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ABSTRACT 

In Vietnam, comprehensive measures are required to accommodate and encourage the potential 

development of electric two-wheelers in urban traffic and the rooftop solar power potential. In the case of 

PV-integrated electric two-wheeler charging stations, numerous vehicles charging simultaneously may 

trigger very high peak loads which adversely impacts other loads and the distribution grid. In this study, 

an optimal valley-filling algorithm for electric two-wheeler charging stations is proposed. The proposed 

algorithm can update the variation of available vehicles as well as the dynamic changes in the energy level 

of individual E2Ws at each time slot. The simulation results proved that the proposed method can 
effectively perform valley filling, significantly improving the total load profile compared to uncontrolled 
charging and average charging schemes. 
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I. INTRODUCTION  

It has been shown that the utilization of renewable energy, 
especially rooftop photovoltaic (PV) power, for Electric 
Vehicle (EV) charging contributes to achieving multiple 
objectives such as: (1) meeting the charging demand while 
reducing adverse impacts of charging loads on the distribution 
grid, (2) encouraging self-generation-self-consumption and 
mitigating negative impacts of high PV penetration rate into the 
distribution grid, (3) reducing the need for grid upgradation, 
and (4) reducing greenhouse gas emissions [1]. Furthermore, in 
developing countries like Vietnam, electric two-wheelers 
(E2Ws) are considered suitable for the existing transport 
infrastructure and socio-economic conditions [2, 3]. However, 
the transition from fossil fuel motorcycles to E2Ws requires 
appropriate and comprehensive measures regarding 
infrastructure planning and charging solutions for this type of 
vehicle. Uncontrolled EV charging may increase peak load and 
energy losses and trigger inefficient system operation [4]. If 
charging stations are located in offices, apartment buildings, 
factories etc., uncontrolled charging could result in very high 
peak loads, because the arrival and departure of vehicles 
usually concentrate on certain times and vehicles tend to be 
charged at their maximum permitted rate as soon as they are 
connected. 

Regarding load shifting and valley filling solutions, 
numerous approaches have been proposed such as broadcasting 
charging tariffs with different rates depending on total load 

level [5], leveraging quadratic programming [6], leveraging 
linear programming and receding horizon control [7]. 
However, these studies only focus on electric car charging 
infrastructure instead of E2W charging stations. The research 
on improving load profile for E2W charging stations is still 
limited. Although charging power and battery capacity of 
E2Ws is negligible compared to electric cars, hundreds of 
E2Ws charging simultaneously can result in a very high peak 
load. In addition, scheduling numerous vehicles requires 
appropriate approaches regarding architecture and scheduling 
algorithms. 

Several works have conducted research on the E2W 
charging station feasibility [1, 3], E2W charging station 
architecture [8], and scheduling algorithms for E2W charging 
stations in Vietnam [9, 10]. However, these works have not 
addressed the uncertainties regarding the arrival and departure 
of vehicles. Thus, this study proposes an algorithm that 
dynamically updates both the availability of vehicles at each 
timeslot and the change in energy level of vehicle batteries. 

The main contributions of this work are: (1) a valley-filling 
algorithm for PV-integrated E2W charging stations is 
proposed, (2) the algorithm is able to update the variation of 
available E2Ws and energy levels of vehicles, (3) by adopting 
the algorithm, PV utilization for charging is proved to be more 
efficient, (4) the algorithm contributes to adverse impact 
mitigation of EV charging and PV on other loads and on the 
distribution grid. 
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II. PROBLEM FORMUALTION AND THE PROPOSED 

ALGORITHM 

A. Objective Function 

Most studies consider charging problems being scheduled 
in a day or a scheduling horizon which is usually discretized 
into 96 timeslots of 15 minutes [11]. For the load profile 
improving problem, the optimization objective aims to 
minimize the load fluctuation. This can be interpreted as total 
load variance minimization. Thus, the objective function would 
be as in (1): 
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where 8 is the total timeslot number of the scheduling horizon, 

�

� (also known as netload) is the total power of non-EV loads 
subtracting the power generated by the PV system at time *, : 
is the total number of E2Ws been serviced during the 

scheduling horizon, ��
� represents the charging power of ;2=� 

at timeslot *, 4�  is the charging efficiency of ;2=� , �!"�#$  is 

the maximum allowable charging power for the �*ℎ charger, 
��"�#$  is the maximum allowable charging power for the 

battery of the ;2=� , �'��(�)"�#  represents the maximum 

allowable exchange power between the microgrid and the 
distribution grid, +� is the battery capacity of ;2=� , �,-./0�  
is the State of Charge (SoC) of ;2=�  at the departure time, 
1,-./0�  is the initial SoC of ;2=� , and ����

�  represents the 
average power of total load during the scheduling horizon 
which is expressed as in (5): 
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Constraint (2) shows that at any timeslot, total charging 
power of all E2Ws in the charging station cannot exceed the 
maximum allowable of all chargers and batteries. Besides, it 
also must not exceed the supply capacity of the grid as in 
constraint (3). Constraint (4) is the energy requirement 
constraint. This constraint assures that at the departure time, 
E2Ws reach their required SoC level. Considering the E2Ws 
individually, the following constraints should be met: 
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where 
-
"�#
/0$  is the maximum depth of discharge of an 

;2=� . Constraint (6) is the required energy constraint. 

Charging power at timeslots must satisfy (7). Constraint (8) is 
the maximum battery capacity constraint while depth of 
discharge constraint is as in (9). 

B. Real-Time Update and Algorithm Proposition 

To address the issue of arrival/departure uncertainty, the 
charging station must update the available E2Ws, including the 
existing E2Ws and any new E2W arrival/departure. It is 
assumed that the charging station is able to recognize the 
nominal capacity of the onboard battery, the battery SoC [12], 
and the maximum permitted charging power via a Vehicle 
Information System (VIS) which is responsible for providing 
E2W information to the station controller [13]. After 
communicating with the VIS and E2W owners, scheduling data 
are updated depending on the new arrivals and departures. The 
proposed algorithm can be summarized in the following steps: 

 Step 1: Considering the current timeslot, the charging 
station dynamically updates the E2Ws connected to the 
station, including newly arriving E2Ws and departing 
E2Ws. Current SoC measurement data must also be 
acquired. 

 Step 2: Finding the charging pattern of E2Ws by solving the 
objective function.  

 Step 3: Applying the charging pattern to the E2Ws at the 
current timeslot.  

After the three steps, in the next timeslot, the process of 
updating, finding charging patterns, and applying charging 
patterns repeats until the end of the scheduling horizon. 

III. CASE STUDY AND SIMULATION RESULTS 

This study assumes that the forecast data of solar generation 
and conventional load are available and sufficiently accurate. 
The charging station is assumed to be in Vietnam, servicing up 
to 250 vehicles in each working shift. A working day consists 
of two shifts: the morning shift is from 7:30 to 15:00 and the 
afternoon shift is from 14:30 to 21:00. The E2W batteries have 
a capacity of 1,200 Wh. Maximum charging/discharging 
powers are 400/-400 W, respectively. Batteries are not allowed 
to discharge if the SoC is less than 20%. At the end of the 
working shift, the E2W batteries are full. For the purpose of 
investigating the performance of the proposed algorithm, this 
case study does not investigate the variation in the non-EV load 
profile as well as PV generation in different days or different 
seasons. Sets of these data are generated and used as the input 
data for the algorithm. 

A. Data of Initial SoC 

With 250 E2Ws per working shift, the data of the initial 
SoC of the E2Ws in this case study are generated based on the 
research results of [14]. The vehicles have the initial SoCs 
shown in Table I. 

B. Arrival/Departure Behavior 

Numerous studies have shown that the probability 
distribution of arrival and departure time could be statistically 
modeled with proper probability density functions like the 
normal distribution function [1, 15]. 
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TABLE I.  INITIAL SOC OF E2WS 

Initial SoC E2W Number Initial SoC E2W Number 

90 – 100% 29 40 – 50% 28 

80 – 90% 37 30 – 40% 21 

70 – 80% 37 20 – 30% 15 

60 – 70% 37 10 – 20% 8 

50 – 60% 35 0 – 10% 3 
 

Thus, in this study, patterns of arrival/departure which 
follow a normal distribution function, are generated. The 
probability distribution parameters are: 

 Morning arrival time: mean: 7.25, deviation: 0.12. 

 Morning departure time: mean: 14.75, deviation: 0.12. 

 Afternoon arrival time: mean: 14.25, deviation: 0.12. 

 Afternoon departure time: mean: 20.75, deviation: 0.12. 

Arrival/departure patterns are used as input for algorithm 
verification. 

C. PV Power Output 

In this case study, a 225 kWp solar system is simulated 
based on weather data in Hanoi, Vietnam. The system consists 
of 542 PV panels. Each panel has a power rating of 415 Wp. 
The PV power outputs of a typical day in January (month with 
the lowest solar irradiance) and in June (the highest solar 
irradiance month) are simulated as in Figure 1. 

 

 
Fig. 1.  PV power output in January and in June. 

Because sufficiently accurate solar power data are assumed 
to be available, this study only utilizes simulation results of the 
PV system as input data for the proposed algorithm. Thus, the 
variation in solar power output in different days and different 
seasons is not considered in this work. 

D. Non-EV Load 

For the purpose of algorithm verification, conventional load 
data are retrieved from the dataset in [16]. The non-EV load 
profile is shown in Figure 2. It should be noted that for a two-
shift commercial center, a relatively flat profile occurs during 
working hours. Conventional load reaches its valley in the early 
morning and rapidly increases when the morning shift starts. 
However, in the case of solar power participation, solar power 
can partially supply load, triggering a more fluctuating netload 
curve. 

 

Fig. 2.  Non-EV load profile. 

 

Fig. 3.  Netload profile. 

Figure 3 shows the netload profile in January and in June, 
respectively. In January, the minimum netload value is 82,967 
W at 12:00 and the maximum is 1.84 times higher at 18:00. In 
June, due to the high PV power output, the netload profile is 
more fluctuating. The maximum netload value is 151,647 W (at 
19:00) which is 3.89 times higher than the minimum netload of 
38,967 W at noon. 

E. Simulation Results 

In this work, several operation scenarios are proposed and 
analyzed to investigate the algorithm’s effectiveness. Because 
battery wear and tear cost may be a crucial barrier, this work 
does not consider the Vehicle-to-Grid (V2G) feature. Hence, 
the case study includes the following operation scenarios: 

 Scenario 1: Charging load does not participate in the 
microgrid. This scenario is analyzed to evaluate netload 
variation in the case of solar power participation. 

 Scenario 2: Average charging: The E2Ws are charged at 
constant rate to reach their required SoC at their departure 
time. 

 Scenario 3: Uncontrolled charging: The E2Ws are charged 
at the maximum allowable power as soon as they are 
connected to the station. 

 Scenario 4: Smart charging: The E2Ws follow the proposed 
algorithm. 

Figure 4 depicts the total load profile of the four scenarios 
in a typical day in January. 
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Fig. 4.  Total load profile in the considered scenarios. 

Considering time, when the E2Ws are available at the 
charging station, in January, the peak conventional load is 
152,467 W at 10:00 AM. This value is 1.05 times higher than 
the lowest value of 145,333 W at 21:00. However, when solar 
power participates in the system, the peak netload of 152,300 
W (at 18:00) is 1.84 times higher than the lowest netload of 
82,967 W (at 12:00). Thus, solar power participation 
deteriorates the total load profile, triggering a more fluctuating 
curve. In scenario 2, because E2Ws are charged at constant 
rates, the total load profile remains almost the same as in 
scenario 1. However, in arrival/departure periods, because 
E2Ws connect/disconnect to the station at different time, total 
charing power will gradually increase/decrease (Figure 5). 
Thus, the shape of aggregated load would be different 
compared to scenario 1. In addition, 250 E2Ws servicing per 
shift results in around 14,690 W higher total power 
consumption than that of scenario 1. 

 

 
Fig. 5.  Total charging power profiles. 

Generally, the average charging scheme manages to evenly 
distribute the charging power during parking time (Figure 5). 
Thus, it does not significantly impact the total load profile. 
However, during the shift transition time (from 14:30 to 15:00), 
the average charging scenario produces a high total charging 
power (Figure 5), because the vehicles from the previous shift 
have not left the charging station yet, while the vehicles of the 
next shift have arrived, resulting in a large number of E2W 
charging simultaneously at the shift transition period. 

Under scenario 3, because E2Ws are charged at their 
maximum permitted rate as soon as they are connected to the 
station, total load reaches very high peaks at arrival times. To 
be specific, the first peak of 223,308 W occurs at 7:30 and the 
second peak of 195,435 W is at 14:30. After reaching the 
peaks, total charging power declines swiftly because E2Ws 
stop charging when their energy requirements are met (Figure 
5). Thus, after several timeslots, the total load gets back to the 
netload. Uncoordinated charging triggers the worst load profile. 
The peak load is 223,308 W, being 2.69 times higher than the 
base load of 82,967 W. The total load profile shows a 
dramatical improvement under the proposed smart charging 
strategy. E2Ws are charged at low load periods and avoid 
increasing peak load. Compared to the other scenarios, this 
scheme produces the flattest aggregated load profile. Valley 
filling effect is clearly demonstrated. Furthermore, because 
valley load time coincides with high PV generation time, the 
E2W charging power profile is quite consistent with the PV 
power output, implying that the smart charging scheme can 
utilize solar power for charging more effectively. Charging 
profiles and battery capacity profiles of several E2Ws in 
January and in June are illustrated as in Figures 6-11. These 
E2W are representatives of high, medium, and low initial SoC 
as show in Table II. 
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Fig. 6.  Profiles of E2W1. 

 
Fig. 7.  Profile of E2W141. 

 
Fig. 8.  Profile of E2W247. 

 
Fig. 9.  Profiles of E2W251. 

 
Fig. 10.  Profiles of E2W391. 

 
Fig. 11.  Profiles of E2W497. 

TABLE II.  HIGH, MEDIUM, AND LOW SOC E2W 
REPRESENTATIVES 

Shift Initial SoC E2W ID 

Morning 

90 – 100% 1 

50 – 60% 141 

10 – 20% 247 

Afternoon 

90 – 100% 251 

50 – 60% 391 

10 – 20% 497 

 

Simulation results reveal that E2Ws of the morning shift 
tend to charge from 10:00 to 13:30 while E2Ws of the 
afternoon shift perform charging from 14:15 to 16:30. This 
time also corresponds to the periods of highest solar power. In 
June, the abundance of solar power results in a lower netload 
valley than in January. Thus, the valley filling algorithm will 
schedule vehicles to be charged at higher rates. As a 
consequence, charging processes in June end earlier than in 
months with lower solar generation. 

Considering E2Ws with different initial SoCs, the lower 
ones (E2W_ID247; E2W_ID497) are charged at higher speed 

than the higher ones (E2W_ID141; E2W_ID1; E2W_ID391; 
E2W_ID251). Simulation results also show that all charging 
processes end before departure time and all E2Ws reach their 
energy requirements. 

IV. CONCLUSION 

The participation of solar power into energy systems may 
deteriorate the total load profile if PV power output is not 
consistent with conventional load profile. Smart charging 
scheduling may offer an effective solution for improving 
aggregated load profile. Thus, it can contribute to mitigating 
adverse impacts of high PV penetration rate and emerging 
charging load on the energy systems. 

In the context of Vietnam, E2Ws emerge as a promising 
alternative for gasoline-powered motorcycles. In the case of 
numerous E2Ws implement charging simultaneously such as 
charging in parking of factories, office buildings, commercial 
centers, apartments etc., solutions addressing high aggregated 
charging load, effectively scheduling, load shifting, and valley 
filling would become imperative. 
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This study proposes a valley filling algorithm for PV-
integrated E2W charging stations. When current timeslot 
changes, the station controller would update arrival/departure 
events, update new energy level of available vehicles then 
implement scheduling. The process of updating, finding 
charging patterns and applying charging patterns repeats until 
the end of the scheduling horizon. 

Simulation results show that, compared to uncontrolled 
charging and average charging schemes, the proposed 
algorithm proves its effectiveness in valley filling. E2Ws are 
scheduled to be charged at valley load time, effectively 
leveraging the flexibility of charging load and at the same time, 
can indirectly lesser adverse impacts of PV sources and E2W 
on the distribution grid. 

REFERENCES 

[1] G. R. Chandra Mouli, P. Bauer, and M. Zeman, "System design for a 
solar powered electric vehicle charging station for workplaces," Applied 

Energy, vol. 168, pp. 434–443, Apr. 2016, https://doi.org/10.1016/ 
j.apenergy.2016.01.110. 

[2] D. N. Huu and V. N. Ngoc, "Analysis Study of Current Transportation 

Status in Vietnam’s Urban Traffic and the Transition to Electric Two-
Wheelers Mobility," Sustainability, vol. 13, no. 10, Jan. 2021, Art. no. 

5577, https://doi.org/10.3390/su13105577. 

[3] D. N. Huu and V. N. Ngoc, "A Research on the Trend of Transport 
Electrification in Vietnam and the Feasibility of PV-Integrated Charging 

Station for Electric Two-wheelers at Electric Power University," in 2021 

11th International Conference on Power, Energy and Electrical 

Engineering (CPEEE), Shiga, Japan, Oct. 2021, pp. 255–260, 
https://doi.org/10.1109/CPEEE51686.2021.9383333. 

[4] V. K. B. Ponnam and K. Swarnasri, "Multi-Objective Optimal 

Allocation of Electric Vehicle Charging Stations and Distributed 
Generators in Radial Distribution Systems using Metaheuristic 

Optimization Algorithms," Engineering, Technology & Applied Science 

Research, vol. 10, no. 3, pp. 5837–5844, Jun. 2020, https://doi.org/ 

10.48084/etasr.3517. 

[5] L. Gan, U. Topcu, and S. H. Low, "Optimal decentralized protocol for 
electric vehicle charging," IEEE Transactions on Power Systems, vol. 

28, no. 2, pp. 940–951, Feb. 2013, https://doi.org/10.1109/TPWRS.2012. 
2210288. 

[6] M. C. Kisacikoglu, F. Erden, and N. Erdogan, "Distributed Control of 
PEV Charging Based on Energy Demand Forecast," IEEE Transactions 

on Industrial Informatics, vol. 14, no. 1, pp. 332–341, Jan. 2018, 
https://doi.org/10.1109/TII.2017.2705075. 

[7] Z. Yi et al., "A highly efficient control framework for centralized 

residential charging coordination of large electric vehicle populations," 
International Journal of Electrical Power & Energy Systems, vol. 117, 

May 2020, Art. no. 105661, https://doi.org/10.1016/j.ijepes.2019. 
105661. 

[8] N. N. Van, D. K. Nhan, and N. H. Duc, "Research on the Architectures 

and Control Algorithms for Electric Vehicle Charging Stations and 
Electric Two-Wheeler Charging Stations in the Context of Vietnam," 

Khoa Học & Công Nghệ, vol. 58, no. 4, pp. 55–66, Aug 22. 

[9] D. N. Huu and V. N. Ngoc, "A Three-Stage of Charging Power 
Allocation for Electric Two-Wheeler Charging Stations," IEEE Access, 

vol. 10, pp. 61080–61093, 2022, https://doi.org/10.1109/ACCESS.2022. 
3181731. 

[10] D. N. Huu and V. N. Ngoc, "A Two-Level Desired Load Profile 

Tracking Algorithm for Electric Two-Wheeler Charging Stations," 
Engineering, Technology & Applied Science Research, vol. 11, no. 6, 

pp. 7814–7823, Dec. 2021, https://doi.org/10.48084/etasr.4552. 

[11] A. H. Einaddin and A. S. Yazdankhah, "A novel approach for multi-
objective optimal scheduling of large-scale EV fleets in a smart 

distribution grid considering realistic and stochastic modeling 
framework," International Journal of Electrical Power & Energy 

Systems, vol. 117, May 2020, Art. no. 105617, https://doi.org/10.1016/ 
j.ijepes.2019.105617. 

[12] Y. Muratoglu and A. Alkaya, "Unscented Kalman Filter based State of 

Charge Estimation for the Equalization of Lithium-ion Batteries on 
Electrical Vehicles," Engineering, Technology & Applied Science 

Research, vol. 9, no. 6, pp. 4876–4882, Dec. 2019, https://doi.org/ 
10.48084/etasr.3111. 

[13] Z. Xu, Z. Hu, Y. Song, W. Zhao, and Y. Zhang, "Coordination of PEVs 

charging across multiple aggregators," Applied Energy, vol. 136, pp. 
582–589, Dec. 2014, https://doi.org/10.1016/j.apenergy.2014.08.116. 

[14] P. Fieltsch, H. Flämig, and K. Rosenberger, "Analysis of charging 
behavior when using battery electric vehicles in commercial transport," 

Transportation Research Procedia, vol. 46, pp. 181–188, Jan. 2020, 
https://doi.org/10.1016/j.trpro.2020.03.179. 

[15] T. Eccarius and C.-C. Lu, "Powered two-wheelers for sustainable 

mobility: A review of consumer adoption of electric motorcycles," 
International Journal of Sustainable Transportation, vol. 14, no. 3, pp. 

215–231, Jan. 2020, https://doi.org/10.1080/15568318.2018.1540735. 

[16] F. Angizeh, A. Ghofrani, and M. A. Jafari, "Dataset on Hourly Load 
Profiles for a Set of 24 Facilities from Industrial, Commercial, and 

Residential End-use Sectors." Mendeley Data, Aug. 21, 2020, 
https://doi.org/10.17632/rfnp2d3kjp.1. 

 


