Image Deblurring," in 2013 IEEE Conference on Computer 

Vision and Pattern Recognition, Portland, OR, USA, Jun. 2013, pp. 

1107–1114, https://doi.org/10.1109/CVPR.2013.147. 

[11] D. Krishnan, T. Tay, and R. Fergus, "Blind deconvolution using a 
normalized sparsity measure," in CVPR 2011, Colorado Springs, CO, 

USA, Jun. 2011, pp. 233–240, https://doi.org/10.1109/CVPR.2011. 
5995521. 

[12] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, "Understanding and 

evaluating blind deconvolution algorithms," in 2009 IEEE Conference 

on Computer Vision and Pattern Recognition, Miami, FL, USA, Jun. 

2009, pp. 1964–1971, https://doi.org/10.1109/CVPR.2009.5206815. 

[13] D. Perrone and P. Favaro, "Total Variation Blind Deconvolution: The 
Devil Is in the Details," in 2014 IEEE Conference on Computer Vision 

and Pattern Recognition, Columbus, OH, USA, Jun. 2014, pp. 2909–
2916, https://doi.org/10.1109/CVPR.2014.372. 

[14] T. Yue, S. Cho, J. Wang, and Q. Dai, "Hybrid Image Deblurring by 

Fusing Edge and Power Spectrum Information," in Computer Vision – 

ECCV 2014, Zurich, Switzerland, 2014, pp. 79–93, 

https://doi.org/10.1007/978-3-319-10584-0_6. 

[15] D. Krishnan, J. Bruna, and R. Fergus, "Blind Deconvolution with Non-
local Sparsity Reweighting." arXiv, Jun. 16, 2014, 

https://doi.org/10.48550/arXiv.1311.4029. 

[16] W. Zuo, D. Ren, S. Gu, L. Lin, and L. Zhang, "Discriminative learning 

of iteration-wise priors for blind deconvolution," in 2015 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12937-12943 12942  
 

www.etasr.com Saqib et al.: Weber's Law-based Regularization for Blind Image Deblurring 

 

Boston, MA, USA, Jun. 2015, pp. 3232–3240, https://doi.org/10.1109/ 
CVPR.2015.7298943. 

[17] L. Li, J. Pan, W. S. Lai, C. Gao, N. Sang, and M.-H. Yang, "Learning a 

Discriminative Prior for Blind Image Deblurring," in 2018 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, Salt Lake 

City, UT, USA, Jun. 2018, pp. 6616–6625, https://doi.org/10.1109/ 
CVPR.2018.00692. 

[18] W. S. Lai, J. J. Ding, Y. Y. Lin, and Y. Y. Chuang, "Blur kernel 

estimation using normalized color-line priors," in 2015 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 

USA, Jun. 2015, pp. 64–72, https://doi.org/10.1109/CVPR.2015. 
7298601. 

[19] L. Sun, S. Cho, J. Wang, and J. Hays, "Edge-based blur kernel 
estimation using patch priors," in IEEE International Conference on 

Computational Photography (ICCP), Cambridge, MA, USA, Apr. 2013, 
pp. 1–8, https://doi.org/10.1109/ICCPhot.2013.6528301. 

[20] J. Pan, Z. Hu, Z. Su, and M. H. Yang, "Deblurring Face Images with 

Exemplars," in Computer Vision – ECCV 2014, Zurich, Switzerland, 
2014, pp. 47–62, https://doi.org/10.1007/978-3-319-10584-0_4. 

[21] L. Xu and J. Jia, "Two-Phase Kernel Estimation for Robust Motion 

Deblurring," in Computer Vision – ECCV 2010, Heraklion, Greece, 
2010, pp. 157–170, https://doi.org/10.1007/978-3-642-15549-9_12. 

[22] Y. Zhou and N. Komodakis, "A MAP-Estimation Framework for Blind 

Deblurring Using High-Level Edge Priors," in Computer Vision – ECCV 

2014, Zurich, Switzerland, 2014, pp. 142–157, https://doi.org/10.1007/ 

978-3-319-10605-2_10. 

[23] W. Zuo, D. Ren, D. Zhang, S. Gu, and L. Zhang, "Learning Iteration-
wise Generalized Shrinkage–Thresholding Operators for Blind 

Deconvolution," IEEE Transactions on Image Processing, vol. 25, no. 4, 
pp. 1751–1764, Apr. 2016, https://doi.org/10.1109/TIP.2016.2531905. 

[24] U. Schmidt, C. Rother, S. Nowozin, J. Jancsary, and S. Roth, 

"Discriminative Non-blind Deblurring," in 2013 IEEE Conference on 

Computer Vision and Pattern Recognition, Portland, OR, USA, Jun. 

2013, pp. 604–611, https://doi.org/10.1109/CVPR.2013.84. 

[25] T. Michaeli and M. Irani, "Blind Deblurring Using Internal Patch 

Recurrence," in Computer Vision – ECCV 2014, Zurich, Switzerland, 
2014, pp. 783–798, https://doi.org/10.1007/978-3-319-10578-9_51. 

[26] T. F. Chan and C. K. Wong, "Total variation blind deconvolution," IEEE 

Transactions on Image Processing, vol. 7, no. 3, pp. 370–375, Mar. 
1998, https://doi.org/10.1109/83.661187. 

[27] L. Zhong, S. Cho, D. Metaxas, S. Paris, and J. Wang, "Handling Noise 

in Single Image Deblurring Using Directional Filters," in 2013 IEEE 

Conference on Computer Vision and Pattern Recognition, Portland, OR, 

USA, Jun. 2013, pp. 612–619, https://doi.org/10.1109/CVPR.2013.85. 

[28] H. Zhang, J. Yang, Y. Zhang, and T. S. Huang, "Sparse representation 
based blind image deblurring," in 2011 IEEE International Conference 

on Multimedia and Expo, Barcelona, Spain, Jul. 2011, pp. 1–6, 
https://doi.org/10.1109/ICME.2011.6012035. 

[29] H. Li, Y. Zhang, H. Zhang, Y. Zhu, and J. Sun, "Blind image deblurring 

based on sparse prior of dictionary pair," in Proceedings of the 21st 

International Conference on Pattern Recognition (ICPR2012), Tsukuba, 

Japan, Aug. 2012, pp. 3054–3057. 

[30] X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, "Scale-Recurrent Network 
for Deep Image Deblurring," in 2018 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 
Jun. 2018, pp. 8174–8182, https://doi.org/10.1109/CVPR.2018.00853. 

[31] D. Krishnan and R. Fergus, "Fast Image Deconvolution using Hyper-
Laplacian Priors," in Advances in Neural Information Processing 

Systems, 2009, vol. 22. 

[32] J. Li and W. Lu, "Blind image motion deblurring with L0-regularized 
priors," Journal of Visual Communication and Image Representation, 

vol. 40, pp. 14–23, Oct. 2016, https://doi.org/10.1016/j.jvcir.2016.06. 
003. 

[33] G. Marti, B. Ma, and H.-A. Loeliger, "Why Maximum-A-Posteriori 

Blind Image Deblurring Works After All," in 2021 29th European 

Signal Processing Conference (EUSIPCO), Dublin, Ireland, Dec. 2021, 

pp. 666–670, https://doi.org/10.23919/EUSIPCO54536.2021.9615985. 

[34] J. Dong, S. Roth, and B. Schiele, "Learning Spatially-Variant MAP 
Models for Non-blind Image Deblurring," in 2021 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition (CVPR), 
Nashville, TN, USA, Jun. 2021, pp. 4884–4893, https://doi.org/10.1109/ 

CVPR46437.2021.00485. 

[35] C. Li, "A Survey on Image Deblurring." arXiv, Jan. 30, 2022, 
https://doi.org/10.48550/arXiv.2202.07456. 

[36] F. J. Tsai, Y. T. Peng, Y. Y. Lin, C. C. Tsai, and C. W. Lin, 

"Stripformer: Strip Transformer for Fast Image Deblurring," in 
Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022, pp. 146–162, 

https://doi.org/10.1007/978-3-031-19800-7_9. 

[37] Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, "Uformer: A 

General U-Shaped Transformer for Image Restoration," in 2022 

IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR), New Orleans, LA, USA, Jun. 2022, pp. 17662–17672, 
https://doi.org/10.1109/CVPR52688.2022.01716. 

[38] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, "DeblurGAN-v2: 

Deblurring (Orders-of-Magnitude) Faster and Better," presented at the 
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 

Oct. 2019, pp. 8877–8886, https://doi.org/10.1109/ICCV.2019.00897. 

[39] L. Chen et al., "Deep Richardson–Lucy Deconvolution for Low-Light 
Image Deblurring," International Journal of Computer Vision, Sep. 

2023, https://doi.org/10.1007/s11263-023-01877-9. 

[40] M. Asim, F. Shamshad, and A. Ahmed, "Blind Image Deconvolution 
Using Deep Generative Priors," IEEE Transactions on Computational 

Imaging, vol. 6, pp. 1493–1506, 2020, https://doi.org/10.1109/ 
TCI.2020.3032671. 

[41] S. Alqethami, B. Almtanni, W. Alzhrani, and M. Alghamdi, "Disease 

Detection in Apple Leaves Using Image Processing Techniques," 
Engineering, Technology & Applied Science Research, vol. 12, no. 2, 

pp. 8335–8341, Apr. 2022, https://doi.org/10.48084/etasr.4721. 

[42] P. Matlani and M. Shrivastava, "An Efficient Algorithm Proposed For 
Smoke Detection in Video Using Hybrid Feature Selection Techniques," 

Engineering, Technology & Applied Science Research, vol. 9, no. 2, pp. 
3939–3944, Apr. 2019, https://doi.org/10.48084/etasr.2571. 

[43] A. Khalfa, M. Sahed, E. Kenane, and N. Amardjia, "A Novel Blind 
Image Source Separation Using Hybrid Firefly Particle Swarm 

Optimization Algorithm," Engineering, Technology & Applied Science 

Research, vol. 12, no. 6, pp. 9680–9686, Dec. 2022, https://doi.org/ 

10.48084/etasr.5255. 

[44] J. Pan, D. Sun, H. Pfister, and M.-H. Yang, "Deblurring Images via Dark 
Channel Prior," IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 40, no. 10, pp. 2315–2328, Jul. 2018, 
https://doi.org/10.1109/TPAMI.2017.2753804. 

[45] Y. Yan, W. Ren, Y. Guo, R. Wang, and X. Cao, "Image Deblurring via 

Extreme Channels Prior," in 2017 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 

6978–6986, https://doi.org/10.1109/CVPR.2017.738. 

[46] J. Dong, J. Pan, Z. Su, and M. H. Yang, "Blind Image Deblurring with 
Outlier Handling," in 2017 IEEE International Conference on Computer 

Vision (ICCV), Venice, Italy, Jul. 2017, pp. 2497–2505, 
https://doi.org/10.1109/ICCV.2017.271. 

[47] H. Dawood et al., "Probability weighted moments regularization based 

blind image De-blurring," Multimedia Tools and Applications, vol. 79, 
no. 7, pp. 4483–4498, Feb. 2020, https://doi.org/10.1007/s11042-019-

7520-9. 

[48] L. Chen, F. Fang, T. Wang, and G. Zhang, "Blind Image Deblurring 
With Local Maximum Gradient Prior," in 2019 IEEE/CVF Conference 

on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 
USA, Jun. 2019, pp. 1742–1750, https://doi.org/10.1109/CVPR.2019. 

00184. 

[49] Y. Bai, G. Cheung, X. Liu, and W. Gao, "Graph-Based Blind Image 

Deblurring From a Single Photograph," IEEE Transactions on Image 

Processing, vol. 28, no. 3, pp. 1404–1418, Mar. 2019, 

https://doi.org/10.1109/TIP.2018.2874290. 

[50] D. Yang, X. Wu, and H. Yin, "Blind Image Deblurring via a Novel 
Sparse Channel Prior," Mathematics, vol. 10, no. 8, Art. no. 1238, Jan. 

2022, https://doi.org/10.3390/math10081238. 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12937-12943 12943  
 

www.etasr.com Saqib et al.: Weber's Law-based Regularization for Blind Image Deblurring 

 

[51] J. Chen et al., "WLD: A Robust Local Image Descriptor," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 

9, pp. 1705–1720, Sep. 2010, https://doi.org/10.1109/TPAMI.2009.155. 

[52] H. Dawood, H. Dawood, and P. Guo, "Removal of high-intensity 
impulse noise by Weber’s law Noise Identifier," Pattern Recognition 

Letters, vol. 49, pp. 121–130, Nov. 2014, https://doi.org/10.1016/ 
j.patrec.2014.06.016. 

[53] A. Beck and M. Teboulle, "A Fast Iterative Shrinkage-Thresholding 

Algorithm for Linear Inverse Problems," SIAM Journal on Imaging 

Sciences, vol. 2, no. 1, pp. 183–202, Jan. 2009, https://doi.org/10.1137/ 

080716542. 

[54] N. Bibi and H. Dawood, "SEBR: Scharr Edge-Based Regularization 

Method for Blind Image Deblurring," Arabian Journal for Science and 

Engineering, Jun. 2023, https://doi.org/10.1007/s13369-023-07986-4. 

 


