
Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12169-12174 12169

www.etasr.com Ghodhbani et al.: Real Time FPGA Implementation of an Efficient High Speed Harris Corner …

Real Time FPGA Implementation of an
Efficient High Speed Harris Corner Detection
Algorithm Based on High-Level Synthesis

Refka Ghodhbani

Department of Computer Science, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia | Laboratory of Electronics and Microelectronics (EμE), Faculty of
Sciences, Monastir University, Tunisia
refka.ghodhbani@nbu.edu.sa (corresponding author)

Taoufik Saidani

Department of Computer Science, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia | Laboratory of Electronics and Microelectronics (EμE), Faculty of
Sciences, Monastir University, Tunisia
taoufik.saidan@nbu.edu.sa

Ahmed Alhomoud

Department of Computer Science, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia
aalhomoud@nbu.edu.sa

Ahmad Alshammari

Department of Computer Science, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia
ahmad.almkhaidsh@nbu.edu.sa

Rabie Ahmed

Department of Computer Science, Faculty of Computing and Information Technology, Northern Border
University, Rafha, Saudi Arabia | Department of Mathematics and Computer Science, Faculty of Science,
Beni-Suef University, Egypt
rabie.ahmed@nbu.edu.sa

Received: 16 September 2023 | Revised: 9 October 2023 | Accepted: 17 October 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6306

ABSTRACT

Computer vision systems use corner detection to identify features in an image. In applications such as

motion detection, tracking, picture registration, and object recognition, corner detection is often one of the

initial steps. In this paper, a real-time image processing system based on Harris corner detection was

designed and implemented using Zynq architecture and model-based design tools. The system was based

on a development board containing the Zynq-7000 chip, which consists of a combination of FPGA and

microprocessor, and the image taken with a high-resolution camera was processed in real-time by applying

color conversion and Harris corner detection. The filter hardware designs used in the system were made

using the HDL Coder tool in Matlab/Simulink without writing HDL code. The hardware that receives

images from the camera was designed on a model-based basis with the Xilinx Vivado 2020. The HDL code

that was implemented on the Xilinx ZedBoard using Vivado software was then validated to ensure real-

time operation with the incoming video stream. The results achieved exhibited superiority compared to

prior implementations in terms of area efficiency (reduced number of gates on the target FPGA) and speed

performance on an identical target card. Using the rapid prototyping approach, two alternative hardware

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12169-12174 12170

www.etasr.com Ghodhbani et al.: Real Time FPGA Implementation of an Efficient High Speed Harris Corner …

accelerator designs were created using various high-level synthesis tools. This design used less than 50% of

the host FPGA's logic resources and was at least 30% faster than current implementations.

Keywords-rapid prototyping; automated hardware design; corner detection codesign; MBD; HDL coder;

Xilinx Zynq-7000

I. INTRODUCTION

Recognizing points of interest (or corners), such as
detecting contours, is a prerequisite for many computer vision
algorithms. In a picture, the places of interest correspond to
two discontinuities in the intensity function. These can be
created by reflectance function discontinuities or depth
discontinuities, such as contours. These include, for example,
corners, T-junctions, and spots with significant texture
differences. With changing needs and the development of
technology, the need for real-time image processing systems,
which are used in many fields today, rose. In real-time
embedded system designs, which are widely used in areas such
as driving support systems, autonomous vehicles, flight
control, security, and defense systems, it is a priority to
perform the desired work within a determined time frame
rather than quickly. For this reason, predictability features
along with time stability are indispensable conditions for real-
time systems [1]. In such real-time image processing systems,
intense processing power is needed as various filters and
feature extraction operations are required on the image.
Especially in systems requiring high resolutions, the necessity
of processing each pixel in the image frame separately and in a
very short time has rendered microprocessor-based classical
systems inadequate, and thus different solutions have emerged.
Among these, DSP, FPGA, or GPU-based systems, as well as
System on Chip (SoC), have become more and more common.
The DaVinci and OMAP series chips developed by Texas
Instruments are examples of Digital Signal Processor (DSP)
based systems, while the S32V34 series chips of NXP are
found in systems that integrate a processor, a GPU, and special
image processing units [2-4]. Such systems can provide real-
time operation as hardware accelerators using the advantages
of DSPs and coprocessors in signal processing. However, since
DSPs are fixed architectures, they address a relatively limited
area by being programmed with libraries and interfaces
supported by the manufacturer [5]. On the other hand, the use
of Field Programmable Gate Arrays (FPGA) in such embedded
systems has increased due to their more convenient structure
for parallel processing and low power consumption. In FPGA-
based systems, the hardware can be completely programmed in
the desired architecture and can be a DSP or a hardware block
created specifically for the system. In addition, new generation
architectures, such as Xilinx Zynq, have processors and
programmable logic blocks together, can be programmed with
C language just like DSPs, and even hardware design can be
made in model-based development environments such as
Matlab and Labview. For this reason, an FPGA-based system
was preferred in the proposed image processing system. As a
result of all these developments, systems that use
microprocessors and FPGA hardware together have been
shown the best performance in image processing systems [6].

Such solutions that use computer and FPGA hardware
together are not practical in embedded system designs because

they involve high power and space consumption. The Zynq
architecture, introduced by Xilinx in 2012, has closed a very
important gap in the embedded system market with its
microprocessor and FPGA hardware on the same chip. Due to
this SoC architecture, it is possible to realize both high speed
and low power and space consumption by implementing all of
the hardware and software on a single card. For this reason,
this study used the Zedboard development board with Zynq-
7000 architecture. However, designs made with Zynq may
require a long development process and a development team
consisting of different disciplines due to the complexity of the
hardware design and its different structure from classical
microprocessor systems [7].

In [6], the Canny Edge detection algorithm was applied in
real-time on the ZC702 development board using the Zynq
platform. The system was designed using Vivado HLS and its
internal video library and created a system that can run at 60
fps at 1080p resolution. In [8], a system was proposed to
recognize and classify traffic sign images, using 1920×1080
resolution images in real-time with an integrated camera
system placed on the Zedboard development board. The entire
project was built in six weeks using OpenCV libraries, thus
emphasizing the platform's ability to design quickly. This study
stated that it took approximately 5 seconds to classify a traffic
sign in the developed system [8]. In [9], optical flow
algorithms were optimized and comparisons were made on
different platforms. Accordingly, the same algorithm was
executed on a PC with a Core i7 processor, only on the ARM
processor unit of the Zynq-7000 chip, and finally, with special
optimization for the programmable logic unit of the Zynq-7000
architecture. The code of the system was synthesized in C
language using the Vivado HLS program. The results showed
that the performance of the algorithm executed on Zynq was
close to the performance of a PC with a Core i7 processor, but
the power consumption was only 1/7 of the PC [9].

In [10], an analysis of emotions and facial expressions was
performed using different facial recognition methods. This
study used OpenCV libraries, C++ language, and embedded
Linux operating system on the Zedboard development board
using the Zynq-7000 platform, and anger, happiness, and
surprise expressions were classified with 97, 100, and 97%
success rates, respectively, achieving a performance of
approximately 4 to 5 fps. In [11], some image processing
algorithms were implemented on the Zedboard development
board using the Verilog hardware definition language, which
was able to apply real-time filter operations at approximately
40 fps on an image of 256×256 pixels taken with a webcam via
USB [11]. In [12], an automatic license plate identification
system was designed on the XC7Z020-1CLG484 development
board with the Zynq-7000 platform. All system hardware was
designed with high-level synthesis tools using
MATLAB/Simulink and Xilinx System Generator
development environment, the most efficient among the
implemented applications was determined, whereas all three

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12169-12174 12171

www.etasr.com Ghodhbani et al.: Real Time FPGA Implementation of an Efficient High Speed Harris Corner …

methods were more than 90% successful. In [13], the Sobel
edge detection filter was applied in real-time on the Zynq-7000
architecture Zedboard using the Vivado HLS tool. This study
improved the Sobel filter algorithm to prevent delay in image
transmission, making it work faster and achieving a maximum
speed of 90.1 fps at 1080p, achieving 30% more performance
and 75% less resource usage than previous designs. In [14], the
Canny edge detection algorithm was implemented and
optimized on Zedboard, using OpenCV libraries and high-level
synthesis tools. This study also analyzed and compared the
performance of the algorithms, stating that the improved
algorithm was up to 3 times faster at the kernel level and up to
7 times faster at the application level [14].

These studies show that the Vivado HLS can be used both
as a high-level synthesis tool and to write the C code. This
study aimed to go one step further by looking for a solution to
the specified design complexity and to create a real-time image
processing system using high-level languages. To reduce
design complexity, instead of using hardware definition
languages, hardware design was performed with
Matlab/Simulink, which is a model-based design software, and
high-level synthesis tools called HDL Coder, Embedder Coder,
and Vision HDL Toolbox. The camera reference design and
system software were created with Xilinx's Vivado Design
Suite and SDK. In this system, the high-resolution image taken
instantly from the camera is subjected to gray tone, edge
detection, noise removal, and sharpening filters, and the
processed image is transferred to the monitor without delay.

II. HARDWARE SUBSTRUCTURE

The proposed system used the Zedboard development
board with Zynq-7000 architecture, the FMC-HDMI-CAM
module produced by Avnet, and the Python 1300-C camera
module, which is fully compatible with the system [15-16].
FMC stands for FPGA interconnect and defines a standard
interface for FPGA cards that can operate at high speeds. Thus,
a connection can be made between peripherals and FPGA
cards easily, and all cards with this interface can be used [17].
The connection of the system with the computer is provided
via UART and the system status can be monitored via the serial
port. However, the system works independently and does not
need a computer connection. With the help of buttons and
switches on the Zedboard, the desired filter can be selected and
other parameters can be adjusted. Figure 1 shows the general
scheme of the system.

Fig. 1. General scheme of the proposed system.

A. Zynq-7000 Architecture

The Zedboard development board consists of a Zynq7000
Z-7020 series SoC and peripherals [18]. Zynq-7000 is a Fully
Programmable SoC architecture that includes a dual-core ARM
Cortex-A9 processor and FPGA components on the same chip.
This system has high-speed advanced expandable interface
(AXI) buses to provide data transfer between the processor and
the FPGA. Thus, it is possible to use these two units together
without being independent of each other. In general, the Zynq-
700 AP SoC consists of a processor unit (PS-Processing
System), a Programmable Logic (PL) unit corresponding to the
FPGA system, and interconnections [19]. Figure 2 shows a
simple principal diagram of the Zynq architecture.

Fig. 2. Simple principle diagram of the Zynq7000 architecture.

B. System Design Flow

After bringing together the hardware components of the
system, a reference design that can take images from the
camera should be realized. After the image is taken from the
camera successfully, the filters to be used are designed and
simulated in the Matlab/Simulink environment, and these
filters are packaged as standard IP blocks with the HDL Coder
tool. These IP blocks are integrated into the camera reference
design, created by incorporating them into the Vivado
environment. Finally, the system software was written in the
Xilinx SDK environment the necessary drivers were included,
and the system was given its final shape.

High-Level Synthesis (HLS) is gaining popularity as an
approach that allows designers to express design behaviors at
high abstraction levels while ensuring continuous verification
throughout the design cycle. Vivado HLS [10] and MATLAB
HDL Coder [11] are examples of HLS tools. These are often
used by digital designers and architects to create and
implement algorithms for a variety of aerospace,
communications, image processing, deep learning, and neural
network applications. HLS technologies can help reduce code
complexity by a factor of seven to ten. They enable the reuse of
behavioral IP across projects and allow verification teams to
apply high-abstraction-level modeling techniques, such as
transaction-level modeling [12].

Furthermore, most modern chip systems include integrated
processors. The coexistence of microprocessors, DSPs,
memory, and custom logic on a single chip necessitates the
inclusion of additional software or firmware in the design
process. As a result, an automated HLS process enables
designers and architects to experiment with multiple

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12169-12174 12172

www.etasr.com Ghodhbani et al.: Real Time FPGA Implementation of an Efficient High Speed Harris Corner …

algorithmic and implementation options to investigate various
area, power, and performance tradeoffs from a shared
functional specification. As a result of advancements in
Register Transfer Level (RTL) synthesis techniques, industrial
deployment of HLS tools has become increasingly feasible.
Major semiconductor design houses, such as IBM [13],
Motorola [14], Philips [15], and Siemens [16], have developed
proprietary tools. Major Electronic Design Automation (EDA)

suppliers have also begun to commercialize various HLS
products. For example, Synopsys released the Behavioral
Compiler tool [17] in 1995, which builds RTL
implementations from behavioral Hardware Description
Language (HDL) code and connects to downstream tools.
Similar tools include Mentor Graphics' Catapult HLS [18] and
Cadence's Stratus High-Level Synthesis [19]. Figure 3 depicts
a typical flow for HLS in VLSI designs.

Fig. 3. System design flow based on Simulink /HDL coder.

C. Camera Reference Design

This study used the Avnet FMC-HDMI-CAM module to
provide a connection to the camera via the high-speed FMC
interface. The Python-1300c camera module, which is
compatible with this module, was chosen as the image sensor.
This module has the ON Semiconductors Python-1300 image
sensor and can transfer images with a resolution of 1280×1024
pixels at 210 fps [16]. Thus, the infrastructure necessary for a
real-time system was created. This design aimed to convert the
image into the AXI4-Stream data type by performing some
operations on the raw image coming from the camera sensor
and making it ready for further processing. In this way, the
image frames taken from the camera could be transferred to the
screen without any errors. After these processes were carried
out, the IP blocks required for image processing were designed
according to the camera reference design. To get the image
from the camera correctly, the Xilinx Video and Image
Processing Pack and the 3rd party IP blocks provided for the
camera hardware were downloaded and included in the system.
After the necessary procedures were completed, the synthesis
and implementation phase was passed, the test software of the
system was created, and the image was successfully projected
onto the screen. Figure 4 shows the status of the camera
reference design and the IP blocks used in the system. The
camera image is first converted to the AXI4-Stream data type,
and then the missing color components are reconstructed with
the CFA IP block. The image is converted to a YCbCr format
with the RGB to YUV block. Using the Chroma Resampler IP
block, the image is reduced to a 16-bit format, over 24 bits, and
the 1280×1024 pixel image is centered on the 1920×1080 pixel

monitor with the On-Screen Display IP block. Then, the image
is converted again to be transferred to the monitor using a
connection to the monitor from the HDMI output on the FMC-
HDMI-CAM module. With the AXI VDMA IP block, data
exchange was provided directly with the system memory, thus
protecting the system from possible bottlenecks. Figure 5
shows the created working image of the created camera
reference system.

Fig. 4. Camera refrerence design.

Fig. 5. Corner detection system with Simulink /HDL coder.

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12169-12174 12173

www.etasr.com Ghodhbani et al.: Real Time FPGA Implementation of an Efficient High Speed Harris Corner …

D. Image Processor System

After the camera reference design, the image processing
filters were designed using the Xilinx and Mathworks tools.
The system design was completely model-based in the
Simulink environment, and after the simulations were made on
Simulink, HDL code was automatically generated with HDL
Coder, and these codes were converted into usable IP packages.
In addition, the Embedder Coder, Simulink Coder, Matlab
Coder, and Vision HDL Toolbox and their additional packages
for Zynq were installed in Matlab 2022 and Vivado 2020.2 to
be used in the design of the system. The system running on
Simulink is a kind of serial interface called a streaming pixel
interface. In this method, pixels are transferred serially, and
data transfer takes place over two kinds of signals, namely, data
and control. This interface is fully compatible with the AXI4-
Stream and ensures that the designed IP blocks work in full
compliance with the camera reference system.

III. DESIGN AND SIMULATION OF THE SYSTEM IN
SIMULINK ENVIRONMENT

Four filters were individually designed with HDL Toolbox
blocks and combined into two IP blocks. In this way, without
increasing design complexity all filters could be activated at the
same time.

A. Harris Object Corner Detector

Corners are portions of a picture with a significant change
in intensity and resistance to picture distortions. Based on the
light intensity of the pixels, Harris points are generated to
correlate to wedges. A detector based on the autocorrelation
expression of the intensity fluctuations listed below is
suggested:

���, �� = ∑ 	�
, ����,� . � �����, �� ������, ��������, �� �����, �� �

with Ix and Iy being the local derivatives in x and y, and w(u, v)
is a weighting on the window (u, v). The study of the
eigenvalues of the matrix M makes it possible to determine
whether a point is a corner, a homogeneous region, or an
outline. A final criterion is calculated from M, allowing
deciding on the type of point found.

B. Grayscale Converter

Vision HDL was used to design a grayscale conversion
filter operation. Accordingly, all three color values were fixed.
The gray tone values were obtained by multiplying with the
coefficients [3]. The YUV format and its most commonly used
encoding were used, following the ITU rec.601 standard.

IV. DESIGN SYNTHESIS AND RESULTS

After completing the designs on Simulink, each filter
system was separately converted to HDL code. This process
was carried out using the Matlab/Simulink HDL Coder and the
HDL workflow advisor. They necessary settings were made
during the conversion process. After this stage, the IP block in
the Vivado Suite Camera reference was attached to the design
with the IP integrating system. The filter systems were
implemented sequentially on the Zedboard. In later studies, the
system will be less on-chip for space coverage and

simplification of the software. Accordingly, the grayscale
conversion and edge detection systems were combined into a
single IP block. The median and sharpening filters formed the
second IP block. Necessary interconnections were made again
and the system was synthesized again.

A. Simulation Results

The produced VHDL RTL code was simulated using a non-
synthesizable test bench and the Vivado xSim program. The
reference pixel values are equal to the pixel output from the
suggested approach. They were also found to be identical to
high-level simulation results obtained with MATLAB on the
optimum bit-width model. This was proven by comparing the
output photos from both paths with the same input image. This
study also compared the quantization error produced by the
choice of the lowered optimal signal widths with the double
precision model running in MATLAB. This was achieved with
the FPGA in the loop simulation feature of the MathWorks
HDL Verifier [20].

B. Synthesis Results

Table I shows the resource usage. As can be seen, at most,
35% of the available resources were used. It should also be
noted that no optimization work was carried out here. In the
system, the main clock speed was determined at 148.50 MHz,
and the pixel clock speed, at which the camera and image
processing blocks work, was determined at 108 MHz.
Although EYH represents the screen refresh rate in the
formula, the total horizontal pixels and total vertical pixel
values consist of the sum of active pixels, gap pixels, and
synchronization pixels.

TABLE I. PROPOSED HARRIS CORNER DETECTOR
IMPLEMENTATION RESULTS

Resource Utilization Available
Utilization

percentage

Look Up Table (LUT) 5917 53,200 11.12%
LUT RAM 506 17,400 2.91%
Flip-Flops 10,981 106,400 10.32%

BRAM 37 140 26.79%
DSP 21 220 9.55%
IOs 102 200 51%

BUFG 1 32 3.13%

Accordingly, it was determined that the image processing
system can operate at 1280×1024 at 60 Hz refresh time and,
thus, can process 60 fps. This shows that the system is in real-
time operating conditions.

C. Implementation of the System Software

The software was designed following the hardware. The
design was carried out in C using the SDK tool in Vivado
Suite. In addition to the processes used in the software, such as
the preparation and execution of IP blocks, the setting of input-
output units and filter parameters were also adjusted. In the
developed system, filters can be changed during operation and
more than one filter can be active at the same time. The system
is controlled with the buttons and switches of the Zedboard.
The active status of the filters can also be monitored from the
LEDs on the Zedboard. Using multiplexer logic, the system is
designed so that the relevant filter is selected according to the
status of the switches on the Zedboard. Among the Zeboard

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12169-12174 12174

www.etasr.com Ghodhbani et al.: Real Time FPGA Implementation of an Efficient High Speed Harris Corner …

keys, the system activates the relevant filter according to the
status of the keys, with DS0 being the lowest-value bit and
DS7 being the highest-value bit.

V. CONCLUSION

This study designed and implemented a real-time image
processing system on the Zedboard development board. Due to
the high processing power requirement of such systems, the
Zynq architecture was chosen, and both hardware and software
were designed. Hardware was designed using Vivado Suite and
related tools developed by Xilinx for Zynq, while model-based
development tools, such as HDL Coder and Vision HDL
Toolbox developed by Mathworks, were used in the design of
the image processing system. In this way, there was no need to
write HDL code manually and the design time was shortened.
A system that can operate at 60 Hz with a resolution of
1280×1024 pixels was developed on the Zedboard
development board. Sobel edge detection, median filter, gray
tone converter, and sharpening filter designs were applied,
which can be controlled from the input and output units of the
board. The designed system can meet needs and fulfill real-
time working conditions. However, although resource usage is
not very high, it can decrease further with optimizations in the
HDL Coder tool. The proposed design was completely
reusable, and it is possible to reuse IP blocks or the entire
system designed in future studies and different systems. Future
studies can investigate more advanced real-time object
recognition and tracking applications using the proposed
system as a preprocessing unit.

Hardware acceleration of corner edge detection for
1920×1080 images was implemented in a Xilinx Zynq-7000
SoC hardware platform. Simulation and synthesis results were
obtained using Vivado 2020.2. Future research will focus on
enhancing the performance metrics of speed, area, and power
consumption using optimization techniques provided by
prominent high-level synthesis tool providers, including
MathWorks, Xilinx, Mentor, and Cadence, in conjunction with
the proposed implementation approach. Furthermore, there are
plans to expand the scope of this study to include ASIC designs
in future research endeavors.

REFERENCES

[1] V. H. Schulz, F. G. Bombardelli, and E. Todt, "A Harris Corner Detector
Implementation in SoC-FPGA for Visual SLAM," in Robotics,
Uberlândia, Brazil, 2016, pp. 57–71, https://doi.org/10.1007/978-3-319-
47247-8_4.

[2] C. Cabani, "Implementation of an affine-invariant feature detector in
field-programmable gate arrays," MSc Thesis, University of Toronto,
Toronto, Canada, 2006.

[3] T. Saidani and R. Ghodhbani, "Hardware Acceleration of Video Edge
Detection with Hight Level Synthesis on the Xilinx Zynq Platform,"
Engineering, Technology & Applied Science Research, vol. 12, no. 1,
pp. 8007–8012, Feb. 2022, https://doi.org/10.48084/etasr.4615.

[4] S. Liu et al., "Real-time implementation of harris corner detection
system based on FPGA," in 2017 IEEE International Conference on
Real-time Computing and Robotics (RCAR), Okinawa, Japan, Jul. 2017,
pp. 339–343, https://doi.org/10.1109/RCAR.2017.8311884.

[5] C. Xu and Y. Bai, "Implementation Of Harris Corner Matching Based
On FPGA," presented at the 2017 6th International Conference on
Energy and Environmental Protection (ICEEP 2017), Jun. 2017, pp.
807–811, https://doi.org/10.2991/iceep-17.2017.141.

[6] T. L. Chao and K. H. Wong, "An efficient FPGA implementation of the
Harris corner feature detector," in 2015 14th IAPR International
Conference on Machine Vision Applications (MVA), Tokyo, Japan, Feb.
2015, pp. 89–93, https://doi.org/10.1109/MVA.2015.7153140.

[7] C. Y. Lee, H. J. Wang, C. M. Chen, C. C. Chuang, Y. C. Chang, and N.
S. Chou, "A Modified Harris Corner Detection for Breast IR Image,"
Mathematical Problems in Engineering, vol. 2014, Jul. 2014, Art. no.
e902659, https://doi.org/10.1155/2014/902659.

[8] H. Mestiri, I. Barraj, and M. Machhout, "AES High-Level SystemC
Modeling using Aspect Oriented Programming Approach," Engineering,
Technology & Applied Science Research, vol. 11, no. 1, pp. 6719–6723,
Feb. 2021, https://doi.org/10.48084/etasr.3971.

[9] S. S. Rafiammal, D. N. Jamal, and S. K. Mohideen, "Reconfigurable
Hardware Design for Automatic Epilepsy Seizure Detection using EEG
Signals," Engineering, Technology & Applied Science Research, vol. 10,
no. 3, pp. 5803–5807, Jun. 2020, https://doi.org/10.48084/etasr.3419.

[10] "Vivado Design Suite User Guide: High-Level Synthesis," Xilinx,
UG902 (v2018.3), 2018.

[11] "Mathworks HDL Coder." https://www.mathworks.com/products/hdl-
coder.html.

[12] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
"High-Level Synthesis for FPGAs: From Prototyping to Deployment,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, Apr. 2011, https://doi.org/
10.1109/TCAD.2011.2110592.

[13] R. A. Bergamaschi et al., "High-level synthesis in an industrial
environment," IBM Journal of Research and Development, vol. 39, no.
1.2, pp. 131–148, Jan. 1995, https://doi.org/10.1147/rd.391.0131.

[14] K. Kucukcakar, C. T. Chen, J. Gong, W. Philipsen, and T. E. Tkacik,
"Matisse: an architectural design tool for commodity ICs," IEEE Design
& Test of Computers, vol. 15, no. 2, pp. 22–33, Apr. 1998,
https://doi.org/10.1109/54.679205.

[15] P. E. R. Lippens et al., "PHIDEO: a silicon compiler for high speed
algorithms," in Proceedings of the European Conference on Design
Automation, Amsterdam, Netherlands, Oct. 1991, pp. 436–441,
https://doi.org/10.1109/EDAC.1991.206442.

[16] J. Biesenack et al., "The Siemens high-level synthesis system
CALLAS," IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 1, no. 3, pp. 244–253, Sep. 1993, https://doi.org/10.1109/
92.238438.

[17] D. W. Knapp, Behavioral Synthesis: Digital System Design Using the
Synopsys Behavioral Compiler. Englewood Cliffs, NJ, USA: Prentice
Hall PTR, 1996.

[18] "Catapult High-Level Synthesis & Verification | Siemens Software."
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/.

[19] "Stratus High-Level Synthesis." https://www.cadence.com/en_US/
home/tools/digital-design-and-signoff/synthesis/stratus-high-level-
synthesis.html.

[20] "Mathworks HDL Verifier." https://www.mathworks.com/products/hdl-
verifier.html.

