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ABSTRACT 

Computer vision systems use corner detection to identify features in an image. In applications such as 

motion detection, tracking, picture registration, and object recognition, corner detection is often one of the 

initial steps. In this paper, a real-time image processing system based on Harris corner detection was 

designed and implemented using Zynq architecture and model-based design tools. The system was based 

on a development board containing the Zynq-7000 chip, which consists of a combination of FPGA and 

microprocessor, and the image taken with a high-resolution camera was processed in real-time by applying 

color conversion and Harris corner detection. The filter hardware designs used in the system were made 

using the HDL Coder tool in Matlab/Simulink without writing HDL code. The hardware that receives 

images from the camera was designed on a model-based basis with the Xilinx Vivado 2020. The HDL code 

that was implemented on the Xilinx ZedBoard using Vivado software was then validated to ensure real-

time operation with the incoming video stream. The results achieved exhibited superiority compared to 

prior implementations in terms of area efficiency (reduced number of gates on the target FPGA) and speed 

performance on an identical target card. Using the rapid prototyping approach, two alternative hardware 
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accelerator designs were created using various high-level synthesis tools. This design used less than 50% of 

the host FPGA's logic resources and was at least 30% faster than current implementations. 

Keywords-rapid prototyping; automated hardware design; corner detection codesign; MBD; HDL coder; 

Xilinx Zynq-7000 

I. INTRODUCTION  

Recognizing points of interest (or corners), such as 
detecting contours, is a prerequisite for many computer vision 
algorithms. In a picture, the places of interest correspond to 
two discontinuities in the intensity function. These can be 
created by reflectance function discontinuities or depth 
discontinuities, such as contours. These include, for example, 
corners, T-junctions, and spots with significant texture 
differences. With changing needs and the development of 
technology, the need for real-time image processing systems, 
which are used in many fields today, rose. In real-time 
embedded system designs, which are widely used in areas such 
as driving support systems, autonomous vehicles, flight 
control, security, and defense systems, it is a priority to 
perform the desired work within a determined time frame 
rather than quickly. For this reason, predictability features 
along with time stability are indispensable conditions for real-
time systems [1]. In such real-time image processing systems, 
intense processing power is needed as various filters and 
feature extraction operations are required on the image. 
Especially in systems requiring high resolutions, the necessity 
of processing each pixel in the image frame separately and in a 
very short time has rendered microprocessor-based classical 
systems inadequate, and thus different solutions have emerged. 
Among these, DSP, FPGA, or GPU-based systems, as well as 
System on Chip (SoC), have become more and more common. 
The DaVinci and OMAP series chips developed by Texas 
Instruments are examples of Digital Signal Processor (DSP) 
based systems, while the S32V34 series chips of NXP are 
found in systems that integrate a processor, a GPU, and special 
image processing units [2-4]. Such systems can provide real-
time operation as hardware accelerators using the advantages 
of DSPs and coprocessors in signal processing. However, since 
DSPs are fixed architectures, they address a relatively limited 
area by being programmed with libraries and interfaces 
supported by the manufacturer [5]. On the other hand, the use 
of Field Programmable Gate Arrays (FPGA) in such embedded 
systems has increased due to their more convenient structure 
for parallel processing and low power consumption. In FPGA-
based systems, the hardware can be completely programmed in 
the desired architecture and can be a DSP or a hardware block 
created specifically for the system. In addition, new generation 
architectures, such as Xilinx Zynq, have processors and 
programmable logic blocks together, can be programmed with 
C language just like DSPs, and even hardware design can be 
made in model-based development environments such as 
Matlab and Labview. For this reason, an FPGA-based system 
was preferred in the proposed image processing system. As a 
result of all these developments, systems that use 
microprocessors and FPGA hardware together have been 
shown the best performance in image processing systems [6]. 

Such solutions that use computer and FPGA hardware 
together are not practical in embedded system designs because 

they involve high power and space consumption. The Zynq 
architecture, introduced by Xilinx in 2012, has closed a very 
important gap in the embedded system market with its 
microprocessor and FPGA hardware on the same chip. Due to 
this SoC architecture, it is possible to realize both high speed 
and low power and space consumption by implementing all of 
the hardware and software on a single card. For this reason, 
this study used the Zedboard development board with Zynq-
7000 architecture. However, designs made with Zynq may 
require a long development process and a development team 
consisting of different disciplines due to the complexity of the 
hardware design and its different structure from classical 
microprocessor systems [7]. 

In [6], the Canny Edge detection algorithm was applied in 
real-time on the ZC702 development board using the Zynq 
platform. The system was designed using Vivado HLS and its 
internal video library and created a system that can run at 60 
fps at 1080p resolution. In [8], a system was proposed to 
recognize and classify traffic sign images, using 1920×1080 
resolution images in real-time with an integrated camera 
system placed on the Zedboard development board. The entire 
project was built in six weeks using OpenCV libraries, thus 
emphasizing the platform's ability to design quickly. This study 
stated that it took approximately 5 seconds to classify a traffic 
sign in the developed system [8]. In [9], optical flow 
algorithms were optimized and comparisons were made on 
different platforms. Accordingly, the same algorithm was 
executed on a PC with a Core i7 processor, only on the ARM 
processor unit of the Zynq-7000 chip, and finally, with special 
optimization for the programmable logic unit of the Zynq-7000 
architecture. The code of the system was synthesized in C 
language using the Vivado HLS program. The results showed 
that the performance of the algorithm executed on Zynq was 
close to the performance of a PC with a Core i7 processor, but 
the power consumption was only 1/7 of the PC [9]. 

In [10], an analysis of emotions and facial expressions was 
performed using different facial recognition methods. This 
study used OpenCV libraries, C++ language, and embedded 
Linux operating system on the Zedboard development board 
using the Zynq-7000 platform, and anger, happiness, and 
surprise expressions were classified with 97, 100, and 97% 
success rates, respectively, achieving a performance of 
approximately 4 to 5 fps. In [11], some image processing 
algorithms were implemented on the Zedboard development 
board using the Verilog hardware definition language, which 
was able to apply real-time filter operations at approximately 
40 fps on an image of 256×256 pixels taken with a webcam via 
USB [11]. In [12], an automatic license plate identification 
system was designed on the XC7Z020-1CLG484 development 
board with the Zynq-7000 platform. All system hardware was 
designed with high-level synthesis tools using 
MATLAB/Simulink and Xilinx System Generator 
development environment, the most efficient among the 
implemented applications was determined, whereas all three 
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methods were more than 90% successful. In [13], the Sobel 
edge detection filter was applied in real-time on the Zynq-7000 
architecture Zedboard using the Vivado HLS tool. This study 
improved the Sobel filter algorithm to prevent delay in image 
transmission, making it work faster and achieving a maximum 
speed of 90.1 fps at 1080p, achieving 30% more performance 
and 75% less resource usage than previous designs. In [14], the 
Canny edge detection algorithm was implemented and 
optimized on Zedboard, using OpenCV libraries and high-level 
synthesis tools. This study also analyzed and compared the 
performance of the algorithms, stating that the improved 
algorithm was up to 3 times faster at the kernel level and up to 
7 times faster at the application level [14]. 

These studies show that the Vivado HLS can be used both 
as a high-level synthesis tool and to write the C code. This 
study aimed to go one step further by looking for a solution to 
the specified design complexity and to create a real-time image 
processing system using high-level languages. To reduce 
design complexity, instead of using hardware definition 
languages, hardware design was performed with 
Matlab/Simulink, which is a model-based design software, and 
high-level synthesis tools called HDL Coder, Embedder Coder, 
and Vision HDL Toolbox. The camera reference design and 
system software were created with Xilinx's Vivado Design 
Suite and SDK. In this system, the high-resolution image taken 
instantly from the camera is subjected to gray tone, edge 
detection, noise removal, and sharpening filters, and the 
processed image is transferred to the monitor without delay. 

II. HARDWARE SUBSTRUCTURE 

The proposed system used the Zedboard development 
board with Zynq-7000 architecture, the FMC-HDMI-CAM 
module produced by Avnet, and the Python 1300-C camera 
module, which is fully compatible with the system [15-16]. 
FMC stands for FPGA interconnect and defines a standard 
interface for FPGA cards that can operate at high speeds. Thus, 
a connection can be made between peripherals and FPGA 
cards easily, and all cards with this interface can be used [17]. 
The connection of the system with the computer is provided 
via UART and the system status can be monitored via the serial 
port. However, the system works independently and does not 
need a computer connection. With the help of buttons and 
switches on the Zedboard, the desired filter can be selected and 
other parameters can be adjusted. Figure 1 shows the general 
scheme of the system. 

 

 
Fig. 1.  General scheme of the proposed system. 

A. Zynq-7000 Architecture 

The Zedboard development board consists of a Zynq7000 
Z-7020 series SoC and peripherals [18]. Zynq-7000 is a Fully 
Programmable SoC architecture that includes a dual-core ARM 
Cortex-A9 processor and FPGA components on the same chip. 
This system has high-speed advanced expandable interface 
(AXI) buses to provide data transfer between the processor and 
the FPGA. Thus, it is possible to use these two units together 
without being independent of each other. In general, the Zynq-
700 AP SoC consists of a processor unit (PS-Processing 
System), a Programmable Logic (PL) unit corresponding to the 
FPGA system, and interconnections [19]. Figure 2 shows a 
simple principal diagram of the Zynq architecture. 

 

 
Fig. 2.  Simple principle diagram of the Zynq7000 architecture. 

B. System Design Flow 

After bringing together the hardware components of the 
system, a reference design that can take images from the 
camera should be realized. After the image is taken from the 
camera successfully, the filters to be used are designed and 
simulated in the Matlab/Simulink environment, and these 
filters are packaged as standard IP blocks with the HDL Coder 
tool. These IP blocks are integrated into the camera reference 
design, created by incorporating them into the Vivado 
environment. Finally, the system software was written in the 
Xilinx SDK environment the necessary drivers were included, 
and the system was given its final shape. 

High-Level Synthesis (HLS) is gaining popularity as an 
approach that allows designers to express design behaviors at 
high abstraction levels while ensuring continuous verification 
throughout the design cycle. Vivado HLS [10] and MATLAB 
HDL Coder [11] are examples of HLS tools. These are often 
used by digital designers and architects to create and 
implement algorithms for a variety of aerospace, 
communications, image processing, deep learning, and neural 
network applications. HLS technologies can help reduce code 
complexity by a factor of seven to ten. They enable the reuse of 
behavioral IP across projects and allow verification teams to 
apply high-abstraction-level modeling techniques, such as 
transaction-level modeling [12]. 

Furthermore, most modern chip systems include integrated 
processors. The coexistence of microprocessors, DSPs, 
memory, and custom logic on a single chip necessitates the 
inclusion of additional software or firmware in the design 
process. As a result, an automated HLS process enables 
designers and architects to experiment with multiple 
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algorithmic and implementation options to investigate various 
area, power, and performance tradeoffs from a shared 
functional specification. As a result of advancements in 
Register Transfer Level (RTL) synthesis techniques, industrial 
deployment of HLS tools has become increasingly feasible. 
Major semiconductor design houses, such as IBM [13], 
Motorola [14], Philips [15], and Siemens [16], have developed 
proprietary tools. Major Electronic Design Automation (EDA) 

suppliers have also begun to commercialize various HLS 
products. For example, Synopsys released the Behavioral 
Compiler tool [17] in 1995, which builds RTL 
implementations from behavioral Hardware Description 
Language (HDL) code and connects to downstream tools. 
Similar tools include Mentor Graphics' Catapult HLS [18] and 
Cadence's Stratus High-Level Synthesis [19]. Figure 3 depicts 
a typical flow for HLS in VLSI designs. 

 

Fig. 3.  System design flow based on Simulink /HDL coder. 

C. Camera Reference Design 

This study used the Avnet FMC-HDMI-CAM module to 
provide a connection to the camera via the high-speed FMC 
interface. The Python-1300c camera module, which is 
compatible with this module, was chosen as the image sensor. 
This module has the ON Semiconductors Python-1300 image 
sensor and can transfer images with a resolution of 1280×1024 
pixels at 210 fps [16]. Thus, the infrastructure necessary for a 
real-time system was created. This design aimed to convert the 
image into the AXI4-Stream data type by performing some 
operations on the raw image coming from the camera sensor 
and making it ready for further processing. In this way, the 
image frames taken from the camera could be transferred to the 
screen without any errors. After these processes were carried 
out, the IP blocks required for image processing were designed 
according to the camera reference design. To get the image 
from the camera correctly, the Xilinx Video and Image 
Processing Pack and the 3rd party IP blocks provided for the 
camera hardware were downloaded and included in the system. 
After the necessary procedures were completed, the synthesis 
and implementation phase was passed, the test software of the 
system was created, and the image was successfully projected 
onto the screen. Figure 4 shows the status of the camera 
reference design and the IP blocks used in the system. The 
camera image is first converted to the AXI4-Stream data type, 
and then the missing color components are reconstructed with 
the CFA IP block. The image is converted to a YCbCr format 
with the RGB to YUV block. Using the Chroma Resampler IP 
block, the image is reduced to a 16-bit format, over 24 bits, and 
the 1280×1024 pixel image is centered on the 1920×1080 pixel 

monitor with the On-Screen Display IP block. Then, the image 
is converted again to be transferred to the monitor using a 
connection to the monitor from the HDMI output on the FMC-
HDMI-CAM module. With the AXI VDMA IP block, data 
exchange was provided directly with the system memory, thus 
protecting the system from possible bottlenecks. Figure 5 
shows the created working image of the created camera 
reference system. 

 

 
Fig. 4.  Camera refrerence design. 

 
Fig. 5.  Corner detection system with Simulink /HDL coder. 
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D. Image Processor System 

After the camera reference design, the image processing 
filters were designed using the Xilinx and Mathworks tools. 
The system design was completely model-based in the 
Simulink environment, and after the simulations were made on 
Simulink, HDL code was automatically generated with HDL 
Coder, and these codes were converted into usable IP packages. 
In addition, the Embedder Coder, Simulink Coder, Matlab 
Coder, and Vision HDL Toolbox and their additional packages 
for Zynq were installed in Matlab 2022 and Vivado 2020.2 to 
be used in the design of the system. The system running on 
Simulink is a kind of serial interface called a streaming pixel 
interface. In this method, pixels are transferred serially, and 
data transfer takes place over two kinds of signals, namely, data 
and control. This interface is fully compatible with the AXI4-
Stream and ensures that the designed IP blocks work in full 
compliance with the camera reference system. 

III. DESIGN AND SIMULATION OF THE SYSTEM IN 
SIMULINK ENVIRONMENT 

Four filters were individually designed with HDL Toolbox 
blocks and combined into two IP blocks. In this way, without 
increasing design complexity all filters could be activated at the 
same time. 

A. Harris Object Corner Detector 

Corners are portions of a picture with a significant change 
in intensity and resistance to picture distortions. Based on the 
light intensity of the pixels, Harris points are generated to 
correlate to wedges. A detector based on the autocorrelation 
expression of the intensity fluctuations listed below is 
suggested: 

���, �� = ∑ 	�
, ����,� . � �����, �� ������, ��������, �� �����, �� �  

with Ix and Iy being the local derivatives in x and y, and w(u, v) 
is a weighting on the window (u, v). The study of the 
eigenvalues of the matrix M makes it possible to determine 
whether a point is a corner, a homogeneous region, or an 
outline. A final criterion is calculated from M, allowing 
deciding on the type of point found. 

B. Grayscale Converter 

Vision HDL was used to design a grayscale conversion 
filter operation. Accordingly, all three color values were fixed. 
The gray tone values were obtained by multiplying with the 
coefficients [3]. The YUV format and its most commonly used 
encoding were used, following the ITU rec.601 standard. 

IV. DESIGN SYNTHESIS AND RESULTS 

After completing the designs on Simulink, each filter 
system was separately converted to HDL code. This process 
was carried out using the Matlab/Simulink HDL Coder and the 
HDL workflow advisor. They necessary settings were made 
during the conversion process. After this stage, the IP block in 
the Vivado Suite Camera reference was attached to the design 
with the IP integrating system. The filter systems were 
implemented sequentially on the Zedboard. In later studies, the 
system will be less on-chip for space coverage and 

simplification of the software. Accordingly, the grayscale 
conversion and edge detection systems were combined into a 
single IP block. The median and sharpening filters formed the 
second IP block. Necessary interconnections were made again 
and the system was synthesized again. 

A. Simulation Results 

The produced VHDL RTL code was simulated using a non-
synthesizable test bench and the Vivado xSim program. The 
reference pixel values are equal to the pixel output from the 
suggested approach. They were also found to be identical to 
high-level simulation results obtained with MATLAB on the 
optimum bit-width model. This was proven by comparing the 
output photos from both paths with the same input image. This 
study also compared the quantization error produced by the 
choice of the lowered optimal signal widths with the double 
precision model running in MATLAB. This was achieved with 
the FPGA in the loop simulation feature of the MathWorks 
HDL Verifier [20]. 

B. Synthesis Results 

Table I shows the resource usage. As can be seen, at most, 
35% of the available resources were used. It should also be 
noted that no optimization work was carried out here. In the 
system, the main clock speed was determined at 148.50 MHz, 
and the pixel clock speed, at which the camera and image 
processing blocks work, was determined at 108 MHz. 
Although EYH represents the screen refresh rate in the 
formula, the total horizontal pixels and total vertical pixel 
values consist of the sum of active pixels, gap pixels, and 
synchronization pixels. 

TABLE I.  PROPOSED HARRIS CORNER DETECTOR 
IMPLEMENTATION RESULTS  

Resource Utilization Available 
Utilization 

percentage 

Look Up Table (LUT) 5917 53,200 11.12% 
LUT RAM 506 17,400 2.91% 
Flip-Flops 10,981 106,400 10.32% 

BRAM 37 140 26.79% 
DSP 21 220 9.55% 
IOs 102 200 51% 

BUFG 1 32 3.13% 
 

Accordingly, it was determined that the image processing 
system can operate at 1280×1024 at 60 Hz refresh time and, 
thus, can process 60 fps. This shows that the system is in real-
time operating conditions. 

C. Implementation of the System Software 

The software was designed following the hardware. The 
design was carried out in C using the SDK tool in Vivado 
Suite. In addition to the processes used in the software, such as 
the preparation and execution of IP blocks, the setting of input-
output units and filter parameters were also adjusted. In the 
developed system, filters can be changed during operation and 
more than one filter can be active at the same time. The system 
is controlled with the buttons and switches of the Zedboard. 
The active status of the filters can also be monitored from the 
LEDs on the Zedboard. Using multiplexer logic, the system is 
designed so that the relevant filter is selected according to the 
status of the switches on the Zedboard. Among the Zeboard 
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keys, the system activates the relevant filter according to the 
status of the keys, with DS0 being the lowest-value bit and 
DS7 being the highest-value bit. 

V. CONCLUSION 

This study designed and implemented a real-time image 
processing system on the Zedboard development board. Due to 
the high processing power requirement of such systems, the 
Zynq architecture was chosen, and both hardware and software 
were designed. Hardware was designed using Vivado Suite and 
related tools developed by Xilinx for Zynq, while model-based 
development tools, such as HDL Coder and Vision HDL 
Toolbox developed by Mathworks, were used in the design of 
the image processing system. In this way, there was no need to 
write HDL code manually and the design time was shortened. 
A system that can operate at 60 Hz with a resolution of 
1280×1024 pixels was developed on the Zedboard 
development board. Sobel edge detection, median filter, gray 
tone converter, and sharpening filter designs were applied, 
which can be controlled from the input and output units of the 
board. The designed system can meet needs and fulfill real-
time working conditions. However, although resource usage is 
not very high, it can decrease further with optimizations in the 
HDL Coder tool. The proposed design was completely 
reusable, and it is possible to reuse IP blocks or the entire 
system designed in future studies and different systems. Future 
studies can investigate more advanced real-time object 
recognition and tracking applications using the proposed 
system as a preprocessing unit. 

Hardware acceleration of corner edge detection for 
1920×1080 images was implemented in a Xilinx Zynq-7000 
SoC hardware platform. Simulation and synthesis results were 
obtained using Vivado 2020.2. Future research will focus on 
enhancing the performance metrics of speed, area, and power 
consumption using optimization techniques provided by 
prominent high-level synthesis tool providers, including 
MathWorks, Xilinx, Mentor, and Cadence, in conjunction with 
the proposed implementation approach. Furthermore, there are 
plans to expand the scope of this study to include ASIC designs 
in future research endeavors. 
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