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ABSTRACT 

Sensors are becoming smaller and less expensive, sparking interest in assessing vast volumes of sensor 

data. Meanwhile, the emergence of machine learning has led to the development of technologies that have a 

substantial impact on our lives. Machine learning models are often used to produce accurate, real-time 

predictions even in the presence of noisy sensed data. In this study, a Volatile Organic Compound (VOC) 

categorization system based on sensor data collected from a sensor array was developed. The most difficult 

challenge posed in the sensor array was the detection of the type of VOC. It is feasible to categorize VOCs 

brought on by applying data classification algorithms to data collected from sensor devices. In this work, 

we used data from the classification algorithms Decision Tree (DT), Naive Bayes (NB), and Linear 

Regression (LR) on a developed linear sensor array and their classification accuracy was compared. Four 

different VOCs were evaluated: acetone (C3H6O), benzene (C6H6), ethanol (C2H5OH), and toluene 

(C6H5CH3). The acquired classification accuracy reached 95.65% with the LR algorithm. 
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I. INTRODUCTION  

Sensor system applications growth in a variety of fields, 
including conservation and development, climate motoring, 
and anthropogenic detection, has been made possible, to a 
substantial degree, by developments that have taken place over 
the years, specifically in recent times. It is common knowledge 
that sensor-based systems are application-dependent [1]. This 
also comprises the top part, which is responsible for handling 
the data in an effective and constructive approach. As the 
number and scale of deployed sensor networks rises, so does 
the amount of data gathered, necessitating the use of 
specialized methodologies that can handle this scale while still 
meeting application requirements. In this research, the authors 
demonstrate how sophisticated Machine Learning (ML) 
algorithms [2] might be utilized to analyze autonomously 
obtained sensor data in conjunction with manually gathered 
data in order to make predictions for a diversity of occurrences. 
Our presentation is based on the data acquired from an array-
modeled sensor that was designed and developed for detection 
of most hazardous Volatile Organic Compounds (VOCs) [3]. 
This research concentrates on ML and data mining for the 
interpretation of sensor data as a component of comprehensive 
system integration. This implementation ranges from hardware 
at the bottom level all the way up to data-driven ML algorithms 
at the topmost level. The proposed system is an example of 

applying ML methods on sensor data, which can provide high-
level guidelines for similar applications and involve predictions 
based on sensor data. 

II. RELATED WORK 

The number of vertical system implementations is not very 
large, but a similar research was conducted in [4]. The authors 
describe a networked sensor architecture designed to enable 
human interaction. This architecture is made up of equipment 
often found in an office setting, such as personal computers, 
Personal Digital Assistants (PDAs), telephones, etc. In order to 
construct the training set, each activity observed by the 
monitoring devices must first be manually labeled. This 
strategy is different from the one we've been using in terms of 
the sensors involved. Instead of a vertical system, the focus is 
given on the Bayesian learning approach. Table I shows a 
review of the recent literature on VOC detection. The research 
in [12] pertains to technology implementation in sensor nodes. 
Sensor data are modeled for queries in a variety of contexts via 
the use of RDF (Resource Description Framework) and RDQL 
(RDF Data Query Language) query languages, with a few 
tweaks here and there. In spite of this, the dataset was acquired 
by simulating a sensor network, which highlights the system 
performance as well as the programming language. Because of 
this, the system performance in a real-time environment may 
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differ. An alternative technique is presented in [13, 14], in 
which all the detection systems are modeled employing 
Dynamic Conditional Random Fields (DCRFs) to evaluate the 

real-world, in which sensor information may be distorted, 
impacted by noise, or lost. This allows for a more accurate 
representation of the environment [15, 16]. 

TABLE I.  LITERATURE REVIEW 

Year Reference Methodology Application Limitation 

1998 [5] 
MEMS cantilever arrays with 

functionalized coatings 
Environmental monitoring, 

industrial safety 
Limited selectivity, cross-sensitivity 

to other compounds 

2007 [6] 
MEMS cantilevers combined with gas 

chromatography 
Air quality assessment, chemical 

process control 
Complex setup, expensive 

instrumentation 

2010 [7] 
MEMS cantilever arrays with 
nanomaterial functionalization 

Indoor air quality, breath analysis 
Short functionalization lifespan, drift 

over time 

2013 [8] 
Multiple MEMS cantilevers with 

differential readout 
Indoor air quality, leak detection 

Cross-sensitivity to humidity, 
temperature variations 

2016 [9] 
MEMS cantilever arrays with 

integrated microheaters 
Environmental monitoring, 

explosive detection 
Energy consumption, slow response 

time 

2019 [10 
Compact MEMS cantilever array-

based sensor 
Personal exposure monitoring, 

wearable devices 
Limited dynamic range, potential 

interference from background odors 

2022 [11] 
MEMS cantilevers with machine 

learning algorithms 
Smart buildings, precision 

agriculture 
Data interpretation challenges, need 

for continuous calibration 
 

III. METHODOLOGY 

Figure 1 demonstrates the system components, which are: 
the sensors and actuators, a server for collecting sensor data, a 
humanoid element that is instrumental in developing extra data, 
a database that contains the additional data, data preparation 
tools, and a ML toolbox. In order to collect the dataset, we 
must first get the raw data from the sensor array that are located 
on the sensor node, and then send this data to a computer so as 
to be stored. In the next step, we will combine the 
automatically collected data with the data labeled by hand so 
that the ML algorithms can be trained using the pre-processing 
techniques. 

 

 
Fig. 1.  Basic components of the proposed system. 

As per the characteristics of fabricated sensor [17], Figure 2 
shows that the computer is wired to the RS232 to USB 
converter, which is a part of the integrated sensor network. The 
sensor node also includes a 3 V power supply, display screen, 
and an ATmega328P microcontroller. When the sensor is 
exposed to respective reactants, a reaction takes place on 
cantilever surface and provides output voltage. Then, the 
microcontroller collects data from the integrated sensors at a 
sample rate of 500 ms, packs the data into a vector, and then 
transmits them to a server through the serial connection so that 
it will be possible for them to be retained. The data may also be 
observed via a serial monitor. 

During the course of the research, the collected data were 
kept in a word document, with each sample including a time 

stamp along with the numerical values obtained from the 
sensor array. Each time sensor array is able to identify one of 
the 4 VOCs but the user does know the exact classifier from the 
range of the output values. This issue is tackled by introducing 
data classifiers between the sensor output and the system 
display. Minimum, maximum, and mean values of the sensor 
data are shown in Table II, for all 4 VOCs in terms of 
resistance change of the cantilever surface. The values have not 
significant differences. Since there are no extreme results, it is 
possible to say that the observations are correct. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.  Experimental setup to identify resistance range of the array 
cantilever: (a) Cantilever deflection when its is exposed to VOC,  
(b) encapsulated cantilever, (c) practical setup interfaced with the system, 
(d) terminal output. 

TABLE II.  MINIMUM AND MAXIMUM VALUES OF 
RESISTANCE CHANGE FOR EACH VOC 

VOC Min.  Max.  Mean  

Acetone (C�H�O) 53.3 KΩ 53.6 KΩ 53.4 KΩ 
Benzene (C�H�) 55.2 KΩ 55.8 KΩ 55.6 KΩ 

Ethanol (C�H�OH) 56.4 KΩ 56.6 KΩ 56.5 KΩ 
Toluene (C�H�CH�) 55.5 KΩ 55.9 KΩ 55.7 KΩ 

 
The illustration of a scenario showing the way sensor data 

progressed in the laboratory during the period of 
experimentation is shown in Figure 3. It can be seen that when 
the integrated sensor was exposed to the reactants, after the 
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transient state, the values increased with time and became 
steady after a few seconds. This can be noticed in Figure 3(a), 
representing the sensor response in the idle case. A negative 
transient indicates fluctuation due to surge voltage when the 
power is ON. With respect to time, it becomes stable in the 
steady state.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3.  Response of the array cantilever from the initial state to the steady 
state. (a) Idle sensor, (b) sensor exposed to a proportional reactant, (c) response 
of the sensor from the transient to the steady state, (d) steady state response of 
a sensor with a significant change in amplitude. 

Figure 3(b) depicts the result of a sensor exposed to a 
proportional reactant. Significant reaction takes place between 
the analyte and the reactant, and as the sensor is more sensitive 
in nature, a few glitches occurred in the transient state. Figure 
3(c) illustrates the sensor responce from the transient to the 
steady state. The observed glitches have low frequencies. 
Similarly, Figure 3(d) shows the steady state sensor response 
with significant change in amplitude. 

A. Data Processing and Learning 

In the first stage of data processing, sensor information and 
physically obtained data were aligned using time. The initial 
sampling rate for the sensor information was set to 500 ms, 
whereas the time stamp for the physically obtained data was 
simply included with the hours and minutes of the input. We 
allocated the matching instance from the extra acquired sensor 
data occurred within the same minute for each cantilever sensor 
of the array modelled sensor. So, given that time stamps on the 
manually gathered data are only in HH:MM:SS format, the 
second step was to reduce the dimensionality problem. The first 
thing we did was to choose a sample rate of 100 ms. However, 
several sensor data characteristics, such as the non-clean room 
ambient environment (light intensity, air pressure, and dust 
particulates), show significant fluctuations over the instant of 
experimentation, and these variations cannot be accurately 
correlated with any other data. The time stamps from the two 
different data sources may differ by a few seconds due to the 
fact that extra data were added by a greater number of samples 
and no time synchronization was performed. We also removed 
data based on the difference of successive samples collected 
throughout the experimentation, since this enabled us to avoid 
having an excessive number of redundant samples. To be more 
specific, the data collected throughout the experiment did not 
include any repeated values, and thus incorporating all these 
data would have resulted in an extremely imbalanced dataset. 
Due to the fact that it is impossible to precisely correlate sensor 
data with manually gathered data and that humans make 
mistakes, the produced dataset includes some inaccurate 
occurrences. On the other hand, there are no gaps in the data 
and no missing values in the dataset. 

The learning process utilized a dataset that contained a total 
of 20286 measurements, each of which has 6 attributes: 
Deflection, stress, change in resistance, temperature, moisture, 
ambient pressure. We used two different learning methods, i.e. 
classification and regression. The first technique is applied for 
the prediction of classified class labels, while the second 
approach approximates the target variable by modeling a 
continuous-valued function (class attribute). Since the target 
variable in our context might be interpreted both as a discrete-
valued variable and as a numerical variable, we came to the 
conclusion that it would be best to evaluate both approaches. 
DT and the NB classifiers were used as classification 
techniques. The first one offers a clear visual explanation of the 
findings, whereas the second one makes more effective use of 
the characteristics of the dataset as a whole. We decided to go 
with the standard method of LR for regression analysis [18]. 
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IV. RESULT INTERPRETATION AND EVALUATION 

Aiming to test the predictive capability of each method, we 
ran experiments on two different datasets: one with just sensor 
data characteristics (deflection Voltage, change in resistance, 
stress, and ambient pressure) and the other with a class attribute 
with extra arbitrarily inserted input. Two distinct ML 
algorithms were chosen to classify data: the J48 algorithm for 
learning DTs and NB allowed us to evaluate how various 
learning approaches performed on the datasets. For the 
regression data analysis, we used a procedure known as 
conventional LR. The WEKA toolbox [19] provided the 
execution of these computations. It is necessary to examine 
how well the algorithms worked with both the basic and its 
supplemented dataset. The Root Mean Squared Error (RMSE) 
and the Mean Absolute Error (MAE) were engaged to measure 
how accurate the forecasts are. Although MAE and RMSE give 
more emphasis on how significant the disparity between the 
expected and observed values is, the classification accuracy 
was additionally provided for each classification method. 

A. Decision Tree 

After conducting a number of initial experiments, we 
decided to implement the limitation that representation must 
include at least 10% of the total number of instances. All these 
DTs [20] feature the cantilever deflection response 
measurements property in the cluster head. This allows for 
simple classification of a huge observations set when sensors 
exposed to other than the specified VOCs lead to a low value 
(less than or equal to 56.7 K). The sensor's cantilever resistance 
change and output voltage are the two parameters utilized for 
categorization when looking at the basic dataset. Additionally, 
the topology of the DT was altered as a result of new data 
input. In this case, only one piece of the new data is used, 
which is the total number of computers that are working. 
Considering data overfitting, we chose the Naive Bayesian 
learning approach [21, 22]. This method employs probability 
distribution over a set of variables. If the minimum number of 
occurrences in a branch is raised, it could lead to data 
overfitting. 

B. The Bayesian Network 

In an attempt to implement the Naive Bayesian method, we 
configured the WEKA toolkit with the settings of simple 
estimator and K2 search algorithm. Tables III-IV provide the 
confusion matrices for two distinct scenarios involving simple 
and enhanced datasets. In the case of the supplemented dataset, 
there is a clearer contrast between occurrences that include zero 
deflection response and the instances that contain more than 
non-zero deflection response. When considering the class 
property to have only two possible values—Zero (0) and Non-
Zero (!=0) (in terms of the response), we are able to determine 
whether or not our system is suitable for VOC detection. We 
carried out Cost-Benefit Analysis (CBA). The results 
demonstrated increased predictive performance on the 
supplemented dataset up to 86.52%, in contrast to the 84% of 
the cases properly identified when there were 4 categories 
(class attribute values). The findings are shown in Table V, 
which also includes a representation of the cost and confusion 
matrices.  

TABLE III.  CONFUSION MATRIX OF THE SIMPLE DATASET 

 0 1 2 3 
0 7096 120 100 11 
1 95 2988 891 218 
2 37 833 2566 253 
3 1 246 492 640 

TABLE IV.  CONFUSION MATRIX OF THE AUGMENTED 
DATASET 

 0 1 2 3 
0 7073 208 45 1 
1 38 3085 933 173 
2 0 557 2731 401 
3 0 16 378 985 

TABLE V.  COST BENEFIT ANALYSIS 

Cost 
Matrix 

 0 1 
Confusion 

Matrix 

0 1 
0 0.0 1.0 7018 250 
1 5.0 0.0 21 8045 

Acc. 86.52% 

 

C. Linear Regression  

A quite uncomplicated LR algorithm [23-25] was 
employed. As a result, each response property in the 
supplemented dataset was converted to 3 binary characteristics 
(with values of 0 or 1) pertaining to each of the nominal values. 

From Tables VI-VIII, the accuracy of 95.65% indicates that 
the model is performing extraordinarily well. According to the 
cost matrix, false negatives (1 misclassified as 0) have a larger 
cost than false positives (0 misclassified as 1). This indicates 
that the model has been optimized to minimize false negatives, 
which may be appropriate for applications where missing a 
positive instance is more expensive. The confusion matrix 
reveals that there are much more true positives (9156) than 
false positives (290), exhibiting that the model is performing 
well in properly detecting positive events. There are also much 
more true negatives (7256) than false negatives (28), indicating 
that the binary classification model is working well. The 
resultant linear model that will be utilized for prediction is 
depicted in Figure 4(a). On the supplemented data, the features 
with the highest coefficients are the appropriate sensor 
responses, displaying that these factors have a favorable 
influence on the decisions that can be anticipated. As 
mentioned above, the model has a very high overall accuracy 
of 95.65%. Understanding the specific domain and application 
context (sensor environment), on the other hand, is crucial in 
assessing if these levels of accuracy and misclassification costs 
are appropriate. The trade-off between false positives and false 
negatives is determined by the application's specific goals and 
requirements. The model works well, especially when it comes 
to correctly categorizing positive occurrences. The cost matrix 
was selected with the intention of reducing false negatives. 

Three machine learning models (DT, NB, and LR) were 
tested on two datasets, i.e. Simple and Augmented (Table IX). 
For all models, the augmented dataset outperforms the simple 
dataset, indicating that more data or new attributes improve the 
prediction accuracy and reduce errors. LR outperforms the 
other ML models in both datasets, with NB coming second. LR 
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yields the highest accuracy, whereas NB yields the lowest 
MAE and RMSE values. It should be noted that further fine-
tuning may increase performance. 

TABLE VI.  CONFUSION MATRIX OF THE SIMPLE DATASET 

 0 1 2 3 
0 8093 302 52 2 
1 48 3086 895 183 
2 0 568 2731 411 
3 0 19 478 980 

TABLE VII.  CONFUSION MATRIX OF THE AUGMENTED 
DATASET 

 0 1 2 3 
0 8096 150 120 12 
1 95 3988 903 260 
2 36 560 2831 453 
3 1 18 522 680 

TABLE VIII.  COST BENEFIT ANALYSIS 

Cost 

Matrix 

 0 1 
Confusion 

Matrix 

0 1 
0 0.0 1.0 7256 290 
1 5.0 0.0 28 9156 

Acc. 95.65% 

 

(a) 

 

(b) 

 

Fig. 4.  (a) Classification report of the test data, (b) classified output from 
the modeled biosensor array. 

V. CONCLUSION AND FUTURE WORK  

In this study, we introduced a hierarchical system 
integration method for VOC classification based on sensor 

results. We created an augmented dataset by labelling sensor 
data with additional data, and then used machine learning 
algorithms to learn from that dataset. The examination of the 
obtained predicted results from both the basic and the enriched 
datasets proved that effective VOC classification can be 
forecast when using sensor data. The prediction can be 
improved by giving any of the three machine learning 
techniques new information. The application and the 
anticipated results have a role in the decision of which machine 
learning algorithm to apply. On the basis of our data, in 
comparison with decision trees and Naive Bayes, linear 
regression produce better results, however, more trials on larger 
datasets are needed to draw definitive conclusions.  

This study findings are promising for the continuous 
development of the system, which will include the creation of a 
network of sensors in order to get more information. Also, the 
possibility of adding semantic technologies to the current 
system to enhance the data and make predictions both of which 
will be more accurate and more varied will be examined. 
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