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ABSTRACT 

This paper investigates the performance of one of the latest metaheuristic swarm-based approaches called 

Slime Mould Algorithm (SMA). SMA is used here to solve the static bi-objective constrained Economic 

Emission Dispatch (EED) problem in the presence of renewable energy sources while considering the 

Valve-Point Effects (VPE). The SMA approach is applied to indicate the adequate optimal solutions for 

operating the committed thermal units under different operational constraints. The sought optimal 

solutions are the midpoint between cost saving and pollutant gas emission reduction. This study also 

examines the influence of integrating renewable energy sources (wind and solar) into the conventional 

power production network. SMA technique is applied on 3- and 6-unit IEEE test systems in several case 

studies. The simulation numerical results indicate that SMA has a high efficiency and a better performance 

compared to known state-of-the-art algorithms. The proposed approach was programmed and simulated 

in MATLAB. 

Keywords-economic emission dispatch; renewable energy sources; slime mould algorithm; valve-point effects 

I. INTRODUCTION  

For fuel-based power systems, the Economic Dispatch (ED) 
remains a major optimization problem that can be tackled by 
tracking the electrical consumption which helps anticipate the 
required power production that should be satisfied with existing 
operating production units while preserving the minimum 
possible cost. This task aims at finding the adequate to-be-
produced power per operating generator that meets the power 
demand and operational constraints. Traditionally, an ED 

problem is formulated to seek for the optimum fuel cost 
regardless of the pollutant gas emitted in the air by thermal 
units. But due to the high consciousness of environmental 
protection, the harmful produced emissions lead to the 
formulation of the bi-objective Emission Economic Dispatch 
(EED) problem in which fuel cost and pollutant emissions are 
considered simultaneously to be optimized whereas these two 
objectives are incompatible in a way that any decrease in the 
emissions tends to increase fuel costs and vice-versa [1], so, 
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optimization tools tend to find the proper allocation of 
generating units in order to acquire the best compromise 
between reducing the quantity of emission and cost in the same 
time. On the other hand, studies have revealed that the 
integration of renewable energy into the conventional power 
production system plays a significant role in the reduction of 
both fuel cost and pollutant emissions due to its cheaper 
production cost and lower environmental impact. Nevertheless, 
renewable energy sources present some disadvantages such as 
their intermittent nature [2]. 

Nowadays, several meta-heuristic algorithms have been 
utilized in a wide range of engineering problems. Such 
techniques are usually inspired from real-life aspects such as 
physical, biological, or environmental processes [3]. Some of 
the meta-heuristic techniques have been used to solve EED 
problems. In [4], the EED with Valve Point Effect (VPE) 
consideration was solved using the genetic algorithm. Particle 
swarm optimization was applied in [5] to solve the EED 
problem in the presence of wind power. Grey wolf optimizer 
was applied in [6] to the EED with the integration of a wind 
farm. The bi-objective problem was solved in [7] with the use 
of cuckoo search. Teaching learning based optimization was 
developed in [8] to solve the EED taking VPE into account. 
These methods yield high-quality solutions for the EED 
problem with non-linear and non-convex cost functions by 
reaching global or near-global optimal solutions [9]. Among 
the numerous existing meta-heuristic optimization approaches, 
in this work we propose adapting and evaluating a swarm-
based approach to the EED problem in the presence of the most 
popular renewable energy sources, solar and wind. The Slime 
Mould Algorithm (SMA), initially introduced in 2020 [10], is 
inspired by a natural behavior based on the phenomenon of 
slime oscillation.  

II. ENVIRONMENTAL ECONOMIC DISPATCH WITH 
WIND AND SOLAR PENETRATION 

The EED problem is defined as a constrained multi-
objective optimization problem that aims to minimize 
simultaneously the total power cost and the emissions of 
pollutant gases while satisfying the power balance and 
operational constraints.  

A. Objective Functions 

1) Cost Function 

One of the bi-objectives of the EED problem is to minimize 
the total fuel generation cost which can be formulated as 
follows: 

1

Minimize( ( ))
GN

T Gi
i

F C P


                (1) 

where FT is the total generation cost function in $/h. ( )GiC P is 

the cost of the  ��� generation unit, GiP is the real output power 

of the ��� generation unit, and  �  is the number of committed 
generation units. 

For conventional economic dispatch problem, the fuel cost 
function of the thermal generation unit is approximated by a 
smooth quadratic function as follows: 

2( )Gi i i Gi i GiC P a b P c P      (2) 

where �� , �� , and �� , are the cost coefficients of the ��� 
generation unit. 

However, in reality, a multiple steam valves exist in large 
turbines whose role is to maintain the power balance in fuel 
generation units. These valves open and close with the 
objective of reaching a certain load. Due to this practice, a non-
convexity appears in fuel cost function, called valve-point 
loading. This non-convexity is modelled as [11]: 

2 min( ) sin ( )Gi i i Gi i Gi i i Gi GiC P a b P c P d e P P        (3) 

where 	� and 
� are the valve-point coefficients of the fuel cost 
for the ��� generating unit. 

2) Emission Function 

The other objective of EED problem is to minimize the 
production of atmospheric emissions such as SOx, NOx, and 
CO2 caused by the operation of fossil fuel power units. Among 
the various harmful gases emitted by each generation unit, 
NOx is particularly considered in this study due to its 
globally-recognized high risk. The emission function is a 
quadratic function which is described as [12]: 

1

Minimize( ( ))
GN

T NOx Gi
i

E E P


    (4) 

where: 

2( )NOx Gi i i Gi i GiE P P P        (5) 

where ET is the total emission function measured in kg/h, 

NOxE  is the NOx emission of the ��� generating unit, i , i  

and i  are the NOx emission coefficients of the ��� 

generating unit. 

3) Total Objective Function 

The above non-linear combined EED represents a bi-
objective optimization problem that could be converted into a 
single-objective function by the use of the price penalty factor. 
The weighted objective function is represented as follows: 

( ) (1 ) ( )T Gi T GiFO F P h E P      (6) 

where ω is the weight factor in a range [0, 1] and h is the price 
penalty factor. h is the ratio between the maximum fuel cost 
and the maximum emissions of the corresponding generator: 

max

max

( )

( )

Gi
i

NOx Gi

C P
h

E P
     (7) 

B. Wind and Solar Power Modeling 

Environmental concerns surrounding the operation of fuel-
based production power systems comprise the contribution to 
the global warming, the exhaustion of fossil fuels, and the 
emission of different forms of harmful gazes in the air. These 
concerns provide the stimulus to increase the utilization of 
renewable energy sources for its numerous advantages. In our 
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study we choose to deploy the two most popular green energy 
sources, solar and wind power. 

1) Solar Power 

Solar power has an intermittent form due to its dependency 
on two climate parameters which are solar radiation and 
temperature. Thereby the simplified model that allows 
predicting the maximum power provided by a solar panel is 
written in terms of climate parameters [13]: 

1 2[1 ( )]s c j jrefP k E K T T      (8) 

where
cE  is solar radiation, Tj is the cell junction temperature, 

jrefT  is the reference temperature of the panel at 25°C, kl 

represents the dispersion characteristic of the panels where the 
value for one panel with a range of [0.095, 0.105], and the 

parameter 2 0.47% /K C   is the drift in panels temperature. 

This mathematical model is improved with the addition of a 
third parameter: 

1 2 3[1 ( )]( )s j jref cP K K T T K E      (9) 

2) Wind Power 

Wind power is a clean and cheap renewable energy 
resource. However, the stochastic availability of the wind poses 
challenges in terms of operation and control that is why wind 
turbines should be built with mechanical adjustment to develop 
minimal power from a minimal wind speed in a way to avoid 
mechanical overload. The maximum wind power provided by a 
wind turbine can be predicted by [2]: 

3 31
10

2
w pP C Av      (10) 

where A is the traversed area by the wind (m²), is the air 

density (1.225kg/m�), v  is the wind speed (m/s), and C  is the 
efficiency factor which depends on the wind speed and the 
architecture of the system. 

C. Constraints 

The objective function is minimized under the operational 
following constraints. 

1) Power Balance Constraint 

The total generation power must satisfy the demand and the 
transmission losses. 

1

0
GN

Gi D L
i

P P P


       (11) 

where ��  and ��  are respectively the power demand and the 
transmission lines power losses in MW.  

In the presence of renewable energy power the power 
balance constraint would be updated to the following form: 

1

0
GN

Gi D L Ren
i

P P P P


       (12) 

where ���� is the total renewable energy power in MW. 

The system power loss is approximated by the use of the 
following relation: 

0 00

1 1

G G GN N N

L Gi ij i Gi
i j i

P P B B P B
 

      (13) 

where � and �� are the loss coefficients matrix and ��� is the 
loss coefficient constant. 

III. SLIME MOULD ALGORITHM 

Slime moulds have fascinated scientists with their ability to 
navigate by finding the quickest way that lead to their target, 
which is the source of food. Although they are brainless 
creatures, they manage to build an intelligent network that is 
able to calculate the best trajectory. Slime moulds exhibit 
swarm intelligence. In the Slime Mould Algorithm (SMA) 
[10], slimes’ movements are imitated in order to obtain a 
problem’s optimal solution. 

A. Mathematical Model 

The mathematical modelling of SMA [10] is based on three 
phases of the slime moulds movement which are: approach, 
wrap, and grabble food. 

1) Approach Food 

Slime moulds approach food according to its odor in the air. 
The equation that imitates the contraction mode is: 

( ) .( . ( ) ( ),
( 1)

. ( ),

b A BX t vb W X t X t r p
X t

vc X t r p

   
  



������ ��� ��� ������� �������

���������

��� �����
 (15) 

where X
���

represents the slime mould location, t refers to the 

current iteration, bX
����

 represents the best individual location 

currently found, i.e. the position with the highest odour 

concentration, AX
����

 and BX
����

 are two individuals randomly 

selected from the swarm, vc
���

 is a parameter that decreases 

linearly from 1 to 0, vb
���

 is a parameter in the range of [-a, a], 
where a and is calculated by: 

arctanh(-( ) 1)
max_

t
a

t
     (16) 

The formula of p is: 

( )
1 .log( 1),condition

( ( ))
( )

1 .log( 1),others

bF S i
r

bF wF
W SmellIndex i

bF S i
r

bF wF

    
  

 

��������������������

 (17) 

) (SmellIndex sort S     (18) 

where condition indicates that ( )S i ranks the first half of the 

population, r denotes a random value in the interval [0, 1], and 

bF and wF signify the optimal and the worst fitness obtained 
in the current iteration respectively. SmellIndex is the sorted 
sequence of fitness values. 

2) Wrap Food 
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The mathematical model for updating the slime mould 
location is: 

*

.( ) ,

( ) .( . ( ) ( )),

. ( ),

b A B

rand UB LB LB rand z

X X t vb W X t X t r p

vc X t r p

  


   




����
������ ��� ������� �������

��������

 (19) 

where LB and UB are the lower and the upper boundaries of the 
search agents respectively, rand and r denote random values in 
[0, 1], and z  is a parameter within [0, 0.1]. 

3) Grabble Food 

This phase mimics the propagation wave produced by the 
biological oscillator of slime moulds that changes the 
cytoplasmic flow in their veins in order to get better food 

sources. vb
���

, vc
���

, and W
���

 are used to simulate the variations of 

the venous width of the slime moulds. vb
���

is a vector of random 
values between [-a, a] that approaches zero as the repartitions 

progress, vc
���

values oscillate in the range [-1, 1], and tend 

eventually to zero. W
���

mathematically simulates the oscillation 
frequency of a slime mould based on the food concentration. 

B. SMA Pseudo-Code 

The general procedure of SMA algorithm is described as 
follows [10]: 

 Initialize the parameters population size, dim, LB ,UB, z 
and max_ t . 

 Initialize the set of random slime mould positions. 

 While ( max_t t ) 

Calculate and sort the fitness of all slime moulds. 

Update bF , wF and
bX . 

Calculate W using (17). 

For each search agent update p , vb , vc . 

Update positions of search agents using (19). 

End For. 

End While. 

 Return bF and
bX . 

SMA is adapted to our problem in order to search for the 
best compromise solution between reducing cost and 
emissions. The parameter dim represents the dimension of the 
problem, in the EED problem denotes the number of generating 
units of the network. The fitness function is the objective 
function of the EED problem. LB and UB are the limits of each 
generation unit. The parameter z is set to 0.03. 

IV. RESULTS AND DISCUSSIONS 

In order to prove the effectiveness of SMA we present the 
simulation results of applying the proposed algorithm on the 
IEEE 9-bus and 30-bus systems, under different scenarios. The 

cost and NOx coefficients for the IEEE 9-bus and 30-bus 
systems are taken from [14, 15]. Simulations were programmed 
using MATLAB and were carried out for the three following 
case studies: 

 Case study 1: EED problem without VPE consideration. 

 Case study 2: EED problem with VPE consideration. 

 Case study 3: EED with VPE consideration in the presence 
of renewable energy. 

We note that in all the studied cases, the transmissions lines 
power losses are taken into consideration and calculated with 
the use of (13) where the loss coefficients matrix of the IEEE 
9-bus and 30-bus systems are given in (20) and (21). 

0

00

0.00003 0 0

0 0.00009 0

0 0 0.00012

[0 0 0]

0

ij

i

B

B
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 
   
  





  (20) 

0.000218 0.000103 0.000009 0.00001 0.000002 0.000027

0.000103 0.000181 0.000004 0.000015 0.000002 0.00003

0.000009 0.000004 0.000417 0.000131 0.000153 0.000107
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ijB





  

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 0

50

0.000002 0.000002 0.000153 0.000094 0.000243 0.000001

0.000027 0.00003 0.000107 0.000050 0.000001 0.000358

0.000003 0.000021 0.000056 0.000034 0.000015 0.000078

00 0.000014

B

B

 
 
 
 
 
 
   
   
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

(21) 

A. Case Study 1 

1) 9-Bus System 

In this case study the SMA was applied to solve the bi-
objective EED problem without VPE consideration. The power 
demand to be satisfied by the 3 generating units is 850MW. In 
order to find the best compromise that provides the minimum 
cost and the minimum emissions in the same time, the SMA 
program was run several times for all the possible values of 
weight factor in the range of [0, 1] with a step of 0.1. The 
simulations results are compared to NSGA II [16] and CSA 
[17] and are represented in Table I.  

TABLE I.  IEEE 9-BUS RESULTS COMPARISON FOR CASE 
STUDY 1 

Unit 
Method 

NSGAII CSA SMA 

���(MW) 470.9502 470.9570 448.2615 

���(MW) 280.7243 280.6630 350.9556 

���(MW) 113.6211 113.6750 111.7446 

��(MW) 15.2950 15.2940 15.9507 
Cost ($) 8149.7220 8349.7200 8346.7192 

NOx emission (kg/h) 0.09654 0.09654 0.0894 

Convergence time (s) - 0.09 14.851 

 

The convergence curve of the SMA for this case study is 
presented in Figure 1. We notice that SMA provides lower cost 
than NSGA II and CSA with a profit of 0.035%. Furthermore, 
SMA yields a better solution of NOx emissions with an 
important profit of 7%.   
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Fig. 1.  IEEE 9-bus SMA simulation results for case study 1. 

2) 30-Bus System 

For this case study ,the total fuel cost and the emission 
index are simultaneously optimized. SMA was run for the 
following values of weight factor: 0, 0.25, 0.5, 0.75, and 1. The 
population size was chosen as 1000 generations, and the 
iteration number as 500. The performance of SMA is compared 
to the metaheuristic method HSABC [18]. Table II gives the 
comparison results of the two previously mentioned approaches 
for the different weight factor values for a power demand of 
283.4 MW. The convergence curves for each value of weight 
factor are presented in Figures 2-6. As we can notice from 
Table II, the performance of SMA in reducing cost and 
emissions comparing to HSABC is noticeable. For instance, the 
profit in cost and NOx emissions for ω=0 is 16% and 39% 
respectively. 

TABLE II.  IEEE 30-BUS RESULTS COMPARISON FOR CASE STUDY 1 

Weight factor � =   � =  . "# � =  . # � =  . $# � = % 

Method HSABC SMA HSABC SMA HSABC SMA HSABC SMA HSABC SMA 

���(MW) 112.29 124.7182 117.60 127.4754 126.07 128.9988 140.68 151.8794 177.46 175.4329 

���(MW) 46.96 51.80738 48.26 54.08803 49.74 47.30148 50.66 56.72804 49.35 47.10369 

���(MW) 34.87 27.31135 31.48 28.10535 28.40 27.02738 25.25 18.81466 19.63 21.20746 

��&(MW) 31.48 31.79245 31.66 28.93342 31.80 32.73101 30.90 18.44586 22.83 25.15064 

��'(MW) 30.00 28.87296 29.54 25.6102 26.63 24.14822 21.74 23.57249 12.11 10.78865 

��((MW) 33.29 24.91275 30.71 25.44564 27.17 29.36644 21.54 21.93089 12.00 12.88029 

��(MW) 5.49 6.0085 5.85 6.2447 6.41 6.1785 7.37 7.9714 9.98 9.1631 
Cost ($) 854.11 715.9176 843.10 743.8086 830.28 772.8311 815.89 797.7263 803.89 801.9348 

NOx emissions (kg/h) 610.07 370.8056 611.76 373.4120 619.81 372.7811 645.57 409.4590 765.87 456.2331 
Convergence time (s) - 71.458 - 72.695 - 71.368 - 69.124 - 69.847 

 

 
Fig. 2.  IEEE 30-bus SMA simulation results for case study 2 () = 0). 

 
Fig. 3.  IEEE 30-bus SMA simulation results for case study 2 () = 0.25). 

 
Fig. 4.  IEEE 30-bus SMA simulation results for case study 2 () = 0.5). 

 
Fig. 5.  IEEE 30-bus SMA simulation results for case study 2 () = 0.75). 

 
Fig. 6.  IEEE 30-bus SMA simulation results for case study 2 () = 1). 

B. Case study 2 

1) 9-Bus System 

In this case study, the EED problem is solved with power 
losses and VPE consideration. The power demand that should 
be met by the three units is 451 MW. SMA simulation results 
are compared to LMA [19] and are presented in Table III. For 
comparison reasons we set the weight factor to 0.5. Figure 7 
represents the convergence curve of SMA with 500 iterations 
for this case study. In this scenario, SMA has over performed 
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the conventional LMA technique in finding the global optimal 
solution that provides the best compromise between cost and 
emission quantity where the profit in cost and emissions are 
about 15% and 0.65% respectively. 

TABLE III.  IEEE 9-BUS RESULTS COMPARISON FOR CASE 
STUDY 2 

Unit 
Method 

LMA SMA 

���(/0) 162.1612 299.4662 

���(/0) 193.0458 100.0000 

���(/0) 102.0527 55.49374 

��(/0) 6.2597 3.9598 
Cost ($) 7393.200 6288.5132 

NOx emissions (kg/h) 0.0923 0.0917 

Convergence time (s) - 15.098 
 

 
Fig. 7.  IEEE 9-bus SMA simulation results for case study 2. 

2) 30-Bus System 

The bi-objective optimization problem is considered here 
taking into account the sine component due to the VPE. The 
required power to be satisfied by the 6 generating units is 250 
MW. Table IV presents the comparison of the simulation 
results of SMA along with LR, PSO, and SA [15]. The final 
solutions of the committed generating units’ output power to 
meet this specific load demand at the minimum cost along with 
the pollutant emissions are listed in Table V.  

TABLE IV.  IEEE 30-BUS RESULTS COMPARISON FOR CASE 
STUDY 2 

Unit 
Method 

LR SA PSO SMA 

��(MW) 5.4046 5.8215 5.8 5.1493 

Cost ($) 741.9553 741.2545 737.3 687.6154 

NOx emissions (kg/h) 288.3688 321.3507 296 314.9093 

Convergence time (s) 0.212367 1.787088 0.01 71.366 

These results are obtained by using ω=0.5. The 
convergence curve of the SMA results is illustrated in Figure 8. 
According to the results presented in Table IV, we can see 
clearly that SMA provided the lowest fuel cost comparing to 
LR, SA and PSO. However, when it comes to NOx emissions 
LR and PSO provide better emissions index which explains 
that SMA is succeeded in reaching the best compromise 
between reducing cost and emissions unlike other approaches. 

TABLE V.  RESULTS OF THE COMMITTED POWER 
OUTPUTS 

Unit SMA 

���[MW] 112.217 

���[MW] 50.48498 

���[MW] 15 

��&[MW] 25.70552 

��'[MW] 22.5664 

��([MW] 29.1755 

��[MW] 5.1493 

Cost [$] 314.9093 

NOx emissions [kg/h] 687.6154 

 

 
Fig. 8.  IEEE 30-bus SMA simulation results for case study 2. 

C. Case Study 3 

In this case study, we propose solving the EED problem 
with VPE consideration integrating renewable energy power in 
the conventional production system. The penetration of 
renewable energy power should not exceed the 30% of the total 
power demand.  

1) 9-Bus System 

To discuss the impact of integrating renewable energy in 
the network, the program was run for several power demand 
level with a random penetration level of solar and wind power 
as well. The weight factor is set to 0.5 in order to give the same 
importance to the cost and the emissions. Table VI represents 
three instances of the simulation results. 

TABLE VI.  IEEE 9-BUS RESULTS COMPARISON FOR CASE STUDY 3 

Power demand 700 (MW) 925 (MW) 1050 (MW) 

�3��(MW) - 122.5553 - 118.3594 - 156.5803 

���(MW) 299.4662 294.8317 498.9322 399.1993 576.4808 546.6408 

���(MW) 249.5997 100 398.0833 322.9384 399.1588 295.3748 

���(MW) 59.65865 87.02962 50.015 99.86653 99.86655 68.78856 

Cost ($) 6982.79 6390.7747 9285.8048 8069.0452 10252.7283 8804.1483 

NOx emissions (kg/h) 0.0924 0.0893 0.1129 0.0969 0.1148 0.0997 

Convergence time (s) 15.011 14.454 14.951 15.650 15.036 15.865 
 

The penetration impact of renewable energy power on 
reducing the cost and the emission quantity is noticeable in the 

results shown in Table VI. In other hand, we notice that when 
the penetration of renewable energy is higher, the reduction in 
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cost and emissions is also higher. Although, the renewable 
energy power is a great option to reduce cost and pollutant 
gases, it is challenging to model it for its stochastic availability. 

2) 30-Bus System 

In order to investigate the influence of integrating 
renewable energy sources in the conventional production 
power system, a 6-unit test system with 3 different power 
demand levels randomly chosen was solved. SMA was run to 
converge to the optimum values of the committed generating 

units for a weight factor equal to 0.5. The SMA solutions for 
various values of power demand are displayed in Table VII. 

The presence of external power in the conventional power 
system alleviates the committed generating unit while 
satisfying the load demand, with minimum cost and emissions. 
As we can notice in Table VII, penetration of renewable energy 
that doesn’t exceed 30% of the power demand has an important 
impact on reducing significantly cost and pollutant emissions. 

TABLE VII.  IEEE 30-BUS RESULTS COMPARISON FOR CASE STUDY 3 

Power demand 150 (MW) 283.4 (MW) 400 (MW) 

�3��(MW) - 28.4593 - 39.6582 - 84.3431 

���(MW) 85.1806 53.4728 128.9988 117.1773 199.5841 147.3343 

���(MW) 20 20 47.30148 46.3378 73.19402 57.35425 

���(MW) 15 15 27.02738 15.07434 36.4338 19.62882 

��&(MW) 10 10 32.73101 25.70792 35 31.38732 

��'(MW) 10 10 24.14822 22.56547 30 22.5693 

��((MW) 12 12 29.36644 12 40 29.42706 

Cost ($) 388.7041 323.0898 372.7811 633.0691 1338.5613 865.7911 

NOx emissions (kg/h) 184.9422 158.0846 772.8311 298.1571 710.8778 426.3729 

Convergence time (s) 68.956 65.368 67.784 66.258 69.320 69.152 

 

V. CONCLUSION 

In this paper we presented the recently developed 
metaheuristic method SMA that mimics the behavior of slime 
mould in finding the optimal trajectory that leads to the source 
of food. SMA is applied here to solve the multi-objective 
constrained static EED problem for three different case studies. 
The proficiency of this method was studied on standard IEEE 
systems of 3 and 6 generating units. This paper contributed to 
studying a comparative analysis between the proposed method 
in this paper and other existing methods in an attempt to sort 
out the approach that yields the best-compromised solution 
between cost and emissions. Also, the SMA approach is 
introduced for the first time in this paper as an optimization 
tool for the EED problem with renewable energy power 
integration. 

According to the results presented in this paper, SMA 
proved to be a powerful and efficient tool in handling economic 
dispatch problems. SMA provided global optimum or near 
solutions with a very insignificant gap. When it comes to 
solving the whole EED problem with the addition of the 
challenge of integrating renewable energy power, SMA was 
run multiple times for different power demand levels and 
stochastic penetration percentages of renewable energy. SMA 
has shown its efficiency and robustness in handling such a 
multi-objective constrained optimization problem. 

As a result, the meta-heuristic approach proposed by this 
work succeeded to deliver better solutions for almost all the 
studied economic dispatch issues. Hence, it is capable of being 
used for more complicated economic dispatch problems such 
as the dynamic economic dispatch. 
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