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ABSTRACT 

Predicting concrete compressive strength using machine learning techniques has attracted the focus of 

many studies in recent years. Typically, given concrete mix ingredients, a machine learning model is 

trained on experimental data to predict properties of hardened concrete, such as compressive strength at 

28 days. This study used computer-generated mix design data that contained mixed ingredients along with 

the corresponding theoretical strength of each mix to train a neural network and then test them on real-

world experimental data. The developed model was able to predict the compressive strength of concrete 

specimens at 28 days with an R-value of 0.80. Furthermore, increasing the synthetic dataset increased the 

performance of the model to a point beyond which it started to decrease. The proposed sustainability-

promoting method emphasizes the effectiveness of using synthetic data to train machine learning models 

that yield insightful predictions with acceptable accuracy. 

Keywords-concrete; compressive strength; machine learning; AI; synthetic data; computer-generated data 

I. INTRODUCTION  

The application of Machine Learning (ML) algorithms in 
the field of construction materials and concrete technology has 
been trending for the past few years. Such models can learn 
from the data and establish relationships between inputs and 
outputs to solve complex engineering problems. The success of 
such models has been widely celebrated, increasing their 
prevalence in many fields of applied and theoretical sciences. 
In the fields of civil, architectural, construction engineering, 
and concrete technology, many studies attempted to increase 
the prediction accuracy of ML models to solve relevant 
problems. For example, several studies attempted to create 
models that accurately predict the properties of construction 
materials by training on data available in the literature [1-4]. In 
addition, many properties of fresh and hardened concrete of 
many different types have been studied and predicted using ML 
and deep learning models over the past two decades [5-21]. 
Meanwhile, many studies attempted to increase the predictive 
power of ML models by introducing more complexities or 
training them with additional experimental data. However, 
while heterogeneous and large data are often better for training 
artificial models [22], in the case of concrete compressive 
strength prediction, it can be very exhaustive and expensive to 
expand such a dataset. In particular, to add more instances to a 
dataset, materials for the mix design must be procured and 
studied, then mixed and cured for a standard period of 28 days, 
after which the samples should be crushed to determine their 
compressive strength. 

In addition to the time and effort needed to expand an 
existing dataset, the experimental data may differ because they 
are reported by multiple educational laboratories, research 
centers, or concrete manufacturers. Differences also arise from 
the time of production of such a dataset and the design codes 
used. In other words, due to mix design variability, material 
differences, and mixing and testing procedures, it can be 
argued that these accumulated data are not homogeneous, 
hence affecting the performance of ML models. Even if the 
models that are trained on such inhomogeneous data achieve 
high accuracies, their application may be limited. Therefore, to 
overcome the difficulty of increasing the size and homogeneity 
of the concrete compressive strength dataset, this study 
proposes and showes that computer-generated data (synthetic 
data) can be used to train ML models to make accurate 
predictions of concrete compressive strength after 28 days. In 
addition, synthetic data are being increasingly used in many 
fields of applied and theoretical sciences. Synthetic data can be 
generated from existing analytical models or physical 
simulations and/or through artificial intelligence generative 
models [24]. A case in point is in the field of computer vision, 
where scenarios of tough driving terrains and environments, as 
well as scenarios of road accidents are being emulated to train 
artificial intelligence algorithms for self-driving cars. 

II. MATERIALS AND METHODS 

This study trained an ML model on synthetic mix design 
data to predict the compressive strength of concrete. The 
dataset contained mix designs of varying strengths and 
controlled variables, which aid in the training of the ML model, 
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aiming to study how the synthetic inputs affect the model's 
predictions of concrete strength. The model was tested using 
actual laboratory-produced compressive strength data. Figure 1 
shows the workflow of the proposed method. 

 

 
Fig. 1.  An illustration of the workflow of the approach used in this study. 

The American Concrete Institute (ACI) mix design method 
was used to create the dataset to train the ML model. Computer 
software was developed that closely implements all steps of the 
ACI method for the concrete mix design. The software takes 
into account the different properties of the mixed ingredients, 
such as the specific gravities for gravel, sand, and cement, as 
well as the moisture content and absorption information of the 
aggregates, along with the fineness modulus of the fine 
aggregates. In addition, the software also considers the 
maximum nominal size of the gravel and the required 
workability, which is provided as a slump value. Moreover, the 
software requires knowledge of exposure conditions, in 
addition to requiring input of whether previous test records 
exist and how many tests are available, if any, accompanied 
with the necessary test results, such as the standard deviation. 
Lastly, the software can design both air-entrained and non-air-
entrained concrete mixes.  

The ACI method-based mix design software was used to 
create a dataset of non-air-entrained concrete mixes that had a 
range of specified compressive strength of 20 to 40 MPa with 
negligible exposure conditions and typical material properties. 
The chosen slump for all mix designs was 80-100 mm and an 
MNS for coarse aggregates of 10, 12.5, and 20 mm was 
specified. Figure 2 shows the histograms of the ingredients of 
all the mix designs in the dataset. As can be seen from the 
histograms, the ingredients of the mix designs were well 
distributed, some of them forming a frequency distribution that 
resembles a normal distribution, e.g. the amount of sand. 
However, for other ingredients, the ingredient distribution 
seems to be clustered in certain areas only, in other words, only 

a few columns represent the entirety of the data for this 
ingredient, e.g. the amount of water. The latter phenomenon is 
due to the way the ACI mix design method works to estimate 
the water content in a mix design. 

 

 
Fig. 2.  Histograms of mix design constituents. 

To train the model, 250, 500, 1,000 mixes, and 10,000 
mixes were created. For each dataset, 80% was allocated to 
training and the remaining 20% was allocated to testing. In 
addition, the models were tested using external experimental 
compressive strength records. The external dataset in [25] was 
used to test the performance of the model on real-world data. 
The dataset contained the mix proportions and the resulting 
experimentally obtained compressive strengths. The dataset 
contained 1030 test records having 9 attributes, including the 
amount of cement, water, aggregates, blast furnace slag, fly 
ash, and superplasticizers. The compressive strengths in the 
dataset ranged from 2.33 to 82 MPa. To use this dataset as a 
test for the trained model, it was cleaned to have only records 
of samples that have strengths ranging from 20 to 40 MPa and 
made from only the basic four ingredients, i.e. cement, water, 
sand, and gravel. The cleaned dataset contained 42 records. 

The model used was an artificial neural network with four 
inputs, i.e. the ingredients of the mix design, which were fed to 
two internal layers and one output layer that represents the 
predicted compressive strength of concrete. The Levenberg-
Marquardt algorithm was used for training and the Mean 
Square Error (MSE) was used for performance monitoring. 
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Training stopped when the model was trained for 1000 epochs 
or the stopping criterion was met. Data are the backbone of 
ML. Generally, for models that depend on data such as 
artificial neural networks, the more training data, the better the 
performance of the model. To see if this is the case with 
synthetic data, the model was trained on data having from 250 
to 10,000 mix designs. Table I shows a sample of the training 
data. MATLAB R2021b environment was used to create and 
test the models, particularly the Regression Learner and Neural 
Network toolbox. 

TABLE I.  A SAMPLE OF THE TRAINING DATA. 

# 
Cement 

(kg) 

Water 

(L) 

Sand 

(kg) 

Gravel 

(kg) 

Concrete 

Strength (MPa) 

1 400 200 800 900 32 
2 415 220 850 800 30 

… … … … … … 
10000 505 223 560 800 37 

 

III. RESULTS AND DISCUSSION 

After training the neural network model on 80% of the mix 
design dataset, it produced satisfactory training and validation 
(test) results with very low MSE and high correlation value R. 
Training required less than 800 epochs, due to meeting the 
predefined stopping criterion, which was a constantly very low 
MSE, as shown in Figure 3.  

 

 
Fig. 3.  Training performance of the neural network model. 

The resulting trained neural network model achieved an 
MSE of 3.1467e-6 and a correlation coefficient of 1.0. Figure 4 
shows the regression plots of the training performance, 
indicating that the model achieved a very high correlation, as 
evidenced by the training R-value, which was 1.0. However, at 
the same time, the model did not overfit, which was evidenced 
by the validation R-value, which was 1.0. However, there was 
a very small error associated with the prediction of the model, 
as shown in the error distribution in Figure 5. It can be said that 
the error distribution is well distributed across a center of zero 
error, with a maximum error not exceeding ±0.008 MPa. 

The trained neural network model was tested using external 
experimental data. The external dataset in [25] was used to test 
the performance of the model in real-world examples. The 
dataset contained mix proportions and their experimentally 

obtained compressive strengths. Similarly to the training 
dataset, the testing dataset contained four features, i.e. the four 
basic mix ingredients, and one output, which was the 
compressive strength of each mix. The number of mixes in the 
testing dataset was 42. The model was tested using this 
experimental dataset and achieved a correlation coefficient of 
0.80. Figure 6 shows the regression of the neural network 
model when tested using experimental data with 42 instances, 
indicating that the data were well distributed around the fit line, 
with some outliers above and below it. It can be argued that 
achieving a 0.80 correlation between real-world data and the 
output of an exclusively synthetic data-trained model is 
considered a very good result. 

 

 

Fig. 4.  Regression results for training and validation of the neural network 
model; x-axes refer to actual compressive strength while y-axes refer to 
compressive strength predicted by the ANN model. 

 
Fig. 5.  Error histogram of the model’s output in training and validation. 

The error histograms of the model when tested on 
experimental data show that the model achieved a very good 
correlation, evidenced by the testing R-value, which was 0.8. 
However, there are some errors associated with the prediction 
of the model, as shown in the error distribution in Figure 7. The 
error distribution is skewed, with more errors present above the 
zero-error line. In other words, the neural network model tends 
to overshoot. 
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Fig. 6.  Performance of the neural network model when tested on 
experimental data with 42 instances; The x-axis refers to the actual 
compressive strength while y-axis refers to the predicted compressive 
strength. 

 
Fig. 7.  Error histogram of the model's output in the testing stage using 
external experimental data. 

The prediction of concrete compressive strength using ML 
methods has been studied using many methods, including 
Linear Regression (LR), Decision Trees (DT), Support Vector 
Machine (SVM) and Artificial Neural Networks (ANN). The 
previously reported findings regarding the prediction of 
concrete strength using ML methods used experimental data to 
train the models, while this study used computer-generated data 
for training. Table II compares the findings of this study with 
recent relevant studies. It can be seen that although synthetic 
data were used for training, the proposed model outperformed 
some experimental data-trained models. 

Generally, for models that depend on data, such as the one 
used in this study, the more the training data, the better the 
results. To see if this is the case with synthetic data, the model 
was trained on data ranging from 250 up to 10,000 mix 
designs. The results showed that for 250 mix designs, the 
model had an R-value of 0.46. Doubling the amount of training 
data resulted in an R-value of 0.80. Increasing the dataset to 
750, then 1,000, and lastly to 10,000 records only decreased the 
performance of the model, to 0.78, 0.78, and 0.75, respectively. 
This decline in performance can be explained by the fact that as 
synthetic data increased, meaningful data within them were 

limited, leading to an overfit of the model and a decrease in 
performance. 

TABLE II.  COMPARISON OF THIS STUDY'S RESULTS WITH 
OTHER ML METHODS 

Reference ML Algorithm Training data R 

[26] ANN Experiments  0.9 
[26] LR Experiments 0.81 
[27] DT Experiments 0.87 
[27] ANN Experiments 0.9 
[28] ANN Experiments 0.76 
[28] LR Experiments 0.63 
[28] SVM Experiments 0.67 

This study ANN Synthetic 0.80 

 

IV. CONCLUSIONS 

Recently, intense interest has been placed on using ML 
techniques to predict the compressive strength of concrete. 
Such predictive models are typically trained using experimental 
data on concrete mix ingredients and hardened concrete 
properties. This study proposed that concrete mixes designed 
using the ACI mix design method can be used as a training 
dataset for ML models. The study then showed that synthetic 
data can be used to train ML models to make accurate 
predictions of concrete strength after 28 days, ranging from 20 
to 40 MPa. To test the performance of the trained model, an 
external experimental dataset was used, which contained more 
than 40 instances. When tested in the external experimental 
dataset, the model was able to predict the 28-day compressive 
strength of concrete with an R-value greater than 0.8. 
Meanwhile, it is important to note that the size and quality of 
the synthetic dataset are important factors that can affect the 
performance of the ML model. This study aimed to shed some 
light on the efficacy of using computer-generated data to train 
artificial intelligence models to provide practical and beneficial 
predictions. This innovative technique promotes sustainability, 
as it can alleviate the reliance on experimental data to train ML 
models, which can be costly and time-consuming.  
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