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ABSTRACT 

The ability to accurately predict how students will perform has a significant impact on the teaching and 

learning process, as it can inform the instructor to devote extra attention to a particular student or group 

of students, which in turn prevents those students from failing a certain course. When it comes to 

educational data mining, the accuracy and explainability of predictions are of equal importance. Accuracy 

refers to the degree to which the predicted value was accurate, and explainability refers to the degree to 

which the predicted value could be understood. This study used machine learning to predict the features 

that best contribute to the performance of a student, using a dataset collected from a public university in 

Jeddah, Saudi Arabia. Experimental analysis was carried out with Black-Box (BB) and White-Box (WB) 
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machine-learning classification models. In BB classification models, a decision (or class) is often predicted 

with limited explainability on why this decision was made, while in WB classification models decisions 

made are fully interpretable to the stakeholders. The results showed that these BB models performed 

similarly in terms of accuracy and recall whether the classifiers attempted to predict an A or an F grade. 

When comparing the classifiers' accuracy in making predictions on B grade, the Support Vector Machine 

(SVM) was found to be superior to Naïve Bayes (NB). However, the recall results were quite similar except 

for the K-Nearest Neighbor (KNN) classifier. When predicting grades C and D, RF had the best accuracy 

and NB the worst. RF had the best recall when predicting a C grade, while NB had the lowest. When 

predicting a D grade, SVM had the best recall performance, while NB had the lowest. 

Keywords-student performance; artificial neural networks; support vector machine; Naïve Bayes; k-nearest 

neighbor 

I. INTRODUCTION  

Machine Learning (ML) models enable machines to make 
predictions. In general, ML models are categorized into 
supervised, unsupervised, and reinforcement models. Many 
studies have demonstrated how to successfully involve ML 
models to solve problems involving predictions [1-19]. The 
learning processes are different from category to category. 
Models can learn by providing the input data and its 
corresponding output (supervised learning), providing only 
input data (unsupervised learning), or providing only rewards 
(reinforcement learning). In many cases, ML models contain 
hundreds of nodes that are connected to solve a given problem. 
It is difficult for humans to understand the intuition behind the 
predictions made. For this, an ANN is often denoted as a 
Black-Box (BB) model, where it is difficult for domain experts 
to "see" inside it and "understand" why it is making certain 
decisions. This lack of interpretability of the model and the 
explainability of the decision causes a trust issue. Deep 
learning is another common example of BB models, as it is 
difficult for a human to understand the millions or billions of 
calculations made by such algorithms. For that, some domains, 
such as healthcare and the military, enforce regulations and 
constraints when using ML to make important decisions.  

According to the Statement on Algorithmic Transparency 
and Accountability [20], providing explanations of the 
algorithm's decision-making process is becoming mandatory. 
This is because some algorithms can lead to harmful bias, 
which can have a legal or financial impact or incorrect 
predictions. Fortunately, this encouraged the development of 
methods that are used to explain BB models. This growing area 
of research is often known as explainable AI (XAI), which 
aims to develop methods that explain AI systems to their 
stakeholders [17]. This is important when these systems are too 
complex or ambiguous and encompasses the underlying causes 
of the system's methods or procedures to provide information 
that helps various stakeholders to better understand these 
systems. In XAI, explainable methods are classified into global 
or local, where global methods explain the prediction of all 
instances and local methods explain the prediction for a 
particular instance or group of instances [15]. On the other 
hand, some models are inherently interpretable because there is 
no need for additional steps to explain their behavior. This 
category of models is often denoted as White-Box (WB) 
models [19]. Such models include Decision Trees (DT), Rule-
Based (RB) systems, Contrast Patterns (CP), and Fuzzy 
Patterns (FP). Often, these WB models provide a trade-off 
between accuracy and explainability, meaning that training BB 

models will often provide better accuracy than WB. Due to this 
assumption, researchers seek to use BB models by adding a 
layer of explainability on top of them. However, in [21], it was 
stated that state-of-the-art WB models can achieve prediction 
performance comparable to BB models, and their use is 
encouraged instead of explaining BB models. This study aimed 
to train state-of-the-art WB models in the educational data 
mining domain and systematically compare their performance 
against BB models. Educational Data Mining (EDM) aims to 
develop methods that study and explore educational data that 
could be from face-to-face education, e-learning and Learning 
Management Systems (LMSs) or Intelligent Tutoring Systems 
(ITSs), and Adaptive Educational Hypermedia Systems 
(AEHSs) [17]. After analyzing educational data, EDM tries to 
evaluate the educational systems to improve the learning 
processes and better understand learners and learning. 

In [1], four data mining techniques, ANN, DT, SVM, and 
Naïve Bayes (NB), were used on a dataset from Princess Norah 
University with a total of 4,078 students who took the General 
Aptitude Test (GAT) and the Scholastic Achievement 
Admission Test (SAAT). The four classifiers were compared 
for their accuracy, precision, recall, and F1-score, showing that 
ANN was the best in terms of accuracy (79%) and precision 
(81%), while DT was the best in terms of recall (80%) and F1-
score (81%) and the NB classifier exhibited the worst 
performance. In [4], regression algorithms were used on a 
dataset of 85 students and 3 student feature classes: personal 
features, educational features, and behavioral features. In [3], a 
recommendation system used RF, DT, and Linear Regression 
(LR) to maintain the best behavior for the proposed system. In 
[11], exploratory factor analysis, multiple linear regressions, 
cluster analysis, and correlations were used to predict student 
academic performance. In [8], a nonlinear predictive model 
was proposed that can be explained using the SHAP game-
theory-based framework. In [6], a warning system was 
proposed using Multi-View Genetic Programming (MVGP). In 
[10], a prediction model was developed that used Genetic 
Programming-Interpretable Classification Rule Mining (GP-
ICRM) that was optimal and interpretable. In [12], a model was 
proposed that used a rule-based genetic programming 
algorithm for prediction, achieving good performance with 
89% precision, 86.7% recall, 87.5 F1-score, and 89.9% ROC-
score. In [2], several WB and BB models were used. This study 
aimed to use CORELS, which is an interpretable model, and 
compare its performance with several WB and BB models to 
test the claim that SOTA interpretable models can achieve 
prediction performance comparable to BB [21]. 
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II. PRELIMINARIES 

A. Problem Definition 

This study aims to predict the success or failure of a student 
in a specific course. Let x(j) be a 1×n vector of student j grades 
at selected courses, where n is the number of selected courses, 
m is the number of students in the dataset, and j = (1, …, m). 
When packing x(j) row by row, an m×n matrix X of student-
course grades is obtained. Let Xt denote student-course grades 
at time ≤ t. Let y(t+1) denote the student-course grade for a 
selected course at time ≥ t, such that y(t+1) ∈ {0, 1}, where 0 
indicates failing a course and 1 indicates passing it. The 
objective is to predict a student's performance in a new course, 
given his/her performance in previous courses, in the form of a 
function f that maps input Xt to output y(t+1)) as: 

��� + 1� = 	�
��    (1) 

Predicting students' passing or failing a course is a binary 
classification problem since y(t+1) can be 0 or 1. The input Xt, 
that is, student grades, can be numerical or categorical, where 
numerical grades range from 0 to 100, and categorical grades 
can either be binary (0 or 1) to indicate failing or passing a 
course, or discretized letter grades (A+, A, B+, B, C+, ...). This 
study tested the proposed model on selected courses from the 
dataset. 

B. Data Description and Preprocessing 

This study used a dataset collected from a public university 
located in Jeddah, Saudi Arabia, which contained student 
enrollment records, each having student ID, course ID, and the 
grade obtained. The dataset had a total of 250 students and 180 
courses collected from 2015 to 2019. At first, the unnecessary 
features were removed from the dataset. Then, the maximum, 
minimum, mean, median, and standard deviation of the grades 
were calculated for each student, course, and teacher, as shown 
in Table II. The dataset was discretized, as shown in Table III, 
by converting the continuous data into categorical. 
Performance was evaluated in terms of accuracy, recall, 

precision, complexity matrix, and speed. Accuracy is the ratio 
of correct predictions to the total number of input samples (3), 
while the complexity metric measures the ratio between the 
number of classes and the number of rules (4) [14]. Recall and 
precision, as shown in (1) and (2), are similar to accuracy but 
are often used on unbalanced data. Lastly, the speed of the 
model measures how fast the model can be trained and tested. 
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where l is the number of classes (2 in this case), r is the number 
of rules, and k is the number of features used in the i-th rule 
[14]. 

TABLE I.  SYMBOL NOTATIONS 

Notation Description 

S Student 
C Course 
T Teacher 
n Number of courses 
m Number of Students 

 

 
Fig. 1.  Grade distribution. 

TABLE II.  DATASET STATISTICS ON THE GRADE OF EACH STUDENT, COURSE, AND TEACHER. 

S avg T avg C avg S med T med C med S std T std C std S min T min C min S max T max C max 

60.0 65.4 66.0 60.0 68.0 70.0 0.0 20.6 18.5 60.0 3.0 3.0 60.0 97.0 97.0 
70.0 68.3 67.9 70.0 67.5 65.0 0.0 6.5 6.2 70.0 60.0 60.0 70.0 75.0 75.0 
72.7 73.5 78.5 75.0 80.0 84.0 4.8 19.6 18.5 66.0 11.0 11.0 77.0 96.0 96.0 
72.7 69.4 73.4 75.0 71.0 73.0 4.8 13.2 11.8 66.0 29.0 33.0 77.0 92.0 100.0 
72.7 74.1 72.4 75.0 75.0 74.0 4.8 13.1 15.2 66.0 38.0 13.0 77.0 96.0 99.0 

TABLE III.  DATASET AFTER DISCRETIZATION 

S avg T avg C avg S med T med C med S std T std C std S min T min C min S max T max C max 

(59, 69] (59, 69] (59, 69] (59, 69] (59, 69] (69, 79] 
(-0.001, 
2.944] 

(16.214, 
23.629] 

(15.153, 
18.543] 

(59, 69] (0, 59] (0, 59] (59, 69] (89, 100] (89, 100] 

(69, 79] (59, 69] (59, 69] (69, 79] (59, 69] (59, 69] 
(-0.001, 
2.944] 

(4.443, 
11.306] 

(5.782, 
11.819] 

(69, 79] (59, 69] (59, 69] (69, 79] (69, 79] (69, 79] 

(69, 79] (69, 79] (69, 79] (69, 79] (79, 89] (79, 89] 
(2.944, 
6.128] 

(16.214, 
23.629] 

(15.153, 
18.543] 

(59, 69] (0, 59] (0, 59] (69, 79] (89, 100] (89, 100] 

(69, 79] (69, 79] (69, 79] (69, 79] (69, 79] (69, 79] 
(2.944, 
6.128] 

(11.306, 
14.214] 

(5.782, 
11.819] 

(59, 69] (0, 59] (0, 59] (69, 79] (89, 100] (89, 100] 

(69, 79] (69, 79] (69, 79] (69, 79] (69, 79] (69, 79] 
(2.944, 
6.128] 

(11.306, 
14.214] 

(11.819, 
15.153] 

(59, 69] (0, 59] (0, 59] (69, 79] (89, 100] (89, 100] 
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TABLE IV.  DATASET IN BINARY FORMAT 

S AVG 

(0, 59] 

S AVG 

(59, 69] 

S AVG 

(69, 79] 

S AVG 

(79, 89] 

S AVG 

(89, 100] 

T AVG 

(0, 59] 

T AVG 

(59, 69] 

... T MAX 

(79, 89] 

T MAX 

(89, 100] 

C MAX 

(0, 59] 

C MAX 

(59, 69] 

C MAX 

(69, 79] 

C MAX 

(79, 89] 

C MAX 

(89, 100] 

0 1 0 0 0 0 1 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 1 ... 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
0 0 0 1 0 0 0 ... 0 1 0 0 0 0 1 
0 1 0 0 0 0 1 ... 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 

TABLE V.  DATASET AFTER OVERSAMPLING 

S AVG 

(0, 59] 

S AVG 

(59, 69] 

S AVG 

(69, 79] 

S AVG 

(79, 89] 

S AVG 

(89, 100] 

T AVG 

(0, 59] 

T AVG 

(59, 69] 
... 

T MAX 

(79, 89] 

T MAX 

(89, 100] 

C MAX 

(0, 59] 

C MAX 

(59, 69] 

C MAX 

(69, 79] 

C MAX 

(79, 89] 

C MAX 

(89,100] 

0 1 0 0 0 0 1 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 1 ... 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
0 0 1 0 0 0 0 ... 0 1 0 0 0 0 1 
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
0 1 0 0 0 0 1 ... 0 1 0 0 0 0 1 
1 0 0 0 0 0 1 ... 0 1 0 0 0 0 1 
1 0 0 0 0 0 0 ... 0 1 0 0 0 0 1 
1 0 0 0 0 0 1 ... 0 1 0 0 0 0 1 
1 0 0 0 0 0 0 ... 0 1 0 0 0 0 1 

 

III. METHODOLOGY 

A. Framework Description 

Figure 2 illustrates the framework. At first, the dataset was 
cleaned by removing unnecessary features and replacing all 
null values with zeros. Then, discretization was performed on 
the preprocessed dataset. After that, oversampling was used to 
equally split the dataset by every fold and obtain reasonable 
results from the unbalanced dataset. For every grade y, there is 
model training and testing, using the five-fold cross-validation 
technique. After cross-validation is performed, the average of 
every evaluation matrix is provided. 

 

  
Fig. 2.  Methodology framework. 

B. Evaluation Metric 

The 5-fold cross-validation was used to evaluate the model, 
where the dataset was split into five parts, and training and 

testing were performed five times. For each of the five 
iterations, one dataset part was used for testing and the others 
were used for training. Evaluation metrics were calculated in 
the testing set in each iteration i =1 kr, where l is the number of 
classes (2 in this case), r is the number of rules, and k is the 
number of features used in the i-th rule [14]. 

IV. RESULTS AND DISCUSSION 

A. Experimental Settings 

Jupyter Notebook was used as the development 
environment for Python3, along with Scikit-learn and Pandas 
for data analysis, Matplotlib for visualizations, and imodels for 
testing and evaluating the interpretable models. The tests were 
run on a MacBook Air laptop with a 1.1GHz quad-core Intel 
Core i5 CPU and 8 GB RAM. 

B. Results 

There are two types of ML models, WB and BB. WB 
models tend to be highly interpretable, meaning that it is easy 
for humans to understand the results provided, whereas BB 
models are not. The strength of WB models relies on finding 
biased results and preventing them from happening. This study 
selected CORELS as the main model, which is a state-of-the-
art rule-based model that attempts to learn an optimal set of 
rules in each problem, and its performance was compared with 
several other WB and BB models. Standard Deviation (SD) 
measures the spread of the scores by the mean [22]. The results 
in Tables VI-XII have a very low SD after all the five folds, 
indicating good performance. As the dataset was unbalanced, 
the accuracy was 100% or close to it when predicting grades A 
and F for the CORELS, GreedyTree, C4.5, Bayesian Rule List 
(BRL), and Boosted Rules models without using the 
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oversampling technique. In contrast, the Slipper model was not 
as good as the other models at predicting grade A. The 
accuracy in predicting grades B, C, and D is reasonably 
acceptable for all models. 

Table VIII shows that when the model predicted grade A, 
GreedyTree and C4.5 classifiers outperformed CORELS by 
0.02 and 0.03, respectively, in accuracy, while CORELS 
outperformed the Slipper classifier by 0.02 in accuracy and had 
the same accuracy with Bayesian and Boosted classifiers. The 
recall results were very close to each other. When the model 
predicted grades B, C, and D, the accuracy results of yhe 
GreedyTree, C4.5, Bayesian, and Boosted classifiers 
outperformed CORELS, while the Slipper classifier 
underperformed. In recall, the CORELS, Greedy Tree, C4.5, 
Bayesian, and Boosted classifiers had similar results, while the 
Slipper classifier had the lowest recall in predicting grade B. 
The recall of CORELS in predicting grade C was lower than 
the GreedyTree, C4.5, Bayesian, and Boosted classifier, but 
higher than the Slipper classifier. When predicting grade D, 
CORELS outperformed GreedyTree, C4.5, Slipper, and 
Boosted classifiers but underperformed the Bayesian classifier. 
For predicting grade F, the accuracy and recall of all WB 
classifiers were similar [23]. 

Tables VII and VIII show that when using oversampling, 
accuracy did not change dramatically, but recall improved. 
When predicting grade B with CORELS, the recall was 0.64 
without and 0.96 with oversampling, which means that 
oversampling improved the model's testing performance. Table 

IX shows that CORELS took less training time than the C4.5, 
Bayesian, and Slipper classifiers. In addition, CORELS took 
more time to train than GreedyTree and Boosted classifiers, but 
had the least testing time among the rest WB classifiers. Table 
XI shows that the accuracy and recall results of these BB 
models were very similar when the classifiers predicted grades 
A and F. When the classifiers predicted grade B, SVM had the 
best accuracy results, while NB had the worst. On the other 
hand, the recall results are very close to each other except for 
the KNN classifier [24]. When the classifiers predicted grades 
C and D, RF had the best accuracy, and NB had the worst. 
When predicting grade C, RF had the best recall results, while 
NB had the worst. When predicting grade D, SVM had the best 
recall result and NB had the worst. Table XII shows that RF 
took the longest training time, while KNN took the shortest 
[25]. In addition, it is observed that RF took the longest testing 
time, while GB took the shortest. Moreover, when not using 
oversampling, Tables X and XI show that accuracy and recall 
were improved. When predicting grades A and F, WB and BB 
models had similar high accuracies. Moreover, WB models, 
except the Slipper classifier, had better accuracy than NB, 
SVM, and KNN when predicting grades B, C, and D. On the 
other hand, RF and GB models had similar accuracy as the WB 
models, except Slipper. Tables IX and XII show that C4.5, 
BRL, and Slipper models took longer time to process than BB 
models [26]. On the other hand, CORELS, BR, and GT took a 
similar time as the BB models. It can be stated that CORELS 
can provide high accuracy with minimal time. 

TABLE VI.  WB RESULTS 

 Grade A Grade B Grade C Grade D Grade F 

Classifier Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

CORELS 
1.0 

(±0.00) 
1.0 

(±0.00) 
1.0 

(±0.00) 
0.87 

(±0.03) 
0.75 

(±0.07) 
0.64 

(±0.07) 
0.80 

(±0.02) 
0.81 

(±0.05) 
0.42 

(±0.03) 

0.8 
(±0.04) 

0.76 
(±0.05) 

0.60 
(±0.09) 

0.95 
(±0.01) 

0.51 
(±0.27) 

0.49 
(±0.00) 

Greedy Tree 
1.0 

(±0.00) 
1.0 

(±0.00) 
1.0 

(±0.00) 
0.87 

(±0.04) 
0.71 

(±0.07) 
0.67 

(±0.05) 
0.80 

(±0.02) 
0.65 

(±0.09) 
0.61 

(±0.05) 

0.78 
(±0.05) 

0.68 
(±0.06) 

0.65 
(±0.07) 

0.93 
(±0.01) 

0.56 
(±0.15) 

0.47 
(±0.18) 

C4.5 Tree 
1.0 

(±0.00) 
1.0 

(±0.00) 
1.0 

(±0.00) 
0.87 

(±0.04) 
0.72 

(±0.08) 
0.65 

(±0.14) 

0.79 
(±0.02) 

0.66 
(±0.09) 

0.58 
(±0.08) 

0.79 
(±0.05) 

0.67 
(±0.06) 

0.67 
(±0.06) 

0.94 
(±0.02) 

0.52 
(±0.17) 

0.47 
(±0.18) 

BRL 
0.89 

(±0.02) 
0.47 

(±0.06) 
1.0 

(±0.00) 
0.77 

(±0.03) 
0.49 

(±0.02) 
1.0 

(±0.00) 
0.69 

(±0.04) 
0.48 

(±0.03) 
0.99 

(±0.02) 
0.74 

(±0.07) 
0.55 

(±0.06) 
0.99 

(±0.01) 
0.94 

(±0.00) 
0.51 

(±0.10) 
1.0 

(±0.00) 
Boosted 

Rules 

0.89 
(±0.02) 

0.47 
(±0.06) 

1.0 
(±0.00) 

0.83 
(±0.03) 

0.90 
(±0.13) 

0.29 
(±0.09) 

0.79 
(±0.02) 

0.85 
(±0.13) 

0.37 
(±0.15) 

0.83 
(±0.02) 

0.78 
(±0.04) 

0.64 

(±0.08) 

0.94 
(±0.01) 

0.53 
(±0.09) 

0.96 
(±0.01) 

Slipper 
0.79 

(±0.22) 
0.68 

(±0.30) 
0.37 

(±0.22) 
0.83 

(±0.04) 
0.81 

(±0.17) 
0.36 

(±0.12) 
0.73 

(±0.11) 
0.82 

(±0.18) 
0.30 

(±0.15) 
0.80 

(±0.03) 
0.8 

(±0.10) 
0.44 

(±0.14) 
0.94 

(±0.02) 
0.53 

(±0.24) 
0.49 

(±0.29) 

TABLE VII.  WB RESULTS WITHOUT OVERSAMPLING 

 Grade A Grade B  Grade C Grade D Grade F 

Classifier Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

CORELS 
0.94 

(±0.05) 
0.74 

(±0.24) 
1.0 

(±0.00) 
0.83 

(±0.06) 
0.68 

(±0.23) 
0.96 

(±0.04) 
0.74 

(±0.06) 
0.68 

(±0.19) 
0.86 

(±0.12) 
0.76 

(±0.05) 
0.69 

(±0.19) 
0.92 

(±0.08) 
0.97 

(±0.03) 
0.80 

(±0.21) 
1.0 

(±0.00) 

Greedy Tree 
0.96 

(±0.01) 
0.94 

(±0.03) 
0.99 

(±0.02) 
0.90 

(±0.02) 
0.85 

(±0.04) 
0.96 

(±0.02) 

0.86 
(±0.03) 

0.83 
(±0.03) 

0.90 
(±0.06) 

0.83 
(±0.03) 

0.81 
(±0.03) 

0.88 
(±0.08) 

0.98 
(±0.01) 

0.97 
(±0.01) 

1.0 
(±0.00) 

C4.5 Tree 
0.97 

(±0.01) 
0.94 

(±0.02) 
1.0 

(±0.00) 
0.90 

(±0.01) 
0.85 

(±0.03) 
0.97 

(±0.02) 
0.87 

(±0.03) 
0.82 

(±0.02) 
0.94 

(±0.06) 
0.84 

(±0.03) 
0.82 

(±0.04) 
0.88 

(±0.08) 
0.98 

(±0.01) 
0.97 

(±0.01) 
1.0 

(±0.00) 

Bayesian 

Rule List 

0.94 
(±0.01) 

0.89 
(±0.02) 

1.0 
(±0.00) 

0.85 
(±0.03) 

0.77 
(±0.04) 

1.0 
(±0.00) 

0.78 
(±0.03) 

0.70 
(±0.03) 

1.0 
(±0.01) 

0.81 
(±0.05) 

0.73 
(±0.06) 

0.99 
(±0.01) 

0.97 
(±0.00) 

0.94 
(±0.00) 

1.0 
(±0.00) 

Boosted 

Rules 

0.94 
(±0.01) 

0.89 
(±0.02) 

1.0 
(±0.00) 

0.85 
(±0.03) 

0.78 
(±0.04) 

0.98 
(±0.02) 

0.78 
(±0.02) 

0.70 
(±0.03) 

0.96 
(±0.04) 

0.79 
(±0.03) 

0.80 
(±0.08) 

0.81 
(±0.10) 

0.96 
(±0.01) 

0.93 
(±0.02) 

1.0 
(±0.00) 

Slipper 
0.92 

(±0.03) 
0.84 

(±0.07) 
1.0 

(±0.00) 
0.77 

(±0.05) 
0.79 

(±0.06) 
0.71 

(±0.14) 
0.69 

(±0.05) 
0.89 

(±0.07) 
0.43 

(±0.11) 
0.75 

(±0.07) 
0.88 

(±0.03) 
0.58 

(±0.15) 
0.92 

(±0.09) 
0.84 

(±0.09) 
1.0 

(±0.00) 
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TABLE VIII.  WB WITH OVERSAMPLING 

 Time in sec. 

 Grade A Grade B Grade C Grade D Grade F 

Classifier Train Test Train Test Train Test Train Test Train Test 

CORELS 
0.0540 

(±0.0053) 
0.0006 

(±0.0001) 

0.0456 
(±0.0058) 

0.0006 
(±0.0002) 

0.0475 
(±0.0047) 

0.0006 
(±0.0003) 

0.0469 
(±0.0108) 

0.0004 
(±0.0001) 

1.6690 
(±1.3231) 

0.0011 
(±0.0009) 

Greedy 

Tree 

0.0036 
(±0.0014) 

0.0023 
(±0.0007) 

0.0073 
(±0.0082) 

0.0026 
(±0.0015) 

0.0042 
(±0.0016) 

0.0022 
(±0.0006) 

0.0038 
(±0.2265) 

0.0024 
(±0.0007) 

0.0035 
(±0.0012) 

0.0024 
(±0.0008) 

C4.5 Tree 
1.1081 

(±0.1544) 
0.0085 

(±0.0035) 
1.7746 

(±0.2468) 
0.0113 

(±0.0038) 
1.8600 

(±0.1238) 
0.0117 

(±0.0010) 
1.5420 

(±0.2265) 
0.0093 

(±0.0007) 
1.0215( 

±0.2051) 
0.0077 

(±0.0026) 

BRL 
18.4103 

(±2.4006) 
0.1596 

(±0.0091) 
19.4687 

(±1.8279) 
0.1336 

(±0.0075) 
1378.9996 
(±2710.32) 

0.1285 
(±0.0099) 

21.9118 
(±2.7820) 

0.1281 
(±0.0124) 

15.4696 
(±1.8045) 

0.1621 
(±0.0163) 

Boosted 

Rules 

0.0137 
(±0.0020) 

0.0317 
(±0.00324) 

0.0148 
(±0.0044) 

0.0320 
(±0.00199) 

0.0161 
(±0.0050) 

0.0382 
(±0.0063) 

0.0614 
(±0.0935) 

0.0152 
(±0.1190) 

0.0160 
(±0.0025) 

0.0354 
(±0.0050) 

Slipper 
146.633 

(±215.272) 
0.02814 

(±0.0090) 
152.67 

(±220.28) 
0.0229 

(±0.0011) 
37.1966 

(±7.8914) 
0.0253 

(±0.0039) 
150.98 

(±217.499) 
0.0243 

(±0.0007) 
42.8454 

(±5.2960) 
0.0207 

(±0.0006) 

TABLE IX.  TRAIN AND TEST TIMES FOR THE WB MODELS 

 Grade A Grade B Grade C Grade D Grade F 

Classifier Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

NB 
0.90 0.49 1.0 0.65 0.40 0.82 0.73 0.55 0.31 0.78 0.61 0.77 0.93 0.48 0.91 

(±0.03) (±0.08) (±0.00) (±0.16) (±0.08) (±0.06) (±0.06) (±±0.14 )(±0.14) (±0.05) (±0.05) (±0.11) (±0.00) (±0.09) (±0.08) 

SVM 
0.93 

(±0.02) 
0.71 

(±0.37) 
0.30 

(±0.17) 

0.77 
(±0.04) 

0.0 
(±0.00) 

0.0 
(±0.00) 

0.75 
(±0.05) 

0.90 
(±0.20) 

0.14 
(±0.05) 

0.80 
(±0.04) 

0.76 
(±0.08) 

0.56 
(±0.11) 

0.93 
(±0.03) 

0.25 
(±0.22) 

0.15 
(±0.13) 

KNN 
0.91 0.59 0.27 0.78 0.54 0.45 0.77 0.66 0.48 0.80 0.70 0.64 0.93 0.37 0.27 

(±0.02) (±0.33) (±0.05) (±0.05) (±0.09) (±0.09) (±0.05) (±0.04) (±0.10) (±0.03) (±0.03) (±0.07) (±0.02) (±0.22) (±0.20) 
Random 0.91 0.52 0.35 0.79 0.54 0.43 0.80 0.67 0.60 0.77 0.63 0.65 0.95 0.51 0.36 

Forest (±0.03) (±0.34) (±0.19) (±0.06) (±0.05) (±0.09) (±0.02) (±0.07) (±0.05) (±0.06) (±0.09) (±0.09) (±0.01) (±0.27) (±0.19) 

Gradient 0.90 0.38 0.63 0.83 0.63 0.62 0.81 0.71 0.59 0.80 0.71 0.67 0.91 0.42 1.0 
Boosting (±0.03) (±0.25) (±0.41) (±0.03) (±0.04) (±0.06) (±0.03) (±0.07) (±0.09) (±0.04) (±0.06) (±0.07) (±0.02) (±0.08) (±0.00) 

TABLE X.  BB RESULTS WITHOUT OVERSAMPLING 

 Grade A Grade B Grade C Grade D Grade F 

Classifier Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. 

NB 
0.94 0.74 1.0 0.74 0.61 0.90 0.68 0.71 0.53 0.77 0.70 0.81 0.97 0.80 1.0 

(±0.05) (±0.23) (±0.00) (±0.10) (±0.29) (±0.03) (±0.07) (±0.21) (±0.13) (±0.04) (±0.17) (±0.09) (±0.03) (±0.21) (±0.00) 

SVM 
0.94 0.73 1.0 0.79 0.65 0.96 0.71 0.67 0.80 0.76 0.68 0.92 0.96 0.78 1.0 

(±0.05) (±0.24) (±0.00) (±0.07) (±0.25) (±0.06) (±0.05) (±0.22) (±0.09) (±0.04) (±0.19) (±0.08) (±0.04) (±0.25) (±0.00) 

KNN 
0.91 0.71 0.97 0.76 0.66 0.88 0.73 0.67 0.79 0.79 0.71 0.86 0.96 0.81 0.99 

(±0.05) (±0.27) (±0.02) (±0.05) (±0.26) (±0.08) (±0.03) (±0.21) (±0.02) (±0.06) (±0.18) (±0.04) (±0.02) (±0.20) (±0.01) 
Random 0.95 0.80 0.99 0.88 0.73 0.96 0.86 0.78 0.89 0.83 0.73 0.86 0.98 0.84 1.0 

Forest (±0.03) (±0.19) (±0.01) (±0.07) (±0.21) (±0.03) (±0.04) (±0.14) (±0.04) (±0.07) (±0.17) (±0.07) (±0.02) (±0.18) (±0.00) 

Gradient 0.94 0.75 0.99 0.80 0.69 0.90 0.78 0.72 0.85 0.78 0.71 0.87 0.97 0.81 1.0 
Boosting (±0.04) (±0.22) (±0.01) (±0.03) (±0.23) (±0.04) (±0.07) (±0.18) (±0.07) (±0.05) (±0.19) (±0.08) (±0.03) (±0.20) (±0.00) 

TABLE XI.  BB RESULTS WITH OVERSAMPLING 

 Time in sec. 

 Grade A Grade B Grade C Grade D Grade F 

Classifier Train Test Train Test Train Test Train Test Train Test 

NB 
0.0034 

(±0.0020) 
0.0024 

(±0.0012) 
0.0035 

(±0.0021) 
0.0024 

(±0.0010) 
0.0033 

(±0.0013) 
0.0026 

(±0.0010) 
0.0029 

(±0.0013) 
0.0025 

(±0.0013) 
0.0032 

(±0.0014) 
0.0026 

(±0.0011) 

SVM 
0.0098 

(±0.00618) 
0.0046 

(±0.0017) 
0.0118 

(±0.0047) 
0.0065 

(±0.0019) 
0.0119 

(±0.0047) 
0.0065 

(±0.0016) 
0.0090 

(±0.0037) 
0.0050 

(±0.0012) 
0.0071 

(±0.0029) 
0.0040 

(±0.0011) 

KNN 
0.0038 

(±0.0037) 
0.0076 

(±0.0030) 
0.0026 

(±0.0006) 
0.0067 

(±0.0012) 
0.0023 

(±0.0003) 
0.0056 

(±0.0008) 
0.0028 

(±0.0015) 
0.0068 

(±0.0036) 
0.0027 

(±0.0012) 
0.0081 

(±0.0044) 
Random 

Forest 

0.1095 
(±0.0128) 

0.0076 
(±0.0030) 

0.1164 
(±0.0129) 

0.0114 
(±0.0005) 

0.1138 
(±0.0091) 

0.0109 
(±0.0006) 

0.1109 
(±0.0084) 

0.0110 
(±0.0005) 

0.1086 
(±0.0119) 

0.0113 
(±0.0012) 

Gradient 

Boosting 

0.0390 
(±0.0076) 

0.0018 
(±0.0003) 

0.0373 
(±0.0064) 

0.0018 
(±0.0001) 

0.0376 
(±0.0075) 

0.0019 
(±0.0002) 

0.0388 
(±0.0071) 

0.0020 
(±0.0003) 

0.0452 
(±0.0034) 

0.0021 
(±0.0001) 

 

The largest complexity result indicates better 
interoperability. Table VI shows that CORELS and BRL are 
the most interpretable among the WB models. On the other 
hand, the GreedyTree classifier is the lowest interpretable 
model. Figure 3 shows that there is a positive relationship 

between complexity and classifier accuracy. When a classifier 
gets higher accuracy, the complexity gets better, except for the 
boosted classifier, which is fixed. Table IX shows that BRL 
and CORELS have the best complexity results among the other 
WB models. 
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TABLE XII.  TRAIN AND TEST TIMES FOR THE BB MODELS 

 Complexity 

 Grade A Grade B Grade C Grade D Grade F 

CORELS 1.0 (±0.0) 1.0 (±0.0) 0.8 (±0.2450) 1.0 (±0.0) 1.0 (±0.0) 

Greedy Tree 0.0075 (±0.0007) 0.0025 (±0.0003) 0.0029 (±0.0002) 0.0030 (±0.0003) 0.0140 (±0.0023) 
C4.5 Tree 0.0267 (±0.0007) 0.0116 (±0.0012) 0.0102 (±0.0007) 0.0114 (±0.0010) 0.0464 (±0.0022) 

BRL 0.6599 (±0.2799) 0.5905 (±0.1524) 0.3078 (±0.0640) 0.3733 (±0.0326) 0.8333 (±0.2108) 

Boosted Rules 0.2 (±0.0) 0.2 (±0.0) 0.2 (±0.0) 0.2 (±0.0) 0.2 (±0.0) 
Slipper 0.0990 (±0.0094) 0.06768 (±0.0087) 0.0804 (±0.0112) 0.0667 (±0.0098) 0.0905 (±0.0105) 

 

 
Fig. 3.  WB models' complexity/accuracy relationship. 

V. CONCLUSION 

This paper compared the CORELS model with other WB 
and BB models. The results showed that CORELS 
outperformed the other WB and BB models. The dataset used 
in this study was obtained from a public institution in Jeddah, 
Saudi Arabia. In the future, this comparison is planned to be 
made on data from more colleges and other universities in 
Saudi Arabia and other countries. An effective prediction of 
how students will perform has a significant impact on both 
learning and teaching. This study offers a comprehensive 
examination of the efficacy of WB and BB categorization 
models in forecasting academic grades. While BB models 
provide decision-making procedures that are not easily 
understood, the emphasis on BB models brings clarity to the 
outcomes, which is essential for a wide range of stakeholders. 
The results of this study show that BB models consistently 
achieve high accuracy and recall rates, regardless of the 
anticipated grade category, whether it is an A or an F. 
Additionally, this study reveals significant variations in the 
precision and recall rates of particular classifiers while making 
predictions for grade B, with SVM outperforming NB. These 
results contribute to the understanding of the relative efficiency 
of various classifiers in educational settings. Furthermore, this 
study underscores a notable discrepancy in academic 
achievement when forecasting grades C or D. The RF 

algorithm had better accuracy compared to the others, whereas 
the NB offered the lowest level of effectiveness. These findings 
provide crucial information on the most reliable models for 
predicting grades within a specific range, which could provide 
insight to educational institutions aiming to enhance their 
classification systems. Furthermore, the data highlights the 
higher recall of RF in predicting grade C and the usefulness of 
SVM in predicting grade D. These distinctions offer useful 
information to schools seeking to improve their forecast 
accuracy for particular grade categories. This study provides 
practical insights that can be directly applied to improve 
grading prediction systems in similar educational situations, by 
utilizing actual educational data as the basis for analysis. 
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