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ABSTRACT 

Breast cancer is one of the major threats that attack women around the world. Its detection and diagnosis 

in the early stages can greatly improve care efficiency and reduce mortality rate. Early detection of breast 

cancer allows medical professionals to use less intrusive treatments, such as lumpectomies or targeted 

medicines, improving survival rates and lowering morbidity. This study developed a breast cancer 

segmentation system based on an improved version of the U-Net 3+ neural network. Various optimizations 

were applied to this architecture to improve the localization and segmentation performance. An evaluation 

of different state-of-the-art networks was performed to improve the performance of the proposed breast 

cancer diagnosis system. Various experiments were carried out on the INbreast Full-Field Digital 

Mammographic dataset (INbreast FFDM). The results obtained demonstrated that the proposed model 

achieved a dice score of 98.47%, which is a new state-of-the-art segmentation finding, showcasing its 

efficiency in detecting breast cancer from mammography images with the possibility of implementation for 

real applications. 
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I. INTRODUCTION  

Breast cancer is the most common type of cancer among 
women. Early detection of this malignancy can significantly 
improve survival rates, while also costing less to cure. 
Advances in 3D mammography, computed tomography, CT 
scans, histopathological imaging, and Magnetic Resonance 
Imaging (MRI) are just examples of numerous breakthroughs 
in radiographic imaging. Breast cancer can be detected early 
from radiologists and pathologists using any of these imaging 
types. This method is not only costly, but also has a high 
mistake rate. According to the 2020 Cancer Report from the 
International Agency for Research on Cancer (IARC), cancer is 
the leading or secondary cause of death. The target age range is 
30 to 69 years. Lung cancer is the first cause of cancer death in 
both men and women. Globally, breast and prostate cancer are 

among the leading causes of death for women and men, 
respectively. According to the IARC, breast cancer affected 
more than 2 million women and caused 685,000 deaths 
worldwide in 2020. Cancer presents an abnormal division of 
cells that leads to the appearance of a mass called a tumor. 
There are two categories of tumors: malignant (cancerous) and 
benign (not cancerous). Breast cancer thus manifests itself as a 
tumor that forms in breast cells. Through Positron Emission 
Tomography (PET), CT, ultrasound, histology, MRI, 
thermography, and mammography, accurate and early 
diagnosis of breast cancer can significantly improve patients' 
quality of life. Among these different imaging modalities, 
mammogram images are the best choice for diagnosing breast 
cancer due to their reliability and cost-effectiveness. Manual 
analysis of mammogram images presents various 
disadvantages, as it is very costly and time-consuming and can 
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lead to different misdiagnoses and high false positive rates. 
Mammography is the most popular technique to diagnose 
breast cancer in women that do not have symptoms of the 
disease. Mammograms are shown as low-energy breast X-ray 
images. The use of mammography has led to significant 
advancements in the detection of micro-calcifications and 
calcification clusters, owing to its high sensitivity to these 
features [1]. It has been shown that mammography screening 
reduces the death rate in general populations [2]. Mammogram 
images can be used for routine screening, as they have proven 
to be technically more suitable for screening [3]. 

During the last few years, deep learning-based architectures 
have shown great success in various fields, including indoor 
object detection [4], indoor wayfinding assistance navigation 
[5], face recognition [6], pedestrian detection [7], traffic sign 
detection [8] and medical image processing [9]. Deep learning 
techniques have been widely applied to new early diagnosis 
systems for breast cancer. By building such a system, a huge 
number of patient lives can be saved. It is important to closely 
observe the incidence of breast cancer-related deaths and their 
subsequent reduction after effective treatment. Breast cancer 
research has seen significant advances during the last decade 
[10-11]. Several non-invasive diagnostic and therapeutic tools 
are used to see into the human body [13-13]. Any of the 
imaging techniques can detect breast cancer in its early stages, 
but they cannot demonstrate malignancy on their own [14]. 
Cancer cells tend to accumulate in interstitial tissue veins or 
fluid, and their malignancy is usually detected by microscopic 
examination of cancer tissues [15]. Biopsy procedures, such as 
surgical incisions or needle paths, may result in an acceleration 
of malignancy spread by dragging cancer cells along [16]. In 
mammography for breast cancer diagnosis, the pectoral muscle 
is often removed during preprocessing to improve detection 
rates [17]. Mammography is limited to the detection of 
anomalies within the breast region, achieved by the exclusion 
of the pectoral muscle and surrounding background regions. 

This study aims to investigate a novel method for the 
detection and diagnosis of breast cancer. An enhanced version 
of the U-Net 3+ [18] neural network served as the foundation 
for the proposed system. Training and testing trials were 
conducted on the INbreast FFDM dataset [19], showing new 
and cutting-edge results and performance. The motivation 
behind using a modified U-Net 3+ architecture for medical 
image segmentation lies in its ability to address specific 
challenges and requirements in the field of medical imaging. U-
Net 3+ is an extension of the original U-Net architecture, which 
was designed for semantic segmentation tasks in various 
domains, including medical imaging. Medical images often 
come in high resolutions and may contain fine details that are 
crucial for accurate diagnosis and treatment planning. The U-
Net3+ architecture is well-suited for multiscale segmentation 
tasks, being able to capture both global and local features in 
images. This is important in order to identify anatomical 
structures and abnormalities with varying sizes. Medical image 
datasets are typically smaller and more challenging to acquire 
compared to other image domains. The U-Net 3+ architecture 
is known for its effectiveness in learning from limited data, 
making it a suitable choice for medical applications where 
large datasets are often not available due to privacy and ethical 

constraints. In medical image segmentation, the distribution of 
foreground (abnormality) and background (normal tissue) 
pixels is often highly imbalanced. U-Net3+, when properly 
configured, can handle class imbalance issues and help to 
produce accurate segmentation maps by focusing on the areas 
of interest. In general, the choice to use a modified U-Net3+ 
architecture for medical image segmentation was motivated by 
its ability to address the unique challenges and requirements of 
the medical imaging domain, ultimately helping to obtain more 
accurate and clinically relevant segmentation results. The main 
contributions of this study are: 

 Proposing a breast cancer detection system based on 
mammography image segmentation. 

 Proposing an image segmentation network based on 
modifying the U-Net3+ model to extract more relevant 
semantic features. 

 Evaluation of the proposed network on a realistic dataset 
and achieve high performance. 

II. RELATED WORKS 

Segmentation of breast cancer is essential to save lives by 
facilitating early detection, accurate diagnosis, treatment 
planning, disease monitoring, surgical guidance, and 
supporting research and development in breast cancer care. 
Early breast cancer diagnosis has been investigated in many 
studies. Mammography images are widely used in modern 
medical procedures to identify breast cancer [20]. In [21], 
Conditional Random Field (CRF) and Structured Support 
Vector Machine (SSVM) were introduced to classify mass 
mammography, using deep convolution and prospective 
operations based on belief networks. However, it was 
determined that the SSVM model exhibited lower performance 
compared to the CRF model in terms of training and inference 
durations. In [22], a Full-resolution Convolutional Network 
(FrCN) was proposed, using X-ray mammograms from the 
INbreast dataset [19] and four-fold cross-validation. The 
Matthews Correlation Coefficient (MCC) for the FrCN model 
was 98.96%, the F1-score was 99.24%, and it had the high 
accuracy of 95.66%. In [23], the BDR-CNN-GCN was 
proposed, which combined a CNN with 8 layers, including 
dropout and batch normalization layers with a Graph 
Convolutional Network (GCN). This model was evaluated in 
the MIAS dataset. By combining the two-layer GCN with the 
CNN in the final model, the system was able to attain an 
accuracy of 96.10%. 

In [24], the YOLOv5 network was adapted to recognize and 
classify breast cancers by testing various parameter values. 
Faster RCNN and YOLOv3 were outperformed by the 
upgraded YOLOv5 model, which had an accuracy of 96.50% 
and an MCC of 93.50%. In [25], the IRMA mammography 
dataset was used to evaluate a model for categorizing 
mammograms as normal or abnormal based on a variety of 
variables. In [26], the Lifting Wavelet Transform (LWT) 
method was used to extract information from breast 
mammograms. When the size of the feature vectors was 
reduced using Principal Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA), the accuracy rates for the 
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classification of the MIAS and DDSM datasets using Extreme 
Learning Machine (ELM) and moth flame optimization were 
95.80% and 98.76%, respectively. In [27], the CNN Inception-
v3 model was used, trained on a dataset consisting of 316 
images. The model achieved an Area Under the Curve (AUC) 
value of 0.946, a specificity of 0.87, and a sensitivity of 0.88. 
In [28], a Convolutional Neural Network (CNN) with Transfer 
Learning (TL) was proposed to assess the effectiveness of eight 
improved pre-trained models. In [29], Mobilenet, ResNet50, 
and Alexnet were combined to produce a hybrid classification 
model with an accuracy of 95.6%. 

Low contrast and typical changes in breast tissue density 
make it particularly difficult to accurately detect and classify 
breast masses on mammograms. Various Computer-Aided 
Diagnosis (CAD) systems are intended to assist radiologists in 
properly classifying breast abnormalities. In [30], a new breast 
cancer mass detection system was proposed, which showed 
very encouraging performance. A multiclass SVM model and 
K-means clustering were coupled with Deep Convolutional 
Neural Network (DCNN) algorithms to improve the accuracy 
in classifying breast cancers from mammography images. In 
[31], a breast cancer segmentation system based on 
EnsembleNet was proposed, achieving very effective 
classification results of 96.72% accuracy. In [32], the strengths 
of deep learning with a pre-trained ResNet50V2 model and 
ensemble-based machine learning approaches were combined 
to propose a reliable hybrid breast cancer diagnosis method. 
Deep learning allows the method to learn and retrieve obscure 
breast cancer patterns, while the interpretability and 
generalizability provided by machine learning algorithms are 
invaluable. Extensive studies were performed using a publicly 
accessible Invasive Ductal Carcinoma (IDC) breast 
histopathology imaging dataset with samples of varying sizes. 
The experimental results provided convincing arguments in 
favor of the stability and performance of the proposed hybrid 
model, but it was computationally extensive with a complicated 
training paradigm. Additional aspects like preprocessing, data 
augmentation, and transfer learning can alter the models' ability 
to attain improved accuracy because different deep learning 
models on the same database have varied accuracy ratings. In 
[33], a deep learning algorithm was proposed to create a fully 
automated model that would preprocess, segment, and 
categorize the severity of cancer spread from images collected 
from patients. 

III. THE PROPOSED ARCHITECTURE  

Automatic segmentation of human organs is crucial for the 
early detection and diagnosis of cancer. CNN has recently 
shown excellent performance in segmentation tests. The U-Net 
model, known for its use of an encoder-decoder design, is often 
used for medical image segmentation. Skip connections are 
used to link the high-level semantic feature maps of the 
decoder with the corresponding low-level detailed feature maps 
of the encoder. U-Net++ also included layered and dense skip 
connections to improve these connections, with the intent to 
bridge the semantic gap between the encoder and decoder. This 
approach aimed to mitigate the blending of semantically 
disparate characteristics resulting from the use of fundamental 
skip connections in the U-Net architecture. Despite producing 

respectable results, this method is still unable to examine 
enough data from all scales. To achieve improved segmentation 
results, this study was based on the U-Net 3+ neural network, 
which has the following new advantages: 

 Enhanced feature extraction: U-Net3+ incorporates a deep 
feature extraction pathway that captures both low- and 
high-level features of the input image. This allows the 
network to learn more meaningful representations and to 
make accurate predictions. 

 Multiscale context aggregation: The U-Net3+ network 
utilizes skip connections to concatenate features from 
different resolution levels. This enables it to capture both 
local and global context information, leading to improved 
segmentation results, especially for objects of varying 
scales. 

 Integration of dense skip connections: In addition to 
traditional skip connections, U-Net3+ introduces dense skip 
connections that connect each encoder layer to all decoder 
layers. This dense connectivity helps in the flow of 
information across different levels of the network, 
facilitating better feature reuse and gradient propagation. 

 Efficient parameter utilization: U-Net3+ incorporates dense 
convolutions and squeeze-and-excitation blocks, which 
enable efficient parameter utilization. These mechanisms 
help reduce the number of parameters in the network while 
maintaining or even improving its segmentation 
performance. 

 Robustness to limited training data: U-Net3+ has been 
shown to exhibit robust performance even with limited 
training data. The network's ability to capture both local and 
global context information and its dense skip connections 
aid in handling data scarcity scenarios. 

 Versatility across different segmentation tasks: The U-
Net3+ architecture is highly versatile and can be adapted to 
various image segmentation tasks, such as semantic 
segmentation, instance segmentation, and medical image 
segmentation. It has demonstrated competitive performance 
in different domains. 

Although U-Net 3+ provides various advantages, it also 
provides different disadvantages, as it increases computational 
complexity by introducing additional pathways for information 
flow, including dense skip connections and feature 
concatenation. This increases the computational complexity of 
the network, requiring more memory and computational 
resources during training and inference steps. The following 
optimizations can be achieved on the U-Net3+ neural network: 
By integrating full-scale skip connections, which combine low-
level details with high-level semantics from full-scale feature 
maps with fewer parameters, deep supervision to learn 
hierarchical representations from full-scale aggregated feature 
maps and optimizing a hybrid loss function to improve the 
organ border, it fully utilizes multiscale characteristics. 
Additionally, the proposed approach introduces a module led 
by classification to mitigate the issue of over-segmentation in 
non-organ pictures. The U-Net 3+ provides three main 
improvements, which are analyzed below.  
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A. Full-Scale Skip Connection 

The connectivity of the encoder and decoder and the intra-
connection of the decoder subnetworks are changed via full-
scale skip connections. To fully capture fine-grained features 
and coarse-grained semantics, U-Net 3+ simultaneously uses 
the same-scale but smaller feature maps that are generated by 
the encoder and larger-scale characteristics from the decoder. 
U-Net 3+ redesigned skip connections and full-scale deep 
supervision to integrate multiscale features, using fewer 
parameters but producing a more precise position-aware and 
boundary-enhanced segmentation map compared to U-Net and 
U-Net++. The characteristics obtained from the third encoder 
block ����  are directly received by the decoder. The low-level 
detailed information from the smaller-scale encoder layer is 
sent via a network of skip connections in an inter-encoder-
decoder architecture between the ����  and ����  layers. Various 
optimizations have been applied to the original U-Net 3+ 
architecture to explore all the information provided in the input 
images. The max-pooling layers were replaced by dense dilated 
convolution layers with various dilation rates. In contrast to 
high-level semantic information that is transmitted from larger-
scale decoder layers ���	 and ���
 , a network of intra-decoder 
skip links uses bilinear interpolation. To effectively integrate 
both superficial and semantic information, a feature 
aggregation technique was performed on the concatenated 
feature map obtained from 5 different scales. The proposed 
approach incorporates a ReLU activation function, batch 
normalization, and 320 3×3 filters. Each decoder feature map 
in the U-Net 3+ network will be derived from N scales. Figure 
1 shows the precise architectural layout of the third decoder 
layer. 

 

 
Fig. 1.  Third decoder construction architecture. 

B. Full-Scale Deep Supervision 

Full-scale deep supervision is additionally implemented in 
the U-Net 3+ to train structured representations from the full-
scale aggregated map of characteristics. In the U-Net 3+ 
architecture, a multiscale structural similarity index (MS-
SSIM) loss function has been proposed to offer the fuzzy 
border with extra weights and further improve the organ 
boundary. As a result, the U-Net 3+ architecture is designed to 
monitor the fuzzy border, since it has been shown that a greater 
regional distribution difference corresponds to an increased 

MS-SSIM value. The convolution transpose was employed as a 
second optimization applied to the U-Net 3+ network in place 
of the bilinear interpolation. Many benefits, including 
upsampling, learnable upsampling, sharing of parameters, end-
to-end learning, and reconstructive capabilities, are offered by 
convolution transpose operations. To achieve deep supervision, 
the final layer of each decoder stage is passed through a simple 
3×3 convolution layer. This is followed by transpose 
convolution and the application of a sigmoid function. To 
improve the definition of organ boundaries, a loss function 
called the multiscale structural similarity index (MS-SSIM) 
[33] was used. This loss function assigns greater emphasis to 
indistinct or fuzzy boundaries by assigning them higher 
weights. This loss function can be calculated as: 

��_��� = 1 − ∏ ���������
�������

�
�� � � �����

 ��� �����
�

!�"�#�   (1) 

where βm and γm present the importance of the two components 
for each scale, M presents the total number of scales, μp, μg, σp, 
and σg are the standard deviations of P, and σpg presents their 
covariance. %� and %�  are two constants set to %� =0.012 and 
%� = 0.032. 

C. Classification-Guided Module (CGM) 

The appearance of false positives in non-organ pictures is a 
natural occurrence in the vast majority of medical image 
segmentation. Noisy information is probably the root of the 
problem. Over-segmentation occurs because the background 
layer is still the shallower layer. This architecture overcame the 
problem by introducing a second classification assignment that 
determines whether or not the input image comprises organs to 
produce a more accurate segmentation. As seen in Figure 1, the 
deepest-level ���  ensures the creation of a two-dimensional 
tensor after some procedures, each of which depicts the 
likelihood of having or not having organs. These processes 
include dropout, convolution, transpose convolution, and 
sigmoid. The classification result can guide each segmentation 
side output in two steps, using the most detailed semantic 
information. To further optimize the proposed model, the 
adaptive max-pooling layer in the original U-Net 3+ 
architecture was substituted by an adaptive average-pooling 
that presents the following advantages: Flexibility in input size, 
consistent output size, preservation of spatial information, 
robustness to noise and outliers, and reduction of 
computational complexity. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset and Materials 

INbreast [19] is a publicly available database specifically 
designed for breast cancer research and related applications. It 
consists of a collection of digital mammography images and 
associated clinical data. It is an openly accessible dataset for 
research on breast cancer detection and diagnosis. This study 
focused on Full-Field Digital Mammography (FFDM), a 
commonly used imaging technology utilized in the detection of 
breast cancer. The collection comprises 115 mammographic 
images from 115 distinct patients. Each scan generally includes 
four mammographic images, including craniocaudal (CC) and 
mediolateral oblique (MLO) views of both breasts. The 
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mammographic images in the dataset have a dimension of 
2816×3328 pixels. The dataset offers ground-truth annotations 
for various abnormalities seen in mammograms, such as 
masses and microcalcifications. These annotations can be used 
for tasks like computer-aided detection or classification. The 
dataset contains additional patient data, including age and 
breast density. The impact of these characteristics on breast 
cancer diagnosis can be studied using these metadata. Figure 3 
provides some examples of images in the INbreast dataset. 

 

 
Fig. 2.  Sample images of the INbreast FFDM dataset. 

The dataset was used to examine the effectiveness and 
reliability of the proposed method in detecting breast cancer. 
The INbreast dataset has 336 mammography images, 269 of 
which are abnormal and 69 normal. Of the abnormal images, 
49 are malignant and 220 are benign. Tables I and II provide 
some statistics from the INbreast dataset in terms of normal and 
abnormal, malignant, and benign. During the experiments, 
various parameter values were adopted. Table III provides all 
the experimental settings used. The initial learning rate was 
fixed at 0.01 and the Adam optimizer was used as the learning 
algorithm. The batch size was kept at 8 due to limitations in 
graphics memory. 

TABLE I.  NORMAL AND ABNORMAL STATISTICS IN THE 
INBREAST DATASET 

Total 

images 

(normal) 

Training 

(normal) 

Testing 

(normal) 

Total 

images 

(abnormal) 

Training 

(abnormal) 

Testing 

(abnormal) 

67 40 27 269 162 107 

TABLE II.  BENIGN AND MALIGNANT STATISTICS IN THE 
INBREAST DATASET 

Total 

images 

(benign) 

Training 

(benign) 

Testing 

(benign) 

Total 

images 

(malignant) 

Training 

(malignant) 

Testing 

(malignant) 

220 132 88 49 29 20 

TABLE III.  HYPERPARAMETER CONFIGURATION FOR THE 
PROPOSED MODEL 

Parameter Value 

Learning rate 0.01 
Optimizer Adam 

Weight decay 0.00001 
Number of iterations 1000 

Batch size 8 
 

B. Evaluation Metrics 

Accuracy, sensitivity, specificity, and F1-score are a few of 
the evaluation criteria used to assess how effective the 
proposed method is. The dice score is commonly used in image 

segmentation and evaluation tasks in medical imaging. It is 
calculated as follows: 

&'() *(+,) =  -2 ∗  |1 ∩  3|4 / -|1|  6 |3|4 (6) 

where A is the first set or binary image, B is the second set or 
binary image, |A| represents the cardinality (number of 
elements) of set A, |B| represents the cardinality of set B, and 
|A∩B| represents the cardinality of the intersection of sets A 
and B, i.e. the number of elements common to both sets. 
Insufficient data is an often-encountered challenge in deep 
learning models, which may lead to the danger of overfitting. 
In this study, a data augmentation method was used to mitigate 
this concern. These experiments employed rotation and 
flipping data augmentation techniques. 

C. Results and Discussion 

Table IV shows the confusion matrix of the proposed 
optimized version of the U-Net 3+ network on the INbreast 
dataset. The percentage of actual tumors that optimized U-Net 
3+ accurately identified as tumors (TP) was 98%. Additionally, 
95% of non-tumors were accurately recognized by the 
proposed optimized U-Net 3+ as non-tumors (TN). 

TABLE IV.  CONFUSION MATRIX RESULTS OF THE 
PROPOSED OPTIMIZED U-NET3+ ON INBREAST DATASET 

Optimized U-Net3+ 

Predictions 

Ground Truth 

 Malignant Benign 

Malignant 98% (TP) 02% (FN) 
Benign 05% (FP) 95% (TN) 

TP: True Positive, FP: False Positive, TN: True Negative, FN: False negative 

 

A large number of training epochs may cause model 
overfitting, while a few epochs may lead the model to 
divergence. To address this problem, various experiments were 
conducted, and the best result was 20 epochs, each containing 
10000 iterations. Table V shows the results obtained by U-Net 
3+ and optimized U-Net 3+. Table VI shows a segmentation 
comparison using the dice score metric. The U-Net 3+ dice 
score was 97.29% while the proposed optimized version 
achieved 98.47%. 

TABLE V.  OBTAINED PERFORMANCE 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Dice score 

(%) 

U-Net 3+ 94.5 93 96 96 97.29 
Optimized U-

Net 3+ 
96.5 95 98 96.47 98.47 

TABLE VI.  SEGMENTATION COMPARISON RESULTS 

Model Dice score (%) 

Connected U-Net [34] 94.45 
Connected-SegNets [35] 96.34 

U-Net 3+ 97.29 
Optimized U-Net 3+ 98.47 

 

The proposed optimized U-Net 3+ network produced the 
best segmentation results compared to other recent methods. 
Figure 4 shows the segmentation results produced by the 
proposed model and the SegNet [35]. The segmentation maps 
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created by the optimized U-Net 3+ model were of higher 
quality and included fewer errors. 

 

 
Fig. 3.  Examples of breast tumor segmentation results. 

D. Ablation Study 

During the recent years, several DL models have been 
developed and applied to the segmentation of breast tumors. 
These DL models have segregated breast tumors on 
mammograms with remarkable success, but have high rates of 
false positive and false negative findings. To increase 
performance, various modules and layers were changed in the 
U-Net 3+ network. Several strategies were included in the 
suggested method. As a first optimization, transpose 
convolution was used instead of bilinear interpolation. The 
convolution transpose operation increased the spatial 
dimensions of the input feature map, preserving some 
characteristics of the original image, as it can be used to 
upsample images or create higher-resolution from lower-
resolution images. 

As a second optimization, max-pooling layers were 
replaced by dense dilated convolution. Due to its special 
characteristics, dense dilated convolution, also known as 
dilated or atrous convolution, is essential in segmentation tasks. 
Dense dilated convolution can capture bigger receptive fields 
without adding more parameters or lowering feature map 
resolution, which is a considerable advantage. This is crucial in 
segmentation tasks because it is crucial to comprehend the 
context and interactions between things. Dense dilated 
convolution, which incorporates dilations, enables the network 
to gather data from a larger area and simulate long-range 
dependencies, making it easier to include global context into 
the segmentation process. 

The third optimization was replacing the adaptive max-
pooling layer with an adaptive average-pooling layer. The 
ability of adaptive average pooling layers to handle input data 
of various sizes is a significant benefit. Adaptive average 
pooling layers dynamically adjust their pooling areas to meet 
the input size, in contrast to classic pooling layers that demand 
set kernel sizes. This adaptive behavior makes the network 
more adaptable and suitable to various image sizes or variable-
sized inputs in general, by enabling the network to accept 
inputs of arbitrary spatial dimensions. Table VII provides the 
segmentation performance obtained for all optimizations. 

TABLE VII.  IMPACT OF VARIOUS OPTIMIZATIONS ON THE 
SEGMENTATION PERFORMANCES 

Optimization Dice score (%) Parameter number (M) 

Transpose convolution 97.32 44.88 
Dilated convolution 97.51 45.06 

Adaptive average pooling 97.65 43.42 

Original U-Net 3+ 97.29 43.55 

Proposed optimized U-Net 
3+ (combination) 

98.47 45.35 

 

As shown in Table VII, when changing the bilinear 
interpolation to transpose convolution, a slight increase was 
achieved in terms of F1-score and number of parameters. When 
changing the max-pooling layers by dilated convolution layers, 
the F1-score increased compared to the original U-Net 3+ 
network, while the number of parameters increased by around 
1.5 M. When changing the adaptive max-pooling layer to an 
adaptive average-pooling layer, the segmentation efficiency 
was increased while the number of parameters was almost the 
same, as the pooling operation is a parameterless technique. 
Combining the three techniques in the proposed optimized U-
Net 3+, the best dice score of 98.47% was achieved, with a 
slight increase in the number of parameters compared to the 
original U-Net 3+ network. 

V. CONCLUSION 

Segmentation of breast cancer is of paramount importance, 
as it helps early detection, accurate diagnosis, treatment 
planning, quantitative analysis, personalized medicine, 
research, and prognosis. Using segmentation techniques, 
healthcare professionals can improve patient outcomes, 
optimize treatment strategies, and contribute to ongoing 
advances in breast cancer care. This study proposes a breast 
cancer segmentation system based on an optimized version of 
U-Net 3+. Various optimizations were applied to the U-Net 3+ 
neural network to improve spatial visibility and segmentation 
performance. Extensive experiments were conducted on the 
INbreast dataset. The obtained results proved the efficiency and 
the superior performance of the proposed method over known 
state-of-the-art methods. This superior performance was 
demonstrated by achieving the highest dice score, which was 
98.47%. The main limitation of the proposed model is that it 
may struggle with anatomical variations between patients, such 
as differences in organ shapes and sizes. The model may 
require substantial adaptation or patient-specific fine-tuning to 
effectively handle such variability. Future research endeavors 
will mainly focus on the integration of novel deep-learning 
methods for cancer identification and classification, with the 
ultimate goal of automating the breast cancer diagnostic 
process. 
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