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ABSTRACT 

Pneumonia is a severe respiratory disease with potentially life-threatening consequences if not promptly 

diagnosed and treated. Chest X-rays are commonly employed for pneumonia detection, but interpreting 

the images can pose challenges. This study explores the efficacy of four popular transfer learning models, 

namely VGG16, ResNet, InceptionNet, and DenseNet, alongside a custom CNN model for this task. The 

model performance is evaluated using Mean Absolute Error (MAE) as the performance metric. The 

findings reveal that VGG16 outperforms the other transfer learning models, achieving the lowest MAE 

(66.19). To optimize the model training process, a distributed training strategy utilizing TensorFlow's TPU 

(Tensor Processing Unit) strategy is implemented. The custom CNN model is parallelized using TPU's 

multiple instances available over the cloud, enabling efficient computation parallelization and significantly 

reducing model training times. The experimental results demonstrate a remarkable decrease of 68.36% 

and 54.74% in model training times for the CNN model when trained using TPU compared to training on 

a CPU and GPU, respectively. 

Keywords-pneumonia detection; chest X-ray images; deep learning; transfer learning; TPU; distributed 

training 

I. INTRODUCTION  

Early and accurate diagnosis of pneumonia is essential for 
better patient outcomes and reducing morbidity and mortality 
rates [1]. Identifying pneumonia from medical imaging, such as 
chest X-rays, can be challenging for medical professionals. 
Machine Learning (ML) techniques, particularly deep learning, 
offer promising solutions to automate pneumonia detection, 
enhancing diagnostic accuracy and reducing radiologists' 

workload. ML models can learn patterns from large datasets, 
providing objective and consistent results. However, 
developing accurate ML models for pneumonia detection 
presents its own challenges. The complexity and variability of 
chest X-ray images makes robust performance difficult. 
Convolution Neural Networks (CNNs) are powerful for 
computer vision tasks, but they often require large amounts of 
data. Acquiring labeled biomedical images is costly and time-
consuming, requiring medical expertise for accurate 
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classification. To address the limitation of limited labeled data, 
this study employs transfer learning. Transfer learning reuses 
pre-trained models on large datasets, leveraging their 
established network weights for smaller datasets. In this 
research, we explore the efficacy of a custom CNN model and 
four widely used transfer learning models (VGG16, DenseNet, 
ResNet, and InceptionNet) for pneumonia detection. The 
models are trained and tested on a binary image dataset with 
two categories: Pneumonia and Normal. The objective is to 
develop an accurate and reliable automated pneumonia 
detection system using transfer learning to aid timely diagnosis 
and improve patient care.  

Deep learning, specifically transfer learning, is emerging as 
a vital tool for pneumonia detection in chest X-ray images, 
primarily due to the inherent challenges in manual 
interpretation. Chest X-rays are intricate, with the lung's 
overlapping structures such as bronchi, vessels, and other 
tissues potentially obscuring or mimicking pneumonia's 
radiological signs. Patient positioning during the scan can hide 
or distort certain features, complicating diagnosis. Other pre-
existing lung conditions, like COPD or tumors, can also mask 
or resemble pneumonia, leading to diagnostic ambiguity. 
Additionally, the quality of the X-ray image, the variability in 
radiologists' experience, and the presence of early, mild, or 
atypical cases further introduce complexities. Such challenges 
necessitate advanced automated techniques like deep learning 
to augment the diagnostic process, ensuring more accurate and 
timely detection. The main contributions of the current work 
are: 

 The implementation of a transfer learning approach for 
automated pneumonia detection in chest X-ray images.  

 A custom CNN model and 4 widely used transfer learning 
models (VGG16, DenseNet, ResNet, and InceptionNet) 
were considered, allowing for a comparative analysis of the 
models' effectiveness in pneumonia detection.  

 To optimize model training, a distributed training strategy 
with Tensor Processing Units (TPU) is used by parallelizing 
the CNN model using TPUs available over the cloud. 
Significant reductions in training times are achieved, 
contributing to improved efficiency in pneumonia 
detection. 

II. RELATED WORK 

This section explores recent research on pneumonia 
detection using transfer learning and distributed training 
techniques applied to chest X-ray images. Various studies have 
investigated different transfer learning models and distributed 
training methods. Authors in [1] highlight the significance of 
rapid and accurate pneumonia detection. Authors in [2, 15] 
used CNN models for precise pneumonic lung detection from 
chest X-rays. Authors in [3] addressed the challenges of 
examining chest X-rays and proposed a computer-aided 
diagnosis system for automated pneumonia detection. Their 
approach involves deep transfer learning with an ensemble of 
GoogLeNet, ResNet-18, and DenseNet-121 models, achieving 
high accuracy rates of 98.81% and 86.85%. The need for an 
automated method for pneumonia detection using CNN is 

highlighted in [4]. The VGG16-based learning model has 
accuracy of 97.28%, showcasing satisfactory performance 
accuracy. In, [5, 6], the Efficient Net model was used for image 
processing and achieved an accuracy of 97%. Authors in [7] 
used ML models to obtain accuracy of 83.67%. Authors in [8] 
focused on diagnosing lung inflammation severity in COVID-
19 patients using CNN, KNN, and other classification 
algorithms achieving 92.80% testing accuracy. Authors in [9] 
developed a mobile app utilizing deep learning techniques to 
classify pneumonia in patients. They achieved accuracies 
between 78% and 85% using Create ML. Authors in [10] 
studied CNN acceleration on various platforms (CPU, GPU, 
TPU) and compared their performance for pneumonia 
detection, face mask detection, and virus detection in plants. 
Disease detection using CNN models was used in [11]. Image 
segmentation techniques were used in [12] to locate ulcers in 
images. In [13], faster RCNN with Efficient Net model was 
used for image detection and classification with an accuracy of 
98%. Authors in [14] proposed a CNN model for pneumonia 
detection from chest X-ray images using tensor flow. The 
model achieved an impressive accuracy of 99.46% with just 
1000 training images and 10 epochs. Overall, the mentioned 
studies demonstrate the effectiveness and potential of transfer 
learning in pneumonia detection from chest X-ray images.  

III. ML PIPELINE AND ARCHITECTURE DESIGN 

The ML pipeline for pneumonia detection involves a series 
of steps that start from data preprocessing and end with the 
deployment and evaluation of the trained model, as shown in 
Figure 1. The first step is to collect a large dataset of chest X-
ray images, consisting of pneumonia-positive and pneumonia-
negative cases. The dataset should be diverse and 
representative of the target population to ensure the model's 
generalizability. In data preprocessing, the collected images are 
preprocessed to ensure consistency and quality. This may 
involve resizing the images to a standard size, converting them 
to grayscale or RGB format, and normalizing pixel values to a 
specific range [0, 1]. Preprocessing also includes handling 
missing data, if any. For Feature Extraction, CNNs are widely 
used for image-based tasks like pneumonia detection. In this 
step, the CNN is used to automatically extract relevant features 
from the preprocessed images. CNN layers detect different 
patterns and characteristics present in the images, which are 
important for distinguishing between pneumonia-positive and 
pneumonia-negative cases. For Model Building, the extracted 
features are used as input, and a classification model is 
constructed. This model can be a custom-designed CNN or a 
pre-trained CNN using transfer learning. Transfer learning 
involves using a pre-trained CNN on a large dataset (e.g. 
ImageNet) and fine-tuning it on the pneumonia detection 
dataset. The model is trained using the training dataset. During 
training, the model learns to map the extracted features to the 
correct classification labels (pneumonia-positive or pneumonia-
negative). The optimization process adjusts the model's weights 
to minimize the error or loss between the predicted and the 
actual labels. To optimize the model's performance and prevent 
over fitting, hyper parameter tuning is conducted using the 
validation dataset. Hyper parameters are variables that control 
the learning process, such as the learning rate, batch size, 
number of layers, and the size of filters in the CNN.  
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Fig. 1.  ML pipeline for pneumonia detection. 

Figure 2 shows the custom CNN architecture for 
pneumonia detection, consisting of five convolutional blocks, 
each comprising a convolutional layer, a max-pooling layer, 
and a batch normalization layer. The architecture is designed to 
extract relevant features from the chest X-ray images to 
distinguish between pneumonia-positive and pneumonia-
negative cases. Dropout layers are added to prevent overfitting 
and improve generalization. The architecture includes a flatten 
layer to transform the output from the convolutional blocks into 
a 1D vector. This is followed by four fully connected layers, 
which further process the extracted features for classification. 
The activation function used throughout the model is ReLU, 
except for the last layer, where a sigmoid activation function is 
applied since the problem is a binary classification task 
(pneumonia or normal). The optimizer used for training the 
model is Adam, a popular optimization algorithm that 
efficiently updates the model weights during the training 
process. The loss function chosen is cross-entropy, which is 
suitable for binary classification tasks. 

 

 

Fig. 2.  Overview of the CNN architecture. 

Before training the model, two callbacks are defined: 
Model Checkpoint and Early Stopping. Model Checkpoint is 
used to save the best model weights during training, ensuring 
that the model with the highest validation accuracy is retained. 
Early Stopping is used to monitor the validation loss and stop 
training if the loss starts to increase, indicating over fitting. 
These callbacks help in achieving better results and preventing 
overfitting during the training process. The model is trained for 
100 epochs, which represents the number of times the entire 
training dataset is passed through the model during training. 
The image size used for training is (180, 180), indicating the 
resolution at which the chest X-ray images are processed by the 
model.  

IV. IMPLEMENTATION 

The procedure for using transfer learning in pneumonia 
detection through chest X-rays follows a detailed and 
methodical workflow. Initially, the images are processed to 

guarantee uniformity and boost model efficiency. This involves 
adjusting image dimensions, equalizing pixel intensities, and 
employing data enhancement methods to diversify the training 
dataset. Subsequently, a suitable pre-trained architecture, such 
as VGG16, ResNet, InceptionNet, or DenseNet, is chosen. 
Tailoring the latter sections of the chosen model is crucial for 
the pneumonia detection objective. The final layer is adjusted 
or swapped out to cater to the binary nature of the task of 
distinguishing pneumonia cases from normal ones. During the 
primary training, the pre-trained model's weights remain static 
to preserve its acquired knowledge. Only the appended layers 
are trained using the pneumonia-centric dataset, enabling the 
model to recognize pneumonia-related patterns, enriched by the 
foundational knowledge. Evaluation metrics like accuracy, 
precision, recall, F1 score, and the ROC curve's area are pivotal 
in measuring a model's proficiency. For managing expansive 
datasets and hastening training durations, TPUs, purpose-built 
for resource-intensive deep learning tasks, are utilized. 
Subsequent to the primary training, the entire model, 
encompassing the pre-trained layers, undergoes refinement at a 
reduced learning rate. This refinement fine-tunes the model for 
pneumonia detection, leveraging the insights of the pre-trained 
model. It's essential to fine-tune hyperparameters, such as 
learning rate, batch size, and regularization force. Techniques 
like grid or random search assist in this, ensuring peak 
validation set performance. The model's adaptability is then 
scrutinized against a distinct validation set, and techniques like 
cross-validation might be incorporated for sturdier performance 
insights. Ultimately, the polished model faces a standalone test 
dataset to gauge its efficiency on unfamiliar data. The 
concluding step involves making predictions on fresh chest X-
ray images. 

V. DATASET DESCRIPTION AND VISUALIZATION 

Figure 3 shows an overview of the dataset considered for 
the experimentation purpose. Pixel distribution is plotted using 
a bar plot for a given chest X-ray image. Figure 4 shows the 
number of pneumonia and normal samples of the dataset which 
are used for training the model. The training data are 
imbalanced with more pneumonic images. There are 3931 
pneumonic images and 1341 Normal images. The data were 
balanced by using various augmentation techniques. 

 

 

Fig. 3.  Dataset overview. 
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Fig. 4.  Number of pneumonia and normal samples in the train dataset. 

VI. RESULTS AND DICUSSION 

In this section, we present the results and discussion of our 
experiments on pneumonia detection using different deep 
learning models, including VGG16 (proposed), DenseNet 
(State-of-the-Art (SotA)), ResNet-50 (SotA), Custom CNN 
(baseline). 

A. Performance Comparison with State-of-the Art Methods 

Table I shows the performance analysis of the proposed 
model with the SotA. The comparison table offers a detailed 
look into the performance of various deep learning models for 
pneumonia detection from chest X-rays. The proposed VGG16 
model showcases the highest accuracy of 87.5%. In contrast, 
the SotA models DenseNet and ResNet-50 follow closely with 
82.3% and 73.4% accuracy, respectively, as shown in Figure 5. 

 

 

Fig. 5.  Performance comparison of the DL models 

The Custom CNN, used as a baseline, stays behind with a 
80.3% accuracy. While VGG16 excels in precision and recall 
metrics, suggesting its superior capability in correctly 
identifying and capturing positive pneumonia cases, it does 
come at the cost of longer training times. Specifically, VGG16 
takes 10 hours, nearly double the time required for ResNet-50. 
All models were trained on a consistent dataset size, ensuring a 
level playing field for comparison. Table I provides a clear 
illustration of the trade-offs involved, such as accuracy versus 
training time, helping researchers make informed decisions 
based on their specific needs and constraints. A lower Mean 
Absolute Error (MAE) value corresponds to better model 
performance. Among the evaluated models, VGG16 obtained 
the lowest MAE.  

TABLE I.  PERFORMANCE COMPARISON 

Model 
Accuracy 

(%) 
Precision Recall F1-score 

VGG16 (proposed) 87.5 86.4 88.1 88.4 

DenseNet (SotA) 82.3 84.7 84.9 84.2 

ResNet-50 (SotA) 73.4 76.2 77.2 77.1 

Inception Net (SotA) 76.6 78.4 75.2 76.3 

Custom CNN (baseline) 80.3 76.0 79.4 77.1 

 

Figure 6 shows the different deep learning models 
examined for their effectiveness in detecting pneumonia from 
chest X-rays, especially focusing on their accuracy over 
training epochs. The initial results suggest that models like 
VGG16 can achieve high accuracy rapidly in early epochs. In 
contrast, deeper architectures such as DenseNet and ResNet-50, 
although initially slower, could potentially excel in 
performance during prolonged training due to their intricate 
structures. Meanwhile, simpler custom CNN models might 
show a consistent but more gradual increase in accuracy, 
plateauing sooner than their complex counterparts. The analysis 
underscores the importance of choosing the right model based 
on both the desired computational efficiency and detection 
accuracy. 

 

 
Fig. 6.  Accuracy vs epochs. 

B. Distributed training using TPU’s 

Distributed training with TPUs represents a potent 
technique that involves parallel training of large neural 
networks across multiple processors. TPUs are specialized 
Application-Specific Integrated Circuits (ASICs) developed by 
Google, designed to optimize deep learning model 
performance. Their exceptional efficiency in matrix 
multiplication, a crucial operation in deep learning, surpasses 
that of traditional CPUs or GPUs, resulting in significantly 
faster training times. In this paper, we harnessed the power of 
TPUs as hardware accelerators to parallelize and train a custom 
CNN model. The training time for the CNN model using TPUs 
was remarkably low, taking only 3 minutes and 6 seconds. This 
distributed training approach utilized the cloud TPUs provided 
by the Google Colab platform. By employing the TPU strategy 
in the TensorFlow framework, we achieved a substantial 
improvement in model training time. 

In comparison, training the CNN model with CPUs 
extended the training time to 9 minutes and 48 seconds. CPUs, 
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especially when dealing with large batches of data, exhibit the 
slowest neural network training speeds. On the other hand, 
utilizing GPUs to train the CNN model reduced the training 
time to 6 minutes and 51 seconds. GPUs are known for their 
parallel processing capabilities, which enable notable 
reductions in model training time. Furthermore, increasing the 
batch size when using GPUs can further enhance training 
speed. However, the most efficient approach among the three 
options (TPU, GPU, and CPU) for training the CNN model 
was undoubtedly the use of TPUs. Distributed training with 
TPUs provided the lowest model training time, underscoring 
the advantage of TPUs' specialized architecture for deep 
learning tasks. Overall, the adoption of distributed training with 
TPUs showcased a remarkable performance boost in training 
deep learning models, specifically in the context of pneumonia 
detection on chest X-ray images. Leveraging TPUs' 
acceleration capabilities was proved to be a critical asset in 
advancing medical image analysis and diagnosis applications.  

 

 
Fig. 7.  Performance comparison of CPU, GPU, and TPU. 

Figure 7 illustrates a comprehensive performance 
comparison of CPU, GPU, and, TPU for training the CNN 
model. The goal was to evaluate the efficiency of each 
hardware option in terms of model training times. When 
utilizing TPU for training the CNN model, a remarkable 
percentage decrease of 54.74% in model training time was 
observed compared to using GPU. This clearly showcases the 
significant advantage of TPUs, which excel in speeding up the 
training process due to their parallel processing capabilities. 
Moreover, when training the CNN model with TPU, an even 
more substantial decrease percentage of 68.36% in model 
training time was observed compared to using CPU. This 
underscores the immense performance gain achieved by 
leveraging TPU's specialized architecture for matrix 
multiplications, making them highly efficient for training large 
neural networks. The experimental results unequivocally 
demonstrate that TPUs have a profound impact on reducing 
model training times, thanks to their specialized optimization 
for matrix multiplications. Their superiority over GPU and 
CPU is evident not only in terms of performance but also in 
power consumption. 

VII. CONCLUSION 

Transfer learning has emerged as a highly effective 
approach for pneumonia detection in chest X-ray images. By 
leveraging pre-trained CNN models and fine-tuning them on a 

smaller dataset of chest X-ray images, transfer learning 
significantly enhances the accuracy and efficiency of 
pneumonia detection. In this research, we explored the 
performance of a custom CNN model and four transfer learning 
models (VGG16, ResNet-50, DenseNet-121, and Inception v3) 
trained on chest X-ray images. Among the transfer learning 
models, VGG16 stood out as the top-performing one, achieving 
the lowest Mean Absolute Error (MAE) value of 66.19. It 
outperformed the other models in accuracy, precision, and 
recall. Specifically, the VGG16 model demonstrated an 
impressive accuracy of 0.8752, precision of 0.8612, and recall 
of 0.8814, highlighting its exceptional ability to distinguish 
between pneumonia-positive and pneumonia-negative cases. 
The current advancements in leveraging deep learning for 
pneumonia detection in chest X-rays offer promising avenues, 
but there's still a spectrum of untapped potential. Future work 
could focus on integrating multimodal data sources, such as 
combining X-rays with CT scans or patient history, to refine 
detection accuracy. The use of more sophisticated neural 
architectures or the fusion of multiple models might also yield 
better diagnostic insights. Furthermore, as datasets grow and 
become more diverse, models will benefit from the inclusion of 
more varied and rare pneumonia presentations. The broader 
implications of this research are profound: enhancing 
diagnostic precision can lead to faster treatment interventions, 
potentially reducing hospitalizations and mortality rate. In a 
global context, such automated systems could be vital for 
resource-limited settings, democratizing access to high-quality 
diagnostic tools and revolutionizing patient care worldwide. 
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