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ABSTRACT 

Autonomous mobile robots belong to automatically controlled objects that are designed and produced for 

various demands. This study aimed to develop an inexpensive platform of autonomous mobile robots that 

can be used for educational and research purposes in technical universities. The robot was built based on 

popular ultrasonic sensors to detect obstacles and a Raspberry Pi 4, which is a Linux-embedded computer. 

An effective obstacle avoidance algorithm for the robot was developed using a Bayesian neural network for 

classification. Training a Bayesian neural network does not require a validation dataset separate from the 

available data. In addition, the Bayesian approach can effectively handle the uncertainty of the system and 

result in the best generation for the network when inferring the unseen data. Training data are generated 

using robot-to-obstacle distances and the corresponding navigation modes. The commands to control the 

left and right motors of the robot are generated by the pretrained Bayesian neural network for three 

modes of navigation, forward, left, and right. Finally, this system can be useful as it can be conveniently 

integrated with advanced robot control algorithms. 

Keywords-autonomous mobile robots; obstacle avoidance; Bayesian neural network 

I. INTRODUCTION  

Autonomous mobile robots have been widely used in 
various industrial applications. In the last decades, there has 

been a lot of attention on motion planning for autonomous 
mobile robots. The motion planning problem can be divided 
into path planning and trajectory planning [1-2]. Path planning 
is related to the generation of obstacle-free paths with 
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geometric characteristics of obstacles and the kinematic 
constraints of the robot. Meanwhile, trajectory planning takes 
into account the robot's dynamics and moving obstacles 
(obstacles not known in advance). Basic navigation of mobile 
robots can be divided into the following tasks: (1) generating a 
model of the environment in the form of a map, (2) computing 
a collision-free path from the starting position to the target, and 
(3) following the generated trajectory. The crucial issue of a 
mobile robot is executing collision-free motions within its 
environment without any human intervention. Therefore, 
mobile robots must be equipped with distance sensors such as 
ultrasonic distance sensors, laser range sensors, and infrared 
sensors to detect obstacles and make decisions about how to 
navigate their environment smoothly. 

The ability of mobile robots to avoid obstacles can be 
implemented by various algorithms. Fuzzy logic has become an 
appropriate solution for low-cost mobile robots that do not 
require complicated navigation [3-9]. In fuzzy logic, the 
linguistic variables of the inputs are combined to create the 
linguistic variables of the outputs. As a result, the fuzzy logic 
system needs to measure and analyze all inputs before inferring 
the outputs. Artificial neural networks can also be used in 
mobile robots to avoid obstacles [10-13]. Sonar sensors are 
used to obtain data for neural network training, generate 
training patterns corresponding to possible environment 
scenarios, and then train offline neural networks. 

Multi-Layer Perceptron (MLP) neural networks are 
commonly used in various applications. The generalization of 
the trained neural network, or how well it can predict new 
cases, is the key challenge when developing an MLP neural 
network. Indeed, an insufficient network complexity can result 
in underfitting phenomena, in which significant data may be 
ignored. In contrast, excessive network complexity can cause 
overfitting, in which noisy data are also fitted. The complexity 
of an MLP neural network depends on the magnitudes of the 
weights and biases. In addition, the network size, depending on 
the number of hidden nodes, can also be used as a useful factor 
to measure network complexity. For a long period, the 
Bayesian approach has been used to improve the 
generalizability of feed-forward neural networks in the case of 
finite and noisy data [14-16]. In this process, network 
regularization is needed to prevent the network parameters 
(weights and biases) from becoming large, because large values 
of weights and biases usually cause the overfitting 
phenomenon to downgrade the performance of the network 
after being trained. When training feed-forward networks, the 
values of the regularization parameters can be easily found by 
using the Bayesian technique. Feed-forward neural networks 
that can be trained using the Bayesian technique are also called 
Bayesian Neural Networks (BNNs). 

As BNNs can be effective for various classification 
problems, this study aimed to provide a procedure for 
deploying a classification BNN to navigate the direction of an 
autonomous mobile robot with the following aspects: 

 Explore the evidence framework to allow all available data 
to be used to train BNNs. This work is needed when the 
collection of relatively large data is expensive or time-
consuming. 

 As the traditional gradient descent algorithm with a fixed 
step size and search direction to search local minima 
usually causes an excessively large network training time, 
this study focused on the quasi-Newton optimization 
technique, which is an advanced optimization training 
algorithm to automatically adjust the step size and search 
direction to optimal values. 

 As finding the optimal network architecture is often a time-
consuming task, this study also used the Bayesian model 
comparison concept to choose the best network 
architecture. This was carried out by evaluating the 
evidence for different candidate BNNs with varying 
numbers of hidden nodes. The network architecture that can 
give the highest value of the evidence will be chosen for the 
final use. 

II. CLASSIFICATION BAYESIAN NEURAL 

NETWORK 

A. Feed-Forward Two-Layer Propagation 

Feed-forward two-layer neural networks have been widely 
used in engineering applications. This type of neural network 
can be used for non-linear regression and classification 
problems. The feed-forward propagation of the network can be 
expressed as follows: 

� = ������ + 	�
 = �����
   (1) 

where x is the input vector, w1 is the weight and bias vector on 
the connection from the input nodes to the hidden nodes, b1 is 
the bias of the hidden nodes, a1 is the activation vector of the 
hidden nodes, and f1 is the activation function of the hidden 
nodes, and y is the vector of output values of the hidden nodes. 
The output values of the output nodes are given by: 

� = ���� + 	� = ���
   (2) 

Similarly, �  is the vector of weights and biases on the 

connection from the hidden nodes to the output nodes, 	 is the 
vector of the biases of the output nodes, � is the vector of the 
activation of the output nodes, and � is the activation function 

of the output nodes. In the network, ��, 	�, � and 	 are four 
vectors corresponding to four groups of weights and biases. 

For both regression and classification problems, the 
activation function of the hidden nodes, ��, is the "hyperbolic 
tangent function" (tanh): 

� = �����
 = ���ℎ� ��
 = ������
��������

������
��������
 (3) 

For multi-class classification problems, the activation 
function of the output nodes is the "softmax" function: 

�� = ����� = �������
∑ ������
����

   (4) 

where �� is the activation of the j-th output, �is the number of 

outputs, and �� is the output value of the j-th output node. For 

multi-class classification problems, the error data function has 
the following form: 

 !��
 = − ∑ ∑ �#$ %���#$��
�&#'�($'�   (5) 
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where  ! is called the "entropy" function, �#$  is the output of 
the k-th output node corresponding to the n-th training pattern, 
�#$ is the target corresponding to the k-th output node and the k-

th training pattern, and � = )��, 	�, �, 	+ is the vector of 

weights and biases in four groups. 

B. Network Regularization 

To avoid the overfitting phenomenon for the feed-forward 
neural network when it is trained on noisy and finite training 
data, a weight penalty function should be used by adding it to 
the data function to obtain a cost function as follows: 

,��
 =  !��
 + ∑ -./�./0.'�   (6) 

where �. is the vector of weights and biases in the g-th group, 

and -.  represents the regularization parameters or 

hyperparameters that can be determined using the Bayesian 
approach. Equation (6) is based on the principle of penalizing 
the large weights and biases that can cause overfitting to the 
network when the training data are very noisy and finite. 

C. Bayesian Inference 

The purpose of conventional neural network training is to 
minimize a data error function to obtain specific weight and 
bias values. Meanwhile, the use of the Bayesian approach in 
neural network training considers the distribution of weights 
and biases. Bayesian inference is quite easy to understand. 
Using the Bayes rule, the posterior distribution of weights and 

biases, given the vector of hyperparameters 1 = )-�, -, . . . , -.+ 
and the training data 3, can be expressed as: 

4��|3, 1
 = ��!|6,7
��6|7

��!|7
    (7) 

where 4��, 1
 is the prior distribution of weights and biases, 
4�3|�, 1
  is the dataset likelihood, 4�3|1
  is called the 
evidence, and 4��|3, 1
  is the posterior distribution of 
weights and biases. By assuming that the prior distribution is a 
zero-mean Gaussian distribution: 

4��|1
 = �
89�7
 :�4 ;− ∑ -. <=

0.'� >  (8) 

?<�1
 = ∏ AB
C=

D
9=

E0.'�    (9) 

where ?<�1
  is the normalization constant and F.  is the 

number of weights and biases in group G . The dataset 
likelihood has the following form:  

4�3|�, 1
 = :�4�− !
   (10) 

It was also assumed that at the most probable vector of 
weights and biases, �HI , the cost function can be 
approximated as a quadratic function by a Taylor series 
expansion as follows: 

,��
 = ,��HI
 + �
 �� − �HI
JK�� − �HI
 (11) 

where ,��HI
 is the cost function evaluated at �HI, and K is 
the Hessian matrix of the cost function, which is computed as 
follows: 

K = LL,��HI
 = M + ∑ -.N.0.'�   (12) 

where M = LL !��HI
 is the Hessian matrix of the data error 

function at �HI , and N.  is the diagonal matrix having ones 

along the diagonal that picks weights and biases in the g-th 
group. It can be also assumed that the posterior distribution of 
weights and biases is a Gaussian distribution as follows: 

4��|3, 1
 = �
8O�7
 :�4�−,��
�  (13) 

where ?P�1
  is the normal constant for the Gaussian 
approximation, given by: 

?P�1
 ≈ :�4�,��HI
� �2S
</�U:� K
��/ (14) 

Using Bayes' theorem, the posterior distribution of the 
hyperparameters can be computed as follows: 

4�1|3
 = ��!|7
��7

��!
     (15) 

As 4�3
 does not depend on the network parameters, (15) 
becomes:  

4�1|3
 ≡ 4�3|1
4�1
   (16) 

where 4�1
  is the prior distribution of the hyperparameters. 
This distribution can be assumed to be uniform and can be 
ignored subsequently. Therefore, the values of the 
hyperparameters will be determined according to the maximum 
of 4�3|1
. Re-arranging (7) gives: 

4�3|1
 = ��!|6,7
��6|7

��6|!,7
    (17) 

In (17), all terms of the right-hand side can be determined 
using (8), (10) and (13), therefore (17) yields: 

4�3|1
 = 8O�7

89�7
    (18) 

Substituting (9) and (14) into (18) gives: 

4�3|1
 =  

:�4�,��HI
� �U:� K
��/ ∏ �-.�<=/0.'�  (19) 

Taking the derivative of %� 4 �3|1
 for -.results in:  

W
WC=

%� 4 �3|1
 = <=
C=

−  <= − �
 �X�K��
N. (20) 

By letting this derivative be zero, the following relationship 
can be obtained:  

2-. <= = F. − -.�X�K��
N.   (21) 

The right-hand side of (21) is equal to Y.defined as: 

Y. = F. − -.�X�K��
N.   (22) 

Y. is the number of "well-determined" parameters in group 

G. Substituting (22) into (21) gives: 

-. = Z=
[9=

     (23) 
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For the most probable vector of weights and biases, -. and 

Y. can be used to obtain the log of the evidence of the network 

as follows [15-16]: 

%�  \�]^
 = −,��HI
 + ∑ <=
 %� -.0.'� − �

 %��U:� K
 +   
%� ` ! + ` %� 2 + ∑ b�

 %� A cB
Z=deD − f %��%� g
h0.'�  (24) 

where `  is the number of hidden nodes and f  is a minor 
constant for all networks. Therefore, this factor does not affect 
the relative comparison of different candidate neural networks. 
The network with the highest evidence can be the network 
having the optimal number of hidden nodes. 

D. Quasi-Newton Method 

The neural network training requires the use of an effective 
optimization method to minimize the cost function over the 
space of weights and biases. The Newton method is a 
modification of the conjugate gradient method to obtain fast 
convergence. This method is based on Newton's formula as 
follows: 

�i�� = �i − K���Gi�� − Gi
  (25) 

where �i is the weight and bias vector at the m-th iterative 
step, and �i�� is the weight and bias vector at the m+1-th 
iterative step. Gi is the gradient of the cost function at the m-th 
iterative step and Gi�� is the gradient of the cost function at 
the m+1-th iterative step. K�� = j  is the inverse Hessian 
matrix of the cost function and can be approximated using the 
quasi-Newton method such as the Broyden, Fletcher, Goldfarb, 
and Shanno (BFGS) method as follows [13-14]: 

ji�� = ji + ��k
�kl − �mnl
lkmn

lkmnl + �\Jji\
ooJ  (26) 

where 4, \, and o are defined as: 

4 = �i�� − �i    (27) 

1m mv g g


 
     (28) 

o = �
�kl − mnl

lkmnl    (29) 

III. EDUCATIONAL AUTONOMOUS MOBILE ROBOT 

AND OBSTACLE AVOIDANCE 

This section describes an autonomous mobile robot with 
obstacle avoidance capability using a classification BNN. As 
small two-wheeled robots are easy to get into robotics, the 
educational robot in this study was formed by a popular two-
wheeled mobile robot chassis, as shown in Figure 1, consisting 
of two driving wheels attached to each side of the robot chassis 
and driven by two DC motors. To detect obstacles, the robot 
was equipped with three HC-SR05 ultrasonic sensors, as shown 
in Figure 2, for the following reasons: 

 Ultrasonic sensors can sense all material types. 

 Ultrasonic sensors are not affected by atmospheric dust, 
rain, snow, etc. 

 Ultrasonic sensors can work under any adverse conditions. 

 Ultrasonic sensors have higher sensing distances compared 
to inductive/capacitive proximity sensor types. 

 Ultrasonic sensors provide good readings when sensing 
large-sized objects with hard surfaces. 

A Raspberry Pi 4 embedded computer was used as the main 
controller. Raspberry Pi 4 is the latest series of the Raspberry 
Pi, including more robust performance compared to the 
previous series. The use of Raspberry Pi allows for the 
convenient data acquisition from the ultrasonic sensors 
corresponding to different navigation modes of the robot. In 
addition, Raspberry Pi can facilitate the quick and easy 
development of control algorithms using the Python 
programming language and explore various Python libraries of 
machine learning, such as Scikit-learn, Keras, and TensorFlow. 
An Uninterruptible Power Supply (UPS) HAT for Raspberry Pi 
is used to power it. Figures 3 and 4 show the Raspberry Pi 4 
and the whole robot. The robot and a PC/laptop can 
communicate through a Wi-Fi router and RealVNC software. 
WinSCP software was used to transfer data from the PC to the 
robot and vice versa. 

A. Data Generation 

To develop a BNN-based obstacle avoidance algorithm for 
the robot, a dataset is needed to train and test it. The data 
consists of information from ultrasonic sensor readings and the 
corresponding navigation modes, which can also be known as 
targets. This step can be carried out by human dexterity in 
manually navigating the robot, but this takes significant time, 
and sometimes it is not effective. Instead, an algorithm for 
navigating the robot without obstacle collisions in some 
terrains is proposed to obtain the robot navigation data. 

 

 

Fig. 1.  Two-wheeled mobile robot chassis. 

 
Fig. 2.  The HC-SR05 ultrasonic sensor. 

 
Fig. 3.  Raspberry Pi 4 embedded computer. 
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Fig. 4.  The whole mobile robot. 

Three ultrasonic sensors were used to measure three 
distances from the robot to obstacles, according to three 
directions: left, central, and right. A threshold was then defined 
to categorize each distance variable into two states: far obstacle 
and near obstacle. Experimentally, the suitable value of the 
threshold was set to 30 mm. This means that the robot is near 
an obstacle if the measured distance is less than or equal to 30 
mm, and if the measured distance is greater than 30 mm, the 
robot is far from the obstacle. There are only three navigation 
modes: forward, left, and right movements. For left and right 
movements, the robot is needed to move backward before it 
can turn left or right. 

Table I shows the navigation modes corresponding to three 
states of the three distances. The time required for each 
navigation mode is experimentally determined to avoid too fast 
or too slow response during the robot's navigation around the 
terrain.  

TABLE I.  NAVIGATION MODES ACCORDING TO 
DISTANCE STATES 

Distance state 

Navigation mode 
Left distance  

Central 

distance 

Right 

distance 

Far obstacle Far obstacle Far obstacle Forward movement 

Near obstacle  Far obstacle Far obstacle 
Backward and then 

right movement  

Far obstacle Near obstacle Far obstacle 
Backward and then 

left movement 

Near obstacle Near obstacle Far obstacle 
Backward and then 

right movement 

Far obstacle Far obstacle Near obstacle 
Backward and then 

left movement  

Near obstacle Far obstacle Near obstacle Forward movement  

Far obstacle Near obstacle Near obstacle 
Backward and then 

left movement 

Near obstacle Near obstacle Near obstacle 
Backward and then 

right movement 

 
Table II is used to generate the training data for the 

classification BNN, while Table III shows several patterns, 
including three distance sensor values and corresponding 
navigation target modes. 

TABLE II.  NAVIGATION MODE AND CORRESPONDING 
TARGET VECTORS 

Navigation mode Target vectors 

Forward movement 1 0 0 

Backward movement and then left movement 0 1 0 

Backward movement and then right movement 0 0 1 

 

TABLE III.  SEVERAL INPUT PATTERNS AND 
CORRESPONDING TARGET VECTORS 

Distances from the robot to obstacles (mm) 
Target vectors 

Left Central Right 

65.32 20.09 19.89 0 1 0 

117.12 63.04 47.49 1 0 0 

20.73 24.69 124.07 0 0 1 

81.65 43.43 29.93 0 1 0 

88.82 61.87 47.58 1 0 0 

 
Based on Table I, the robot was programmed to move in an 

environment with some obstacles. Then the data from the three 
ultrasonic sensors corresponding to the robot navigation modes 
were recorded as shown in Table IV. 

TABLE IV.  PATTERNS OF TRAINING DATA 

Navigation mode Number of patterns 

Forward movement 315 

Left movement 40 

Right movement 44 

Total 399 

 

B. Network Training Procedure 

The network training was performed using the Netlab 
software [16], which is an open-source MATLAB neural 
network toolbox with the following features: 

 Netlab was developed using pure MATLAB programming 
language and does not depend on other MATLAB 
toolboxes. 

 It was developed with the automated neural network 
regularization using the Bayesian technique. 

 Based on Netlab, users can rank and compare different 
neural networks with different numbers of hidden nodes to 
finally choose the most suitable number of hidden nodes for 
their applications. 

 Instead of using a fixed value of the learning rate, advanced 
neural network training algorithms in Netlab can be used to 
obtain true convergences when minimizing highly 
nonlinear cost functions. 

The raw data need to be normalized into a range from 0 to 1 
to be used in the network training process. In particular, the 
measured distance sensor values were divided by 1500. The 
structure of the BNN consists of three input nodes, an 
appropriate number of hidden nodes, and three output nodes. 
The network training procedure includes the following steps: 

 Step 1: Values of the network weights and biases were 
randomly initialized using a zero-mean Gaussian 
distribution. 

 Step 2: Initial values of the four hyperparameters 
constraining magnitudes of weights and biases in the four 
groups were also assumed to be small. 

 Step 3: Quasi-Newton optimization was used to minimize 
the cost function. This step can be also known as the weight 
and bias update process. 
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 Step 4: When the cost function reaches a local minimum, 
the hyperparameters can be re-estimated using the 
following equations: 

K = M + ∑ -.pqrN.0.'�      (30) 

Y.pqr = F. − -.pqr�X�K��
N.    (31) 

-.$�6 = Z=stu
[9=

      (32) 

Direct calculation of the Hessian matrix of the data error 
function M can be alternated by an efficient method that does 
not require time-consuming computations [17]. Steps 3 and 4 
were repeated until the hyperparameter values did not change 
significantly in subsequent iterations. 

C. Optimization of Network Structure  

To find the most suitable network structure corresponding 
to the optimal number of hidden nodes, seven networks with 
different numbers of hidden nodes, ranging from 2 to 8, were 
trained and evaluated. As shown in Figure 5, the network with 
four hidden nodes provided the highest log evidence. 
Therefore, the optimal number of hidden nodes is four. 

 

 
Fig. 5.  Log evidence versus the number of hidden nodes. 

Table V shows the confusion matrix of the network 
performance with the training data. The overall accuracy was 
97.24%. After training the network, the robot operated on a 
new terrain. During this period, the information from the 
ultrasonic sensors and the corresponding navigation modes 
were recorded to form the test data, as shown in Table VI. 
Table VII shows the confusion matrix of the network 
performance with the test data. The overall accuracy of the 
navigation mode classification was also relatively high, with a 
successful rate of 96.29%. 

TABLE V.  CONFUSION MATRIX ON THE TRAINING DATA 

  Predicted classification 

  
Forward 

movement 

Left 

movement 

Right 

movement 

Actual 

classification 

Forward 

movement 
309 4 2 

Left movement 3 36 1 

Right movement 0 1 43 

Overall accuracy (%) 97.24 

TABLE VI.  PATTERNS OF THE TEST DATA 

Navigation mode Number of patterns 

Forward movement 161 

Left movement 15 

Right movement 40 

Total 216 

TABLE VII.  CONFUSION MATRIX ON THE TEST DATA 

 

Predicted classification 

Forward 

movement 

Left 

movement 

Right 

movement 

Actual 

classification 

Forward 

movement 
156 1 4 

Left movement 2 11 0 

Right movement 1 0 39 

Overall accuracy (%) 96.29 

 

IV. CONCLUSIONS 

This study demonstrated an interesting exploration of BNN 
classification in developing an effective obstacle avoidance 
algorithm for an educational autonomous mobile robot 
platform. The BNN was trained offline using the quasi-Newton 
optimization technique, and its structure was also optimized 
based on the Bayesian approach. The proposed BNN can 
handle the uncertainty of the training data, so that it can 
generalize well with unseen data. The future direction of this 
research is to investigate obstacle avoidance algorithms based 
on other machine learning algorithms, including Decision 
Trees, Support Vector Machines, Gaussian Naive Bayes, K-
Nearest Neighbors, and Random Forests. Ffurther studies 
should also be performed using other input devices, such as 
laser sensors and cameras, to develop more effective obstacle 
avoidance methods. 
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