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ABSTRACT 

The current paper presents an original approach into the microgrid control framework by incorporating 

LSTM-based optimization with specific emphasis on refining the gain parameters of a Proportional-

Integral-Derivative (PID) controller. This integration represents a significant advancement in improving 

the overall efficiency of microgrid control systems. By creatively applying LSTM optimization, the paper 

achieves dynamic adjustments of the PID controller's parameters, resulting in more precise regulation of 

output power quality. Through the utilization of the Unified Power Quality Conditioner (UPQC) in 

conjunction with LSTM-based optimization, the paper establishes a compelling link between improved 

power quality and the resultant tariff rates. This highlights their combined influence on enhancing power 

quality and calibrating tariff rates, providing a fresh perspective on optimizing microgrid operations. 
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I. INTRODUCTION  

In an era characterized by increasing energy demands, 
growing awareness of environmental sustainability, and a 
desire for energy resilience, the concept of microgrids has 
emerged as a transformative solution for our evolving energy 
landscape. Microgrids represent a paradigm shift in the way we 
generate, distribute, and consume electrical energy [1-2]. 
Unlike traditional centralized power grids, which rely on large 
power plants and long-distance transmission lines, microgrids 
are localized, self-contained energy systems that serve specific 
communities, campuses, industrial facilities, or even individual 
buildings. The fundamental idea behind a microgrid is to 
decentralize and democratize energy generation and 
management. These self-sufficient energy ecosystems integrate 
a diverse mix of energy sources, including solar panels, wind 

turbines, Combined Heat and Power (CHP) systems, and 
energy storage technologies. Through advanced control 
systems and digital technologies, microgrids can intelligently 
balance supply and demand, optimize energy use, and 
seamlessly transition between grid-connected and islanded 
(standalone) modes [3-6]. 

The development of precise forecasting technologies is 
essential for successfully tackling the supply-demand 
complexities in contemporary energy management. These 
forecasts are segmented into specific time frames, to meet the 
precise energy management requirements of the microgrids. In 
the ultra-short term, which encompasses periods ranging from a 
few seconds to half an hour, the primary emphasis is placed on 
dynamic control for renewable power generators and load 
monitoring [7-8]. Real-time adjustments are employed to 
optimize the operation of renewable energy sources, taking into 
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account sudden weather shifts and fluctuations in energy 
demand, thus ensuring efficient performance. 

The current research takes a comprehensive approach to 
improve tariff rate forecasting within microgrids by integrating 
Unified Power Quality Conditioner (UPQC) technology and 
Long Short-Term Memory (LSTM) Neural Networks (NNs) 
[9-10]. Additionally, it explores the effects of UPQC on 
enhancing power quality and examines the utilization of 
LSTM-based forecasting models in microgrid applications. The 
process of collecting data encompasses the gathering of 
historical load data, tariff rates, and power quality parameters 
at the Point of Common Coupling (PCC) from actual microgrid 
systems in the field or through the use of simulation tools. 
Furthermore, an evaluation will be conducted within a 
microgrid simulation environment to assess the UPQC device's 
performance in reducing voltage sags, swells, and harmonics, 
with the ultimate goal of enhancing power quality. By 
integrating UPQC into the tariff rate forecasting model, we not 
only enhance the precision of our predictions but also address 
the real-time power quality challenges that can impact 
microgrid operations [11]. This fusion of technologies 
promises more reliable energy management and decision-
making within microgrids, ensuring that they can adapt to 
dynamic supply and demand conditions while maintaining 
optimal power quality standards [12]. 

II. LSTM MODEL AND ANALYSIS 

LSTM represents a specialized category of Recursive 
Neural Networks (RNNs). At the heart of the LSTM RNN lies 
the cell state, a crucial component designed to preserve 
information over extended periods. Only a fraction of the 
stored information actively participates in linear interactions 
[13]. The fundamental operations within the LSTM NN revolve 
around three gates: the forget gate, the input gate, and the 
output gate. These gates predominantly consist of a Sigmoid 
layer and a multiplication operation. The primary functionality 
materializes when these gates govern the processing of 
information within the cell state [14]. Through the judicious 
control of the forget gate, input gate, and output gate, the 
LSTM NN adeptly manages and sustains the information 
stored in the cell state—a pivotal role within the LSTM 
architecture [15-17]. In addition to the three gates, the LSTM 
cell incorporates a crucial mechanism known as the cell update. 
Typically implemented through a hyperbolic tangent (tanh) 
layer, this update mechanism plays an indispensable role in the 
LSTM's ability to assimilate and preserve new information in 
its long-term memory. The cell update mechanism enables the 
LSTM to adapt and learn from incoming data over time. The 
proposed LSTM architecture for PID controller tuning is 
shown in Figure 1. The proposed approach involves the 
utilization of an LSTM-based method for dynamically 
adjusting the gain of a PID controller. This adjustment is 
achieved through the processing of direct and quadrature axis 
currents. LSTMs are renowned for their capability to handle 
long-term dependencies in sequential data, making them well-
suited for capturing intricate temporal patterns in control 
system currents. In this context, the LSTM architecture has 
been thoughtfully designed to take direct and quadrature axis 
currents as inputs and generate the optimal PID controller gain 

as the output. The training of the LSTM model has been carried 
out using a comprehensive data set comprising paired direct 
and quadrature axis currents along with their corresponding 
PID controller gains. In real-time applications, the trained 
LSTM model is employed to predict the most suitable PID gain 
based on the current values received from the system. This 
dynamic and adaptive tuning mechanism empowers the PID 
controller to continuously adjust its gain in response to 
changing operating conditions and system dynamics. The flow 
chart for LSTM based cost analysis and forecasting model is 
shown in Figure 2. 

 

 

Fig. 1.  The proposed LSTM architecture for PID controller tuning. 

 
Fig. 2.  LSTM-based per unit cost analysis and forecasting in a microgrid. 
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III. SIMULATION SET UP 

The model experimental setup for tuning a PID controller 
based on the LSTM model is shown in Figure 4. The proposed 
LSTM model initiates its operation by capturing several 
microgrid parameters, including three-phase voltage and three-
phase current at the point of common coupling. To facilitate 
coordinated control actions for the UPQC, all grid-level three-
phase parameters are first transformed into DQ parameters and 
then further converted from the DQ reference frame to the 
alpha-beta reference frame [18-19]. To maintain the conversion 
ratio within the specified boundaries, a hysteresis competitive 
controller is implemented in front of the alpha-beta lines. This 
is followed by the consideration of 8 different state variable 
conditions that determine the magnitude level required for the 
activation function within the LSTM algorithm. Three distinct 
states of the LSTM model are designed, taking into account 24 
state variables that ultimately influence the output layer of the 
proposed model. To bridge the gap between machine-level 
language and encoding, an embedding layer is provided in 
conjunction with backward memory allocation, enabling the 
retrieval of correlations between input parameters and 
predicted parameters. The output layer in the proposed model is 
a function of various state variables, necessitating the inclusion 
of two additional decoders: one for the recurrent layer and 
another for the output layer.  

Table I presents a detailed examination of the LSTM model 
parameters employed within the SARIMA+RMSprop 
framework for time series forecasting. The input size is 
configured as 4, encompassing both direct and quadrature axis 
components in a bid to effectively process and analyze the 
pertinent time series data. With 10 hidden units, the LSTM 
model balances between complexity and computational 
efficiency, effectively capturing essential patterns in the data. 
To handle intricate temporal dependencies, the model is 
furnished with 4 LSTM layers, although it should be noted that 
this configuration may necessitate more data and training time. 
The activation function for the LSTM input layers is 
thoughtfully chosen as a combination of sigmoid and tanh, 
while the output layer adopts the sigmoid function, thereby 
facilitating prediction tasks and generating continuous output 
values within a specific range. The learning rate is set to 0.01, 
striking an optimal balance between fine-tuning the model's 
weights during the gradient descent optimization process and 
avoiding large weight updates that may hinder convergence. 
The RMSprop optimization method was chosen for its adaptive 
learning rate mechanism based on gradient history, leading to 
faster convergence and effective optimization within the 
SARIMA framework. To ensure training efficiency, a batch 
size of 50 is selected, optimizing memory usage and 
computational speed during the training process. To achieve 
convergence and optimal weight adjustments, the model 
undergoes training for 200 epochs, providing sufficient 
iterations for the LSTM to capture essential patterns in the time 
series data. 

Gaussian gradient analysis is a valuable technique used to 
study the behavior of activation functions in relation to specific 
input points, providing insights into their sensitivity to changes 

in input values and revealing their characteristics within 
targeted regions. 

TABLE I.  LSTM PARAMETERS 

Parameter Magnitude Remark 

Input size 4 
Two sets of direct and quadrature 

axis components 

Hidden inputs 10 Determines problem complexity 

Number of layers 4 

More layers can capture complex 

patterns but may require more data 

and training time 

Activation function Sigmoid and tanh Output layer prediction 

Dropout rate 0.1 
Regularization to prevent 

overfitting 

Recurrent dropout 0.2 Regularization of LSTM layers 

Learning rate 0.01 
Adjusting the step size for gradient 

descent 

Optimization - SARIMA+RMSprop 

Batch size 50 
Memory usage and computational 

efficiency 

Epochs 200 Iterations for convergence 

Loss function - Mean Squared Error (MSE) 
 

In Figures 3(a)-(b), two distinct activation functions, AF1 
and AF2, are thoroughly investigated. The Figures visually 
depict the gradients of these activation functions at predefined 
input points. The gradients for AF1 are meticulously calculated 
at -0.03 and 0.03, while for AF2, the analysis focuses on -0.021 
and 0.021. Figure 3(b) reveals intriguing findings. The 
algorithm demonstrates heightened sensitivity to changes in 
boundary value conditions, particularly concerning the type and 
magnitude of Total Harmonic Distortion (THD) present at the 
PCC. The model achieves its optimal performance when 
subjected to a maximum deviation of 8.7% in step during 
transient disturbances with respect to gain. 

 

(a) 

 

(b) 

 

Fig. 3.  Gaussian Gradient Analysis with (a) AF1 = [-0.03 0.03] and (b) 

AF2= [-0.021 0.021]. 
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Fig. 4.  Experimental setup model for PID controller tuning using LSTM. 

IV. RESULT ANALYSIS AND DISCUSSION 

In order to process the proposed controller, the designed 
microgrid has a capacity of 10 kW [20]. The designed 
microgrid consists of a solar photovoltaic (PV) system of 3 kW 
and wind system of 4 kW, and a fuel cell of 3 kW. Modeling of 
PV cells is required for an efficient design of a PV system. 
First, the performance of the microgrid has been analyzed with 
the conventional PID controller and a forecasting model has 
been designed using the SARIMA method. Then the 
parameters of the PID controller were fine-tuned by the LSTM 
RNN while UPQC was integrated with the microgrid and the 
performance is analyzed. 

A comparative analysis between the LSTM and PID 
controllers presenting the findings is shown at Table II. Firstly, 
the proportional gain is assessed, which reflects the 
proportional control behavior of these controllers. The PID 
controller exhibits a proportional gain of 0.32, while the 
LSTM-controller displays a lower value of 0.21. This disparity 
suggests that the LSTM controller responds more 
conservatively to fluctuations in the error signal compared to 
the PID controller. The PID controller manifests an integral 
gain of 0.47, whereas the LSTM controller demonstrates a 
diminished value of 0.27. This discrepancy indicates that the 
LSTM controller is less prone to cumulative errors over time, 
resulting in more stable control over prolonged deviations. The 
PID controller boasts a derivative gain of 0.05, while the 
LSTM controller showcases a smaller value of 0.038. This 
reduced derivative gain in the LSTM controller signifies a 
smoother response to rapid changes, mitigating the risk of 
overshooting or oscillations. Additionally, we explore sampling 
time, which represents the time interval between successive 
control actions. The PID controller employs a sampling time of 

0.01 s, whereas the LSTM controller adopts a significantly 
faster sampling time of 0.001 s. This enhanced sampling rate 
equips the LSTM controller to respond with greater agility to 
dynamic system alterations, thereby enhancing its real-time 
control capabilities. The reduced error and standard deviation 
values of the LSTM controller indicate its superior accuracy 
and precision in achieving the desired control objectives. 

TABLE II.  CONTROLLER GAIN COMPARATIVE ANALYSIS 

Parameter PID controller LSTM controller 

Proportional gain 0.32 0.21 

Integral gain 0.47 0.27 

Derivative 0.05 0.038 

Sampling time 0.01 s 0.001 s 

Error 17.22% 8.07% 

Std Deviation 1.652 0.69 

 

Table III presents a comprehensive comparative analysis of 
the loading performance of the LSTM-SARIMA-PID 
Controller under different loading conditions. The analysis 
evaluates essential parameters, including PCC-THD-Current, 
PCC-THD-Voltage, frequency variation, and transient voltage 
rise, to assess the controller's performance across varying load 
levels. Table IV presents a comprehensive comparative 
analysis of the PID-SARIMA and LSTM-SARIMA forecasting 
models, focusing on their economic forecasting performance 
under different loading conditions. The Table provides valuable 
insights into the accuracy and reliability of these models by 
comparing their actual and forecasted tariff values. Starting 
with the 10% full load scenario, PID-SARIMA records an 
actual tariff value of 4.06, while its forecasted value is slightly 
lower at 3.92. In contrast, LSTM-SARIMA impressively 
predicts the actual tariff with a forecasted value of 3.97, 
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indicating its precision in economic forecasting at this load 
level. Similarly, the tariff forecasting has been done at other 
loading conditions. 

TABLE III.  LOADING PERFORMANCE ANALYSIS 

Loading (% of 

full load) 

PCC-THD-

Current 

PCC-

THD-

Voltage 

Frequency 

variation 
Transient 

voltage rise 

10 4.02 2.33 0.54 0.06 

30 4.70 2.93 0.63 0.07 

45 5.56 3.40 0.73 0.08 

60 6.59 3.95 0.84 0.10 

75 8.18 4.78 1.02 0.12 

90 8.60 4.97 1.06 0.12 

100 8.79 4.96 1.06 0.12 

TABLE IV.  COMPARATIVE ANALYSIS BETWEEN ACTUAL 
AND FORECASTED TARIFFS 

Loading (% of 

full load) 

PID-SARIMA LSTM-SARIMA 

Tariff Tariff 

Actual Forecasted Actual Forecasted 

10 4.06 3.92 3.97 3.97 

30 4.64 4.66 4.73 4.73 

45 5.36 5.55 5.63 5.63 

60 6.18 6.61 6.70 6.69 

75 7.12 7.87 7.97 7.97 

90 8.56 9.37 9.48 9.48 

100 10.05 11.15 11.29 11.28 

TABLE V.  COMPARATIVE ANALYSIS BETWEEN ACTUAL 
AND FORECASTED PRICE BETWEEN PID-SARIMA AND 
LSTM-SARIMA BASED ON THE CURRENT THD LEVEL 

PCC-THD-

Current 

PID-SARIMA LSTM-SARIMA 

Tariff Tariff 

Actual Forecasted Actual Forecasted 

4.02 4.04 3.89 3.99 3.96 

4.70 4.80 4.63 4.75 4.71 

5.56 5.71 5.51 5.65 5.61 

6.59 6.80 6.55 6.72 6.67 

8.18 8.09 7.80 8.00 7.94 

8.60 9.64 9.28 9.52 9.45 

8.79 11.48 11.04 11.33 11.24 

TABLE VI.  COMPARATIVE ANALYSIS BETWEEN ACTUAL 
AND FORECASTED PRICE BETWEEN PID-SARIMA AND 

LSTM-SARIMA BASED ON THE VOLTAGE THD LEVEL 

PCC-THD-

Voltage 

PID-SARIMA LSTM-SARIMA 

Tariff Tariff 

Actual Forecasted Actual Forecasted 

2.33 3.80 3.59 3.62 3.62 

2.93 4.52 4.28 4.31 4.30 

3.40 5.37 5.09 5.13 5.12 

3.95 6.40 6.06 6.10 6.09 

4.78 7.61 7.21 7.26 7.25 

4.97 9.07 8.58 8.64 8.63 

4.96 10.80 10.21 10.28 10.27 

 

In Table V, a comprehensive comparison is presented 
between the actual and forecasted prices derived from PID-
SARIMA and LSTM-SARIMA models. This analysis 
specifically focuses on varying THD levels to calculate the 
corresponding price per unit of energy. The results are 
illuminating and provide valuable insights into the efficiency of 

these models under different THD conditions. For instance, 
when the THD level is at 4.02, the forecasted tariff using 
LSTM-SARIMA stands at 3.96, whereas the PID-SARIMA 
model yields a tariff of 3.89. This signifies a notable increase in 
revenue, with the LSTM-SARIMA model generating at least 
1.79% more revenue per unit of energy compared to the PID-
SARIMA model. These findings emphasize the superior 
predictive power of LSTM-SARIMA in this scenario. 
Furthermore, at the highest observed THD level of 11.48, the 
LSTM-SARIMA model predicts a tariff rate of 11.24, while the 
PID-SARIMA model forecasts a rate of 11.04. This stark 
contrast clearly demonstrates the efficiency of the proposed 
LSTM-SARIMA model. Even under challenging conditions 
with elevated THD levels, the LSTM-SARIMA model 
consistently outperforms the traditional PID-SARIMA model, 
ensuring a higher per-unit forecast. Importantly, this analysis 
takes into account the Aggregate Technical and Commercial 
(AT&C) losses, providing a holistic view of the forecasting 
models' performance. Considering the inclusion of AT&C 
losses, the superiority of the LSTM-SARIMA model in 
providing accurate and profitable energy price forecasts 
becomes even more evident. 

 

 
Fig. 5.  Price forecasted by PID-SARIMA and LSTM-SARIMA. 

In Table VI, a detailed comparative analysis is presented, 
focusing on the actual and forecasted prices under varying 
Voltage THD levels. This examination is critical due to the 
significant impact voltage fluctuations and distortions can have 
on energy distribution systems. One specific scenario worth 
noting is when the voltage THD level is measured at 4.96. 
Under these conditions, the LSTM-SARIMA model predicts a 
tariff rate of 10.27 units, whereas the PID-SARIMA model 
forecasts a rate of 10.21 units. This subtle yet consistent 
difference underscores the LSTM-SARIMA model's ability to 
provide more accurate predictions, even when voltage THD 
levels are moderately elevated. Such precision is crucial for 
energy providers, ensuring a stable and reliable electricity 
supply to consumers. It is essential to highlight that the analysis 
in Table VI adheres strictly to the standards outlined by the 
IEEE-519, a universally acknowledged benchmark in the 
energy industry. By referencing this standard, the efficacy of 
the proposed LSTM-SARIMA model as a controller becomes 
evident. This comprehensive analysis emphasizes the 
significance of considering voltage-related factors in energy 
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forecasting models, showcasing the LSTM-SARIMA model's 
superiority over PID-SARIMA, especially in situations 
involving moderate voltage THD levels.  

It is seen that as the current and voltage THD increases, the 
energy tariff also increases. But with the LSTM-SARIMA 
model, the price fluctuations are less than when using the PID-
SARIMA model. The actual vs predicted price by PID-
SARIMA model and LSTM-SARIMA model are shown in 
Figure 5, where we can observe an increase in actual and 
forecasted price as the THD in current increases. 

V. CONCLUSION 

In conclusion, the utilization of LSTM-based forecasting 
models for predicting microgrids' per unit tariff has 
demonstrated significant promise in producing accurate and 
dependable forecasts. These models excel in capturing intricate 
temporal patterns and dependencies within data, enabling 
precise predictions of forthcoming tariff rates. Nonetheless, it is 
essential to recognize that the performance of LSTM models is 
heavily reliant on the availability and quality of data. 
Suboptimal or noisy data can adversely affect prediction 
accuracy. Hence, ensuring the quality and accessibility of data 
is paramount for the effective deployment of LSTM-based 
forecasting in microgrid tariff prediction. Hence, in this paper, 
the LSTM-SARIMA model with UPQC has been proven to be 
a better forecasting model than the conventional PID-SARIMA 
model. 
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