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ABSTRACT 

Touch sensation is a key modality that allows humans to understand and interact with their environment. 

More often than not, touch sensation depends on vision to accumulate and validate the received 

information. The ability to distinguish between materials and surfaces through active touch consists of a 

complex of neurophysiological operations. To unveil the functionality of these operations, neuroimaging 

and neurophysiological research tools are employed, with electroencephalography being the most used. In 

this paper, we attempt to distinguish between brain states when touching different natural textures 

(smooth, rough, and liquid). Recordings were obtained with a commercially available EEG wearable 

device. Time and frequency-based features were extracted, transformed with PCA decomposition, and an 

ensemble classifier combining Random Forest, Support Vector Machine, and Neural Network was utilized. 

High accuracy scores of 79.64% for the four-class problem and 89.34% for the three-class problem (Null-

Rough-Water) were accordingly achieved. Thus, the methodology's robustness indicates its ability to 

classify different brain states under haptic stimuli. 

Keywords-haptic; active touch; electroencephalogram; classification; multisensory; machine learning; PCA; 

ensemble method 
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I. INTRODUCTION  

One of the basic human mechanisms for perceiving and 
exploring the surrounding world is the sense of touch. It is one 
of the earliest developed senses and plays a crucial role in daily 
tasks like object manipulation and action performance. Sensory 
loss of touch could lead to someone being unable to feel pain or 
temperature, missing the sense of presence, not being able to 
effortlessly move [1], and/or experience other atypical 
implications. 

Acquiring information about the surroundings through 
touch requires physical contact and interaction between the 
surface of an object and the human skin, most commonly 
through the fingertips due to their high sensitivity. This contact 
results in the mechanical stimulation of the skin where 
mechanoreceptors transduce a nerve signal which is transferred 
through the peripheral nervous system pathways to the central 
nervous system and the brain. There, high order somatosensory 
areas, mainly the postcentral gyrus [2], are involved in the 
process of interpreting the signal. Information regarding the 
physical and geometric properties of the material, object, or 
surface being touched can be extracted. Such properties can be 
about the object’s shape and size, the material substance and 
texture, hardness and elasticity, roughness, or temperature [2, 
3]. This information analysis in the brain, integrated with 
proprioceptive, kinesthetic, cutaneous and thermal 
characteristics is called haptic perception. Haptic perception 
includes active and passive touch (tactile). The former occurs 
when human body parts are willingly used for exploration by 
moving against the surroundings while the latter is performed 
when outside agencies interact with static parts of the human 
skin [4]. Neural operations and perceptual differences between 
those two forms are still under investigation with numerous 
studies substantiating diversities in performance, in the 
activated brain area discrimination and in the neural response 
patterns involved [5-8]. Haptic perception is not limited to a 
fundamental ability of distinguishing different material 
properties. It is a subjective experience [9, 10] that has the 
capacity to create mental apprehension of the surroundings, 
both discriminatively and affectively [11]. Visual, auditory, and 
memory aspect incorporation complementarily contributes to 
constituting a multimodal system [9] that impacts the 
emotional, social and cognitive human apprehension [13-15]. 
Understanding the way human senses work, and more 
particularly how haptic perception functions has become a 
growing research topic over the recent years [13]. The 
importance and reasoning behind decoding haptic modality are 
driven by the numerous applications spotted in human 
psychology and physiology. Starting from the medical field 
with applications such as limb rehabilitation and assistive 
haptic robotics [16], neurophysiological disorder treatment 
[17], therapeutic interventions on tactile deficits in humans 
with mental disorders (anorexia nervosa) [18], and stroke 
rehabilitation [19], haptic perception understanding extends to 
most parts of human activity. The Industrial field makes use of 
the affective sensations through touch for manufacturing 
commercial products [20] like fabrics or clothes. Technological 
novelties, interface and application design utilize the 
knowledge on haptic perception to develop haptic interfaces 

[21], tactile displays, interactive media devices [22], and 
affective computing [23].   

Non-invasive neuroimaging and neurophysiological 
methods including functional Magnetic Resonance Imaging 
(fMRI) and Electroencephalogram (EEG) enable researchers to 
examine the brain’s response to touch stimuli. Especially the 
EEG portability, ease of use, low cost, and high temporal 
resolution, have generated novel experimental scenarios related 
to haptic sensation research. Corresponding studies implement 
analysis techniques such as Power Spectral Density [6, 24], 
event-related potentials [25], and somatosensory evoked 
potential [26-28]. In addition, advancements in machine 
learning technologies are combined with EEG analysis 
techniques to conclude in the classification of different brain 
states under haptic stimuli. These studies investigate 
discriminative touch and touch imagery [29, 30], roughness 
recognition classification [6, 31, 32], and tactile pleasantness in 
response to different textures or touch types [12, 33, 34]. Most 
studies examine active touch after eliminating the visual stimuli 
since it may have a major impact in haptic perception [35]. 
However, tactile perception in combination with visual stimuli 
has also been explored. Authors in [36] proposed a 
classification scheme for object shape recognition from EEG 
signals acquired with both tactile and visual stimuli. They used 
electrodes located on the frontal somato-sensory and occipital 
region that are responsible for the cognitive processing and the 
employment of Power Spectral Density and Mu-
desynchronization.  

In this research, we seek to address the multisensory nature 
of haptic perception and distinguish brain responses when 
touching different materials. Specifically, we propose a 
methodology for the discrimination of different natural material 
textures during active touch and constant visual contact through 
EEG signal classification. Multisensory stimuli can improve 
the classification accuracy more than conventional, single-
sensory input [37]. Commonly, publications do not employ 
multiple machine learning algorithms for the classification 
procedure investigating active touch [6]. We designed an 
experimental protocol for EEG acquisition and preprocessing, 
then performed feature extraction, implemented Principal 
Component Analysis (PCA), and employed multiple 
classification algorithms for the EEG signal categorization 
under different haptic stimuli. Ultimately, we suggest an 
ensemble classification method that exceeds in performance 
every classifier tested. 

II. MATERIALS AND METHODS 

This section describes the stages of the proposed 
methodology. First, the experimental protocol for obtaining and 
preprocessing the EEG recordings is set out. Then, the 
procedure for extracting the features used for the classification 
of each active touch condition is explained, along with the 
dimensionality reduction of the feature matrix. Finally, the 
algorithms and the ensemble method used for performing the 
classification of the active touch states are described. Figure 1 
represents a diagram of this experiment's entire methodology.  
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A. Dataset 

The experimental procedure was held in a clinical, quiet 
and controlled environment. For this experiment, participants 
were asked to comfortably sit in a chair and a researcher 
explained them the procedure. They were given time to 
familiarize with the device and were instructed to relax during 
the experiment. Then, their right hand (dominant hand as 
validated with Edinburg Handedness Inventory [38]) was 
positioned in a fixed ergonomic arm support. The texture 
materials were visible while the participants were asked to use 
their right hand fingertips to softly rub each texture for one 
minute, in a circular, clockwise manner, without applying 
pressure on any material. The participants were asked to keep 
having visual contact with the material throughout the 1-minute 
active touch recording. In order to minimize the variance in 
movements and pressure applied, participants arms were fixed 
on the arm support with a rubber band and calibrated on their 
respective relative height horizontal to the surface position. An 
experienced researcher was always supervising the procedure.  

 

 
Fig. 1.  Flowchart of the proposed methodology. 

The protocol in brief steps: 

1. 1-minute eyes-open resting-state recording. 

2. 1-minute recording during active texture rubbing 

smooth surface. 

3. 1-minute rest. 

4. 1-minute recording during active texture rubbing 

rough surface. 

5. 1-minute rest. 

6. 1-minute recording during active texture touching 

liquid surface. 

In total, 12 participants took part in the experiment, 7 males 
and 5 females. The participant age was between 25-27 years 
old. Every participant was right-handed with no history of 
neurological or psychiatric disorders. Detailed information 
about the procedure was given to every participant prior to the 
experiment by an experienced researcher. Written consent 
forms were obtained, ensuring that there was no concern 
regarding the experimental protocol and that their EEG 
recordings along with their private data could be used for 
publication purposes.The natural textures used in this study 
were: two materials of different roughness levels (smooth and 
rough) and liquid. For the smooth material, a satin polished 
stainless steel was employed with Ra < 0.5 μm (Roughness 
average). For the rough material, a piece of a 120 Grit 
sandpaper was used (estimated Ra = 1.32 μm. For the liquid 
surface, room temperature water (10-3 Pa.s.) in a shallow 
container was utilized. The Emotiv EPOC Flex wearable 
device was hired for the EEG data recording. This device is 
equipped with 32 gel Ag/AgCl sensors and a flexible cap. It is 
a portable headset with a rechargeable lithium battery and each 
electrode frequency response is 0.16-43 Hz, while the device 
sampling rate is 1024 Hz. The electrode placement was in 
accordance with the extended 10–20 International Reference 
System and 32 electrodes were positioned (Cz, Fz, Fp1, F7, F3, 
Fc1, C3, Fc5, T9, T7, Tp9, Cp5, Cp1, P3, P7, O1, PZ, OZ, O2, 
P8, P4, Cp2, Cp6, Tp10, T8, Fp10, Fc6, C4, Fc2, F4, F8, Fp2). 
Also 2 electrodes were placed on the ear lobes, namely A1 and 
A2. CMS and DRL electrodes were P3 and P4, respectively. 
The recording quality was constantly being ensured in real-
time, by using the native EmotivBCI interface, which provides 
real-time information about electrode connectivity and signal 
quality. An experienced researcher continuously ensured that 
the electrode connection was at the best state according to the 
EmotivBCI interface, by reapplying gel on the electrodes if 
needed, so as every electrode impedance value would 
constantly be below the designated value (<20 kΩ). The 
recordings were streamed to a PC via a wireless connection to 
be saved and later processed. Figure 2 illustrates the materials 
used and the experimental procedure. 

B. Data Preprocessing and Feature Extraction 

The EEG recordings were digitally rereferenced to the 
average of A1, A2 electrodes which were placed at the left and 
right ear lobe, respectively. Recordings were downsampled 
from 1024 to 128 Hz during the wireless transmission stage. 
Furthermore, a 4th order Butterworth high-pass filter at 0.4 Hz 
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was applied. No low pass filter was set since the Emotiv EPOC 
Flex firmware automatically applies a double notch filter at 50 
Hz and 60 Hz to remove interference from the electrical power 
supply. Also, Emotiv Flex has a built-in low-pass filter of 45 
Hz [39]. The filter affects frequencies down to about 45 Hz, so 
the manufacturer specifies 43 Hz as the upper usable frequency 
limit where the spectral response is perfectly flat [40]. Next, 
artifacts of electrode movement were manually removed from 
visual inspection, in the EEGLAB MATLAB environment. No 
electrodes were removed from any of the EEG recordings, only 
time segments. 

 

 
Fig. 2.  The experimental protocol and the materials used: smooth, rough, 

liquid. 

Subsequently, epoching of the EEG signals was performed. 
Signals were segmented into 1 s epochs with 0.5 s overlap. 
Epochs of 2 and 5 s were also extracted and the duration of 1 s 
was chosen based on the accuracy results. Afterwards, time and 
frequency domain metrics were extracted from each epoch to 
form the classification dataset. The time domain metrics were: 
Mean, Variance, Range, Median, Interquartile Range, 30% 
Percentiles. Frequency domain features were the Spectrum 
Power Density of each frequency band, for each epoch, 
calculated with the Power Spectral Density Welch method. The 
frequency bands were defined as [41]: 

 Alpha: 8-12 Hz 

 Beta: 12-25 Hz 

 Theta: 4-8 Hz 

 Delta: 1-4 Hz 

 Gamma: 25-43 Hz 

In total, 352 features were extracted (6 time domain and 5 
spectral domain features for each of the 32 electrodes). 

C. Dimensionality Reduction 

PCA is a widely used method for dimensionality reduction 
in high-dimensional datasets. For a p-dimensional dataset, PCA 
analysis creates a p-dimensional vector of weights ���� �
���, … , �
�

���
 projecting each row vector ��
�  to a new 

principal component score vector ���
� � ��
� ∗ ����  for i 
=1,…., n and k = 1,….., p where n is the number of the 
individual recordings on the data [42]. To achieve the highest 
variance, the first principal component is computed so that the 
sum of each point squared distance is maximized. Then, each 
other principal component is calculated in order to have the 
maximum sum of squared values while being perpendicular to 
all its previous principal components. After calculating the 
principal component transformation, one can perform 
dimensionality reduction to the dataset by removing the 
components with the least variance. Thus, projecting a dataset 
of p-dimensional data to a dataset of r-dimensional data where  
r < p. In this experiment, the feature vector was standardized 
before the PCA transformation was calculated and then the less 
important principal components, which accounted for less than 
5% of the total variance, were discarded (95% variance 
threshold). This way, the initial dataset of 352 features was 
converted to a linear transformation of 75 features. Figure 3 
represents the PCA dimensionality reduction procedure 
followed in this dataset. PCA is implemented for reducing the 
feature space of the datasets capitalized by the classification 
algorithms, to achieve faster computational time and higher 
accuracy.  

 

 

Fig. 3.  Visual representation of the PCA stages: Original dataset, standardized dataset, principal component variances, PCA decomposition. 
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D. Classification 

In this section, the utilized classification algorithm are 
described, those being: Random Forest (RF), k-Nearest 
Neighbor (k-NN), Multi-Layer Perceptron (MLP), C4.5 
Decision Trees (DTs), Linear Discriminant Analysis (LDA), 
and Support Vector Machines (SVMs). The ensemble method 
is also presented. For each classification case, accuracy (ACC), 
sensitivity (SENS), and specificity (SPEC) scores were 
calculated. Equations (1)-(3) represent how ACC, SENS, and 
SPEC are computed for a binary problem. TP stands for True 
Positive, TN for True Negative, FP for False Positive, and FN 
for False Negative, respectively. 

ACC � �����

�����������
    (1) 

SENS �  ��

�����
    (2) 

SPEC �  ��

�����
    (3) 

To calculate these metrics in a multiclass problem, we 
averaged their scores in one versus all binary problems. 

The four classes in the classification were: 

1. Resting state or Null (N) 

2. Rough (R) 

3. Smooth (S) 

4. Water (W) 

These classes were combined in 4 classification problems: 

1. N-R-S-W 

2. N-S-W 

3. N-R-W 

4. N-R-S 

The accuracy, sensitivity, and specificity scores of every 
classification problem were obtained by using the 10-fold 
validation method. Every classification algorithm and the 
ensemble method were employed in the Weka platform [43] 
while the hyperparameter optimization for each algorithm took 
place in Python, using the skopt.gp_minimize routine [44]. The 
Standard Deviation (SD) of the accuracy for each algorithm has 
been calculated after performing the classification routine 10 
times. 

E. C4.5 Decision Tree 

DT algorithms are some of the most widely used methods 
for inductive inference [45]. C4.5 is an algorithm, first 
introduced by Ross Quinlan [46] that generates a DT robust to 
noisy data and capable of learning disjunctive expressions. The 
idea behind DT classification is to develop an if-else formula 
that can correctly determine an unknown instances class. The 
algorithm for producing a DT is quite simple. Beginning from 
the original training set, the information gain of each attribute - 
if split- is calculated. Then the attribute with the higher 
information gain value is selected and the tree is divided into 
subtrees based on this selected attribute. This procedure is 

repeated for each subtree until every element in the subset 
belongs to the same class or there are no more attributes to be 
selected. It should be noted that an attribute cannot be selected 
again as a partition attribute in the same subtree. To avoid 
overfitting, pruning techniques can be used. In this experiment, 
pruning by information gain in which a node is no longer 
expanded to a subtree and becomes a leaf based on a 
confidence factor was put to work. Reduced error pruning was 
employed as well, where a node is pruned if the resulting tree 
still has the same accuracy score as the unpruned version. 

F. Random Forest 

RF algorithm is an ensemble classifier [47, 57] and one of 
the most common techniques for classifying EEG data [48, 49]. 
This classifier involves multiple DTs, each of which uses a 
different subset of features as classification criteria and a 
different bootstrapped dataset (sampling with replacement) 
created from the original one as the training set. Then, each DT 
votes for each observation in the test set and the observation 
gets classified based on the average probability voting. 
Different weights can be given to each tree. This method 
employs the bagging idea to reduce the generalization error and 
improve classification accuracy. In this experiment, each tree 
was given the same weight. Moreover, no pruning of the 
created DTs was performed. The number of estimators to be 
used was obtained by the skopt.gp_minimize optimization 
pipeline in Python, which employs Bayesian Optimization 
utilizing Gaussian Processes, and found to be 110. 

G. K-Nearest Neighbors 

KNN algorithm classifies an instance of the test set by 
calculating its distance (Euclidean, Manhattan, etc.) from every 
instance in the training set while considering the majority class 
of the k-nearest ones [50]. In this experiment, k was set to 5 
and the computed distance was Euclidean. The value of k was 
chosen after testing different k values from 1 to 10 and the one 
that produced the highest accuracy result was chosen. 

H. Multi-Layer Perceptron 

MLP is a commonly used feed forward Neural Network. 
An MLP consists of: an input layer with as many neurons as 
the dataset attributes, an output layer with as many neurons as 
the dataset classes, and one or more hidden layers. Each neuron 
receives multiple real-valued inputs and produces one real-
valued output, determined by the activation function, usually 
being the sigmoid function. The gp_minimize pipeline was 
applied to calculate the learning rate which was found to be 
0.32. Regarding the number of neurons and hidden layers, there 
are several methodologies for defining the optimal ones [51-
53]. In this experiment, we used a trial-and-error technique to 
define the hidden layer size. Different hidden layer setups were 
implemented and finally it was decided to use one hidden layer 
with 39 neurons (the average of input plus output number of 
neurons). 

I. Linear Discriminant Analysis 

LDA is a dimensionality reduction technique that is also 
utilized as a classification method in many EEG classification 
problems [54] LDA aims to reduce the feature vector 
dimensionality by creating a new dimension that maximizes the 
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variance between each class. First the between-class scatter is 
calculated using equation 4. 

�� � ∑ �
�� ! − �̅��� ! − �̅��$

%�    (4) 

The within-class scatter is produced by calculating the 
covariance matrix of each class 

&'() � ��) − μ)���) − μ)�
�
   (5) 

and then by computing their average: 

�+ � ∑ ,)) × �&'()�    (6) 

The a priori probability of the class j , is ,). 

The LDA optimizing criterion is maximizing the ��/�+ 
ratio. The transformed space axes are defined by maximizing 
this criterion. Once the LDA is completed, each data point of 
the test set is classified based on the smallest Euclidean 
distance from the class centers. 

J. Support Vector Machines 

A Support Vector Machine (SVM) is a machine learning 
algorithm that can solve binary classification problems. They 
have been widely encountered in biomedical applications and 
in EEG analysis [55, 58-60]. The SVM basic principle is to 
map the features to a high-dimensional feature space and locate 
an optimal separating hyperplane that maximizes the width of 
the gap between the two classes. To perform non-linear 
classification, an SVM can utilize the kernel method [56]. For 
multiclass classification such as the 4- or 3-class classification 
problems in this experiment, the classification problem is 
broken down into multiple two-class classification problems, in 
a one versus one approach. Additionally, in this experiment, the 
kernel function was a radial basis function. The kernel function 
selection was made after evaluating the performance results of 
every kernel function, namely linear, polynomial, radial basis, 
and sigmoid in the LibSVM implementation on the Weka 
platform [43].  

K. The Ensemble Method 

The proposed ensemble method is an average probability 
voting system consisting of the 3 best performing classification 
algorithms in this dataset: MLP, RF, and SVM. Initially, each 
classification algorithm is trained with the training set. For each 
instance of the test set, every classifier calculates the 
probability estimations for each class. Then the classifiers 
"vote" by averaging their probability estimations. The assigned 
class is the one with the higher average probability. 

To examine the ensemble method's usefulness and check 
whether the employment of multiple classifiers with different 
architecture enhanced classification performance by 
eliminating the errors made by the classifiers, we conducted 
Mathiews correlation of errors between the individual 
classifiers and between the Ensemble Method with each 
classifier. To do so, the individual results of the classification 
were extracted while an array of 0 and 1 was created for each 
classifier, with 0 representing a classification error and 1 
representing a correctly classified instance. 

III. RESULTS 

In the first classification problem, where all 4 experimental 
classes were used (Null, Rough, Smooth, Water), the voting 
system achieved a level of ACC of 79.64% (SENS=77.30%, 
SPEC=92.40%) outperforming the other classifiers and 
achieving the lowest SD of 2.19. MLP was the second best 
with 77.06% ACC followed by SVM (ACC 76.50%) and RF 
(ACC 70.86%). Table I illustrates the results of the N-R-S-W 
classification problem.  

TABLE I. PERFORMANCE RESULTS FOR THE N-R-S-W 
CLASSIFICATION PROBLEM 

Algorithm ACC SD SENS SPEC 

Voting system 79.64% 2.19 77.30% 92.40% 

RF 70.86% 2.32 70.80% 90.20% 

DT 47.14% 2.83 47.10% 82.30% 

KNN 64.90% 2.52 67.00% 89.00% 

LDA 67.80% 2.35 67.80% 89.20% 

SVM 76.50% 2.21 76.40% 92.10% 

MLP 77.06% 2.33 77.00% 92.30% 

 

In the second classification problem, where 3 experimental 
classes were considered (Null, Smooth, Water), the voting 
system achieved an ACC level of 87.67% (SENS=85.90%, 
SPEC=93%) outperforming all other classifiers while 
achieving the lowest SD (2). MLP was the second best with 
84.70% ACC followed by SVM (ACC 84.50%) and LDA 
(81.10%). RF scored an ACC level of 79.30%. The rest of the 
classifiers achieved ACC lower than 72%. Table II shows the 
results of the N-S-W classification problem. 

TABLE II. PERFORMANCE RESULTS FOR THE N-S-W 
CLASSIFICATION PROBLEM 

Algorithm ACC SD SENS SPEC 
DT 55.64% 3.64 57.10% 78.50% 

RF 79.30% 2.51 79.60% 89.80% 

KNN 71.22% 2.94 72.20% 86.00% 

MLP 84.70% 2.34 84.80% 92.40% 

LDA 81.10% 2.39 81.10% 90.50% 

SVM 84.50% 2.26 84.50% 92.20% 

Voting system 87.67% 2.00 85.90% 93.00% 

 

In the third classification problem, 3 experimental classes 
were used (Null, Rough, Water). The voting system achieved 
an ACC level of 89.34% (SENS=85.90%, SPEC=93%) 
outperforming all other classifiers and achieving the lowest SD 
of 1.42. MLP was the second best with 86.50% ACC followed 
by SVM (ACC 86.30%), RF (82.56%), and LDA (82.25%). 
KNN achieved an accuracy level of 74.31% while DT 
performed the lowest, with an ACC score of 60.1%. Table III 
shows the results of the N-R-W classification problem. 

TABLE III. PERFORMANCE RESULTS FOR THE N-R-W 
CLASSIFICATION PROBLEM 

Algorithm ACC SD SENS SPEC 

DT 60.10% 3.55 60.00% 80.00% 

RF 82.56% 2.56 82.50% 91.20% 

KNN 74.31% 3.37 77.10% 88.50% 

MLP 86.50% 2.36 86.40% 92.00% 

LDA 82.25% 2.22 82.10% 91.00% 

SVM 86.30% 1.99 86.30% 92.10% 

Voting system 89.34% 1.42 85.90% 93.00% 
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In the fourth classification problem, where three 
experimental classes were used (Null, Rough, Smooth), the 
voting system achieved an ACC level of 82.10% 
(SENS=79.80%, SPEC=89.9%) outperforming the other 
classifiers and achieving the lowest SD of 2.33. Nevertheless, it 
performed noticeably worse than in the other 3-class 
classification problems. SVM was the second best with 79.13% 
ACC followed by MLP (ACC 78.33%) and RF (75%). The 
other classifiers achieved accuracy lower than 72%. Table IV 
shows the scores of the N-R-S classification problem. 

TABLE IV. PERFORMANCE RESULTS FOR THE N-R-S 
CLASSIFICATION PROBLEM 

Algorithm ACC SD SENS SPEC 

DT 54.27% 3.48 56.00% 78.00% 

RF 75.00% 2.67 75.00% 87.40% 

KNN 70.06% 3.27 71.40% 85.70% 

MLP 78.33% 2.89 78.10% 89.00% 

LDA 70.62% 2.74 70.60% 85.30% 

SVM 79.13% 2.62 79.20% 89.60% 

Voting system 82.10% 2.33 79.80% 89.90% 
 

Figure 4 exhibits the comparison between the ACC scores 
of each classifier in the four classification problems. It can be 
noticed that, overall, the N-R-S-W problem achieved the 
lowest ACC scores, while the N-R-W problem achieved the 
highest ones. Concerning the 3-class problems, the 
performance in the N-R-S problem, was noticeably lower than 
in the others. Figure 5 represents the overall ACC, SENS and 
SPEC scores comparison among all the algorithms across all 
problems. 

 

 

Fig. 4.  All classification algorithm accuracy comparison. 

To evaluate individual classifier contribution, the 
correlation of each classifier's error in-between them, and the 
correlation of each classifier's error with the ensemble method 
should be investigated. The Matthews correlation results are 
depicted in Table V. Low correlation between individual 
classifiers, along with higher correlation between the Ensemble 
Method and each classifier indicate that the classifiers do not 
misclassify the same instances and there is a benefit on using a 
combination of these classifiers (also based on the comparison 
of the performance results). Finally, to further investigate the 
performance of the proposed methodology for each 
classification problem, we calculated the Area Under Curve 
(ROC AUC) of each class versus the rest (OvR), along with the 
Precision Recall Curve (PRC) Area. The results are reported in 
Table VI. 

TABLE V. CORRELATION OF ERRORS BETWEEN 
CLASSIFIERS 

Mathiews correlation SVM MLP RF Voting system 

SVM --- 0.33 0.4 0.75 

MLP 0.33 --- 0.3 0.564 

RF 0.4 0.3 --- 0.59 

TABLE VI. AREA UNDER ROC AND PRC FOR EVERY 
CLASSIFICATION PROBLEM 

Problem 

 

Class 

N-S-R-W N-R-W N-S-W N-R-S 

ROC PRC ROC PRC ROC PRC ROC PRC 

1 0.974 0.951 0.972 0.962 0.975 0.963 0.984 0.973 

2 0.933 0.812 0.972 0.952 --- --- 0.917 0.823 

3 0.914 0.813 --- --- 0.964 0.934 0.909 0.852 

4 0.967 0.914 0.969 0.935 0.966 0.934 --- --- 

Average 0.947 0.872 0.971 0.95 0.968 0.944 0.937 0.883 

 

IV. DISCUSSION 

In this paper, a robust methodology for classifying EEG 
signals during active touch on different textures was 
implemented. The study consisted of four stages: experimental 
procedure, data acquisition, signal preprocessing, and 
classification. At the first stage, the participants were asked to 
touch actively 3 different materials while maintaining 
minimum arm movement and their brain function was recorded 
using an EEG wearable device. At the second stage, the EEG 
signal was preprocessed and different features were extracted 
which were later transformed using a PCA decomposition. 
Finally, this reformed feature dataset was used to train an 
ensemble classifier. The ensemble classifier consisted of a 
voting system of 3 distinct classifiers (RF, MLP, SVM), each 
of them utilizing a different classification principle. Finally, the 
proposed methodology was tested on 4 different classification 
problems and proved to be very effective since high accurate 
results were achieved. 

In previous preliminary work on the same dataset, we 
observed that utilizing both temporal and spectral feature 
characteristics provided better classification accuracy in 
comparison to employing only spectral features [61]. However, 
other studies have highlighted that non-linear feature 
characteristics such as entropy [32] and determinism may also 
be useful for classifying active touch states considering the 
non-linear nature of brain signals and haptic perception 
entanglement. Table VII presents a list of previous works 
related to haptic task classification and the used methodology. 

This research suggests that by using PCA feature reduction, 
the training and testing times are reduced while higher overall 
ACC is achieved. The voting system time performance was 
improved by 95% when PCA was applied. Particularly, the 
voting system's training time was 42 s in the 4-class 
classification problem. When training the voting system with 
the original non PCA-reduced dataset, the training time was 
887 s. Similar time performance improvements were achieved 
in every classification problem. This is due to the fact that 
choosing the number of neurons in the neural network depends 
on the number of the dataset features. Therefore, by reducing 
the feature matrix from 353 to 75 features, both memory and 
time demands were decreased. 
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TABLE VII. COMPARISON WITH PREVIOUS WORKS 

Reference Year Experimental protocol Methodology 
Classification 

problem 

Results 

ACC SENS SPEC 

[32] 2020 
Dynamic passive touch, rotating 

surface, roughness. 

Features: Recurrence 

rate, determinism, LDA. 

Rough, smooth, 

semi-rough. 
93% - - 

[31] 2021 
Active touch, roughness, synthesized 

textured surfaces. 
Deep learning CNN 

Rough, smooth, 

semi-rough. 
70%   

[6] 2019 

Active touch, roughness, synthesized 

textured surfaces, different rubbing 

speeds (slow, medium, fast). 

PSD, Features: Alpha 

and beta bands, time, 

SVM. 

Flat, medium rough. 90.2% 83.3%  

[30] 2021 
Active touch, haptic imagery, textures, 

finger slide 

Features: Alpha and beta 

bands, common spatial 

pattern, LDA, event-

related spectral 

pertubation analysis. 

4 textures real 

touch, 4 textures 

imagery touch. 

68% 

(real touch) 

7.55% 

(imagery touch) 

  

[10] 2019 

Affective tactile stimulation, 4 

different fabrics, self assessment, 

arousal, valence 

PSD, KNN. Arousal, valence. 74.24%   

Proposed 2023 
Active touch, fixed hand position, 

circular motion rubbing, 3 surfaces 

Spectral and time 

features, PCA, ensemble 

method. 

N-R-S-W 79.64% 77.30% 92.4% 

N-S-W 87.67% 85.9% 93% 

N-R-W 89.34% 85.90% 93% 

N-S-R 82.1% 79.8% 89.9% 
 

 

Fig. 5.  ACC, SENS, SPEC scores of all algorithms across every problem. 

Regarding how the PCA transformation can influence the 
classification performance, we can observe that the voting 
system ACC is significantly increased in all classification 
problems. The comparison of the ACC scores with and without 
PCA-transformed data is presented in Table VIII. 

TABLE VIII. VOTING SYSTEM ACC RESULTS WITH 
AND WITHOUT PCA-TRANSFORMED DATASET 

Classification problem With PCA Without PCA 

N-R-S-W 79.64% 52.41% 

N-S-W 87.67% 69.72% 

N-R-W 89.34% 68.89% 

N-R-S 82.10% 63.47% 

 

The 3-class problem classifications were tested along with 
the 4-class problem classifications in order to examine whether 
their accuracy differences were significant. As expected, the 4-
class problem classification problems achieved lower ACC 
scores. However, it can be observed that the classification ACC 
of the N-R-S problem (82.1%) is inferior to the N-R-W and N-
S-W counterparts (87.67% and 89.34%, respectively), 
indicating a possible variation in the brain reception 
mechanisms triggered during the contact with a liquid surface. 
The utilized voting system proved to be effective since its 
classification performance was consistently higher than that of 
individually employed SVM, RF, and MLP. Specifically, in all 
classification problems, the voting system achieved 0.5% to 
3.5% higher ACC while maintaining lower SD scores. To 
further validate that the ensemble method provides better 
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performance in comparison to the other algorithms (especially 
SVM), we conducted independent sample T-tests between the 
ACC results of the SVM algorithm (10 runs) and the ensemble 
method (10-runs) for each classification problem. The 
performance difference for all the problems was statistically 
significant, with every p-value <0.001. 

The scope of this research was to classify the different 
active touch states while performing a predetermined hand 
movement and having visual contact with the texture. Other 
studies have tried to identify distinct brain behavior under 
different haptic stimuli [34, 62, 63]. However, no specific 
protocol has been established regarding the experimental 
procedure during the signal acquisition. The elaborate nature of 
haptic perception and the complex functionality of cutaneous 
and kinesthetic mechanoreceptors have allowed researchers to 
employ a wide range of approaches and tools. In the majority 
of the other studies, the experimental protocol about hand 
movement is extensively controlled. For example, authors in 
[32] had the participants place their hands in a completely 
motionless state, while authors in [30] allowed only a finger 
slide. Furthermore, almost every study regarding haptic 
perception has the participants keeping their eyes closed during 
the experiment. Depending on the scope of research there is a 
focus on the exploration control, attempting to isolate the 
stimuli. According to [4], the distinction between active and 
passive experimental procedures can be questioned on whether 
the active approaches are truly active. Our study allowed an 
adequate degree of freedom on the finger motion while 
restraining any hand and arm movement along with 
maintaining visual contact with the material. By doing so, we 
attempt to simulate a natural approach of a human exploring a 
surface in a quest to identify its characteristics. Moreover, 
contrary to other research approaches that use only specific 
brain regions or feature selection methods for keeping the 
dataset dimensionality low, we choose not to dismiss 
information of the perplexed neural connections but to perform, 
instead, the dimensionality reduction through a PCA 
decomposition process. We achieved an ACC score of 79.64% 
for a 4-class problem and an 89.34% for a 3-class problem in 
our classification between all subjects with all the electrodes 
available and not at a single-subject level classification. Thus, 

direct comparison with other research cannot be performed, 
mainly because of the dissimilarities in the experimental 
protocol and the differences in the classification approach.  

The brain mechanisms have the ability to get acquainted to 
a continuous stimulus. This may lead this classification routine 
to reduced performance if the participant is exposed to the 
stimuli for too long. Although this classification protocol was 
strict considering the time duration of the experiments, it 
should be examined whether there are significant changes in 
the EEG features exported right after the stimuli induction with 
the EEG features exported after the brain had already got 
familiar with the stimuli. We examined whether there was a 
performance drop when using tactile perception EEG signals 
that have been recorded after a certain duration of activity, in 
two ways. First, we split the feature dataset in two subsets. The 
first one containing the former 30 time windows of each 
recording (30 × 1 s epochs). The latter containing the last 30 
time windows. We performed the 4-class classification pipeline 
10 times. The ACC score of the first group of epochs at 
average was 78.75% and the ACC of the second was 80.18%. 
Independent sample T-test was carried out and the difference in 
performance was not found to be statistically important, 
meaning that this classification problem is not time dependent. 
However, this should be further validated by obtaining longer 
EEG recordings. Also, an independent T-test was employed 
between the features of each participant at every state (resting 
state, rough, smooth, water). Every test with p-value less than 
0.05 was classified as 1 (statistically significant differences) 
and every test with p-value bigger than 0.05 was classified as 0. 
For every participant, the percentage of features that presented 
statistically important differences at each state was calculated. 
It was observed that: (1) even in the resting state recordings, 
27.8% of the features had significant changes without an 
obvious cause. (2) Regarding the tactile perception recordings, 
21-26.4% of the features had significant changes. Table IX 
represents the percentages of features that presented 
statistically important changes between the 2 states along with 
the difference percentage between the resting state and the 
active state. In total, more than 75% of the features did not 
present statistically important changes, which indicates that this 
model is not strongly time-dependent. 

TABLE IX. PERCENTAGE OF FEATURES WITH STATISTICAL IMPORTANT CHANGES, FOR EVERY PARTICIPANT, 
BETWEEN THE FIRST 30 S AND THE LAST 30 S OF A RECORDING 

 
% Statistical important changes 

% Difference of resting state with 

tactile perception 

Participant Rest Rough Smooth Water 
 

1 0.193 0.196 0.161 0.187 0.011 

2 0.235 0.068 0.215 0.400 0.007 

3 0.264 0.207 0.130 0.241 0.071 

4 0.298 0.463 0.420 0.295 -0.094 

5 0.420 0.153 0.406 0.326 0.125 

6 0.156 0.215 0.326 0.244 -0.106 

7 0.468 0.153 0.252 0.190 0.269 

8 0.082 0.491 0.073 0.204 -0.174 

9 0.156 0.318 0.497 0.093 -0.146 

10 0.389 0.159 0.181 0.230 0.198 

11 0.409 0.119 0.230 0.366 0.170 

12 0.264 0.059 0.176 0.392 0.054 

Average 0.278 0.217 0.256 0.264 0.032 

 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12676-12687 12685  
 

www.etasr.com Miltiadous et al.: An Ensemble Method for EEG-based Texture Discrimination during Open Eyes Active … 

 

The limitations of this methodology should be addressed. 
To begin with, increasing the EEG recording should produce 
more accurate and generalizable results. Also, analyzing the 
neurophysiological brain activity during the experiment could 
lead to a better understanding of the interaction between 
specific brain regions and possible result in a more elaborate 
feature extraction procedure. In addition, considering the 
degrees of freedom in the finger movement, the classification 
procedure may be affected by the individual’s way of 
interaction. Conscious or unconscious decisions made by 
individuals regarding speed, strength, and muscle movement 
may affect the joint and muscle mechanoreceptor activity. 
Finally, the non-randomized experimental protocol of this 
experiment can be considered a limitation, because of the 
uncertainty of whether the order of the trials may enhance or 
reduce the classification accuracy due to mental factors such as 
fatigue. However, randomizing the trial order could lead to 
other limitations such as the non-repeatability of the 
experiment or, in the case of the water trial, preceding the 
smooth or rough trial, moisture remaining on the hand may 
affect the EEG signal. Thus, we considered the non-
randomized protocol as our best option.  

Nevertheless, the above limitations regarding the motor 
movement and the cognitive brain function during the active 
touch are to be leveraged in our future work. We intend to 
dissociate visual-to-haptic combination by exploring the 
differences of eyes-open and eyes-closed haptic exploration. 
Additionally, the next stage of this research will aim to explore 
the imagery aspects of active touch when using virtual reality 
and head mounted displays. Future work could indicate 
whether visual and cognitive touch imagery could be 
distinguished without actual touching within virtual reality 
environments. Moreover, the communication patterns between 
brain regions during haptic stimulus are to be explored in that 
sense. 

V. CONCLUSIONS 

In this paper, a technique for categorizing EEG signals 
during active contact, obtaining notable accuracy in a variety of 
categorization settings is proposed. To achieve high accuracies 
of 79.64% for the N-R-S-W problem, 87.67% for the N-S-W 
problem, 89.34% for the N-R-W problem, and 82.1% for the 
N-R-S problem, we strategically integrated SVM, MLP, and 
RF algorithms through an ensemble method. We used PCA to 
reduce the number of features, which not only sped up 
computation but also improved the precision and robustness of 
our classifications. Importantly, our results confirmed the time-
independence of the categorization approach, demonstrating its 
endurance over extended time. This robustness highlights our 
method potential for more extensive applications when 
combined with our ensemble methodology. These findings can 
have a wide range of applications. Our study has possible 
implications in prosthetics, robotics, and communication 
restoration in addition to advancing our understanding of EEG-
based tactile discrimination, especially given its proven 
stability and precision.  
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