
Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12183

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

A Bayesian Neural Network-based Obstacle

Avoidance Algorithm for an Educational

Autonomous Mobile Robot Platform

Anh Hoang

Hanoi University of Science and Technology, Vietnam

anh.hoang@hust.edu.vn

Son Thanh Nguyen

Hanoi University of Science and Technology, Vietnam

son.nguyenthanh@hust.edu.vn (corresponding author)

Tuan Van Pham

Vinh University of Technology Education, Vietnam

tuanvp.bk@gmail.com

Tu Minh Pham

Hanoi University of Science and Technology, Vietnam

tu.phamminh@hust.edu.vn

Linh Viet Trieu

Hanoi University of Science and Technology, Vietnam

linh.trieuviet@hust.edu.vn

Trung Thanh Cao

Hanoi University of Science and Technology, Vietnam

trung.caothanh@hust.edu.vn

Received: 22 August 2023 | Revised: 21 September 2023 | Accepted: 29 September 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6304

ABSTRACT

Autonomous mobile robots belong to automatically controlled objects that are designed and produced for

various demands. This study aimed to develop an inexpensive platform of autonomous mobile robots that

can be used for educational and research purposes in technical universities. The robot was built based on

popular ultrasonic sensors to detect obstacles and a Raspberry Pi 4, which is a Linux-embedded computer.

An effective obstacle avoidance algorithm for the robot was developed using a Bayesian neural network for

classification. Training a Bayesian neural network does not require a validation dataset separate from the

available data. In addition, the Bayesian approach can effectively handle the uncertainty of the system and

result in the best generation for the network when inferring the unseen data. Training data are generated

using robot-to-obstacle distances and the corresponding navigation modes. The commands to control the

left and right motors of the robot are generated by the pretrained Bayesian neural network for three

modes of navigation, forward, left, and right. Finally, this system can be useful as it can be conveniently

integrated with advanced robot control algorithms.

Keywords-autonomous mobile robots; obstacle avoidance; Bayesian neural network

I. INTRODUCTION

Autonomous mobile robots have been widely used in
various industrial applications. In the last decades, there has

been a lot of attention on motion planning for autonomous
mobile robots. The motion planning problem can be divided
into path planning and trajectory planning [1-2]. Path planning
is related to the generation of obstacle-free paths with

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12184

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

geometric characteristics of obstacles and the kinematic
constraints of the robot. Meanwhile, trajectory planning takes
into account the robot's dynamics and moving obstacles
(obstacles not known in advance). Basic navigation of mobile
robots can be divided into the following tasks: (1) generating a
model of the environment in the form of a map, (2) computing
a collision-free path from the starting position to the target, and
(3) following the generated trajectory. The crucial issue of a
mobile robot is executing collision-free motions within its
environment without any human intervention. Therefore,
mobile robots must be equipped with distance sensors such as
ultrasonic distance sensors, laser range sensors, and infrared
sensors to detect obstacles and make decisions about how to
navigate their environment smoothly.

The ability of mobile robots to avoid obstacles can be
implemented by various algorithms. Fuzzy logic has become an
appropriate solution for low-cost mobile robots that do not
require complicated navigation [3-9]. In fuzzy logic, the
linguistic variables of the inputs are combined to create the
linguistic variables of the outputs. As a result, the fuzzy logic
system needs to measure and analyze all inputs before inferring
the outputs. Artificial neural networks can also be used in
mobile robots to avoid obstacles [10-13]. Sonar sensors are
used to obtain data for neural network training, generate
training patterns corresponding to possible environment
scenarios, and then train offline neural networks.

Multi-Layer Perceptron (MLP) neural networks are
commonly used in various applications. The generalization of
the trained neural network, or how well it can predict new
cases, is the key challenge when developing an MLP neural
network. Indeed, an insufficient network complexity can result
in underfitting phenomena, in which significant data may be
ignored. In contrast, excessive network complexity can cause
overfitting, in which noisy data are also fitted. The complexity
of an MLP neural network depends on the magnitudes of the
weights and biases. In addition, the network size, depending on
the number of hidden nodes, can also be used as a useful factor
to measure network complexity. For a long period, the
Bayesian approach has been used to improve the
generalizability of feed-forward neural networks in the case of
finite and noisy data [14-16]. In this process, network
regularization is needed to prevent the network parameters
(weights and biases) from becoming large, because large values
of weights and biases usually cause the overfitting
phenomenon to downgrade the performance of the network
after being trained. When training feed-forward networks, the
values of the regularization parameters can be easily found by
using the Bayesian technique. Feed-forward neural networks
that can be trained using the Bayesian technique are also called
Bayesian Neural Networks (BNNs).

As BNNs can be effective for various classification
problems, this study aimed to provide a procedure for
deploying a classification BNN to navigate the direction of an
autonomous mobile robot with the following aspects:

 Explore the evidence framework to allow all available data
to be used to train BNNs. This work is needed when the
collection of relatively large data is expensive or time-
consuming.

 As the traditional gradient descent algorithm with a fixed
step size and search direction to search local minima
usually causes an excessively large network training time,
this study focused on the quasi-Newton optimization
technique, which is an advanced optimization training
algorithm to automatically adjust the step size and search
direction to optimal values.

 As finding the optimal network architecture is often a time-
consuming task, this study also used the Bayesian model
comparison concept to choose the best network
architecture. This was carried out by evaluating the
evidence for different candidate BNNs with varying
numbers of hidden nodes. The network architecture that can
give the highest value of the evidence will be chosen for the
final use.

II. CLASSIFICATION BAYESIAN NEURAL

NETWORK

A. Feed-Forward Two-Layer Propagation

Feed-forward two-layer neural networks have been widely
used in engineering applications. This type of neural network
can be used for non-linear regression and classification
problems. The feed-forward propagation of the network can be
expressed as follows:

� = ������ + 	�
 = �����
 (1)

where x is the input vector, w1 is the weight and bias vector on
the connection from the input nodes to the hidden nodes, b1 is
the bias of the hidden nodes, a1 is the activation vector of the
hidden nodes, and f1 is the activation function of the hidden
nodes, and y is the vector of output values of the hidden nodes.
The output values of the output nodes are given by:

� = ���� + 	� = ���
 (2)

Similarly, � is the vector of weights and biases on the

connection from the hidden nodes to the output nodes, 	 is the
vector of the biases of the output nodes, � is the vector of the
activation of the output nodes, and � is the activation function

of the output nodes. In the network, ��, 	�, � and 	 are four
vectors corresponding to four groups of weights and biases.

For both regression and classification problems, the
activation function of the hidden nodes, ��, is the "hyperbolic
tangent function" (tanh):

� = �����
 = ���ℎ� ��
 = ������
��������

������
��������
 (3)

For multi-class classification problems, the activation
function of the output nodes is the "softmax" function:

�� = ����� = �������
∑ ������
����

 (4)

where �� is the activation of the j-th output, �is the number of

outputs, and �� is the output value of the j-th output node. For

multi-class classification problems, the error data function has
the following form:

 !��
 = − ∑ ∑ �#$ %���#$��
�&#'�($'� (5)

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12185

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

where ! is called the "entropy" function, �#$ is the output of
the k-th output node corresponding to the n-th training pattern,
�#$ is the target corresponding to the k-th output node and the k-

th training pattern, and � =)��, 	�, �, 	+ is the vector of

weights and biases in four groups.

B. Network Regularization

To avoid the overfitting phenomenon for the feed-forward
neural network when it is trained on noisy and finite training
data, a weight penalty function should be used by adding it to
the data function to obtain a cost function as follows:

,��
 = !��
 + ∑ -./�./0.'� (6)

where �. is the vector of weights and biases in the g-th group,

and -. represents the regularization parameters or

hyperparameters that can be determined using the Bayesian
approach. Equation (6) is based on the principle of penalizing
the large weights and biases that can cause overfitting to the
network when the training data are very noisy and finite.

C. Bayesian Inference

The purpose of conventional neural network training is to
minimize a data error function to obtain specific weight and
bias values. Meanwhile, the use of the Bayesian approach in
neural network training considers the distribution of weights
and biases. Bayesian inference is quite easy to understand.
Using the Bayes rule, the posterior distribution of weights and

biases, given the vector of hyperparameters 1 =)-�, -, . . . , -.+
and the training data 3, can be expressed as:

4��|3, 1
 = ��!|6,7
��6|7

��!|7
 (7)

where 4��, 1
 is the prior distribution of weights and biases,
4�3|�, 1
 is the dataset likelihood, 4�3|1
 is called the
evidence, and 4��|3, 1
 is the posterior distribution of
weights and biases. By assuming that the prior distribution is a
zero-mean Gaussian distribution:

4��|1
 = �
89�7
 :�4 ;− ∑ -. <=

0.'� > (8)

?<�1
 = ∏ AB
C=

D
9=

E0.'� (9)

where ?<�1
 is the normalization constant and F. is the

number of weights and biases in group G . The dataset
likelihood has the following form:

4�3|�, 1
 = :�4�− !
 (10)

It was also assumed that at the most probable vector of
weights and biases, �HI , the cost function can be
approximated as a quadratic function by a Taylor series
expansion as follows:

,��
 = ,��HI
 + �
 �� − �HI
JK�� − �HI
 (11)

where ,��HI
 is the cost function evaluated at �HI, and K is
the Hessian matrix of the cost function, which is computed as
follows:

K = LL,��HI
 = M + ∑ -.N.0.'� (12)

where M = LL !��HI
 is the Hessian matrix of the data error

function at �HI , and N. is the diagonal matrix having ones

along the diagonal that picks weights and biases in the g-th
group. It can be also assumed that the posterior distribution of
weights and biases is a Gaussian distribution as follows:

4��|3, 1
 = �
8O�7
 :�4�−,��
� (13)

where ?P�1
 is the normal constant for the Gaussian
approximation, given by:

?P�1
 ≈ :�4�,��HI
� �2S
</�U:� K
��/ (14)

Using Bayes' theorem, the posterior distribution of the
hyperparameters can be computed as follows:

4�1|3
 = ��!|7
��7

��!
 (15)

As 4�3
 does not depend on the network parameters, (15)
becomes:

4�1|3
 ≡ 4�3|1
4�1
 (16)

where 4�1
 is the prior distribution of the hyperparameters.
This distribution can be assumed to be uniform and can be
ignored subsequently. Therefore, the values of the
hyperparameters will be determined according to the maximum
of 4�3|1
. Re-arranging (7) gives:

4�3|1
 = ��!|6,7
��6|7

��6|!,7
 (17)

In (17), all terms of the right-hand side can be determined
using (8), (10) and (13), therefore (17) yields:

4�3|1
 = 8O�7

89�7
 (18)

Substituting (9) and (14) into (18) gives:

4�3|1
 =

:�4�,��HI
� �U:� K
��/ ∏ �-.�<=/0.'� (19)

Taking the derivative of %� 4 �3|1
 for -.results in:

W
WC=

%� 4 �3|1
 = <=
C=

− <= − �
 �X�K��
N. (20)

By letting this derivative be zero, the following relationship
can be obtained:

2-. <= = F. − -.�X�K��
N. (21)

The right-hand side of (21) is equal to Y.defined as:

Y. = F. − -.�X�K��
N. (22)

Y. is the number of "well-determined" parameters in group

G. Substituting (22) into (21) gives:

-. = Z=
[9=

 (23)

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12186

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

For the most probable vector of weights and biases, -. and

Y. can be used to obtain the log of the evidence of the network

as follows [15-16]:

%� \�]^
 = −,��HI
 + ∑ <=
 %� -.0.'� − �

 %��U:� K
 +
%� ` ! + ` %� 2 + ∑ b�

 %� A cB
Z=deD − f %��%� g
h0.'� (24)

where ` is the number of hidden nodes and f is a minor
constant for all networks. Therefore, this factor does not affect
the relative comparison of different candidate neural networks.
The network with the highest evidence can be the network
having the optimal number of hidden nodes.

D. Quasi-Newton Method

The neural network training requires the use of an effective
optimization method to minimize the cost function over the
space of weights and biases. The Newton method is a
modification of the conjugate gradient method to obtain fast
convergence. This method is based on Newton's formula as
follows:

�i�� = �i − K���Gi�� − Gi
 (25)

where �i is the weight and bias vector at the m-th iterative
step, and �i�� is the weight and bias vector at the m+1-th
iterative step. Gi is the gradient of the cost function at the m-th
iterative step and Gi�� is the gradient of the cost function at
the m+1-th iterative step. K�� = j is the inverse Hessian
matrix of the cost function and can be approximated using the
quasi-Newton method such as the Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) method as follows [13-14]:

ji�� = ji + ��k
�kl − �mnl
lkmn

lkmnl + �\Jji\
ooJ (26)

where 4, \, and o are defined as:

4 = �i�� − �i (27)

1m mv g g

 (28)

o = �
�kl − mnl

lkmnl (29)

III. EDUCATIONAL AUTONOMOUS MOBILE ROBOT

AND OBSTACLE AVOIDANCE

This section describes an autonomous mobile robot with
obstacle avoidance capability using a classification BNN. As
small two-wheeled robots are easy to get into robotics, the
educational robot in this study was formed by a popular two-
wheeled mobile robot chassis, as shown in Figure 1, consisting
of two driving wheels attached to each side of the robot chassis
and driven by two DC motors. To detect obstacles, the robot
was equipped with three HC-SR05 ultrasonic sensors, as shown
in Figure 2, for the following reasons:

 Ultrasonic sensors can sense all material types.

 Ultrasonic sensors are not affected by atmospheric dust,
rain, snow, etc.

 Ultrasonic sensors can work under any adverse conditions.

 Ultrasonic sensors have higher sensing distances compared
to inductive/capacitive proximity sensor types.

 Ultrasonic sensors provide good readings when sensing
large-sized objects with hard surfaces.

A Raspberry Pi 4 embedded computer was used as the main
controller. Raspberry Pi 4 is the latest series of the Raspberry
Pi, including more robust performance compared to the
previous series. The use of Raspberry Pi allows for the
convenient data acquisition from the ultrasonic sensors
corresponding to different navigation modes of the robot. In
addition, Raspberry Pi can facilitate the quick and easy
development of control algorithms using the Python
programming language and explore various Python libraries of
machine learning, such as Scikit-learn, Keras, and TensorFlow.
An Uninterruptible Power Supply (UPS) HAT for Raspberry Pi
is used to power it. Figures 3 and 4 show the Raspberry Pi 4
and the whole robot. The robot and a PC/laptop can
communicate through a Wi-Fi router and RealVNC software.
WinSCP software was used to transfer data from the PC to the
robot and vice versa.

A. Data Generation

To develop a BNN-based obstacle avoidance algorithm for
the robot, a dataset is needed to train and test it. The data
consists of information from ultrasonic sensor readings and the
corresponding navigation modes, which can also be known as
targets. This step can be carried out by human dexterity in
manually navigating the robot, but this takes significant time,
and sometimes it is not effective. Instead, an algorithm for
navigating the robot without obstacle collisions in some
terrains is proposed to obtain the robot navigation data.

Fig. 1. Two-wheeled mobile robot chassis.

Fig. 2. The HC-SR05 ultrasonic sensor.

Fig. 3. Raspberry Pi 4 embedded computer.

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12187

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

Fig. 4. The whole mobile robot.

Three ultrasonic sensors were used to measure three
distances from the robot to obstacles, according to three
directions: left, central, and right. A threshold was then defined
to categorize each distance variable into two states: far obstacle
and near obstacle. Experimentally, the suitable value of the
threshold was set to 30 mm. This means that the robot is near
an obstacle if the measured distance is less than or equal to 30
mm, and if the measured distance is greater than 30 mm, the
robot is far from the obstacle. There are only three navigation
modes: forward, left, and right movements. For left and right
movements, the robot is needed to move backward before it
can turn left or right.

Table I shows the navigation modes corresponding to three
states of the three distances. The time required for each
navigation mode is experimentally determined to avoid too fast
or too slow response during the robot's navigation around the
terrain.

TABLE I. NAVIGATION MODES ACCORDING TO
DISTANCE STATES

Distance state

Navigation mode
Left distance

Central

distance

Right

distance

Far obstacle Far obstacle Far obstacle Forward movement

Near obstacle Far obstacle Far obstacle
Backward and then

right movement

Far obstacle Near obstacle Far obstacle
Backward and then

left movement

Near obstacle Near obstacle Far obstacle
Backward and then

right movement

Far obstacle Far obstacle Near obstacle
Backward and then

left movement

Near obstacle Far obstacle Near obstacle Forward movement

Far obstacle Near obstacle Near obstacle
Backward and then

left movement

Near obstacle Near obstacle Near obstacle
Backward and then

right movement

Table II is used to generate the training data for the

classification BNN, while Table III shows several patterns,
including three distance sensor values and corresponding
navigation target modes.

TABLE II. NAVIGATION MODE AND CORRESPONDING
TARGET VECTORS

Navigation mode Target vectors

Forward movement 1 0 0

Backward movement and then left movement 0 1 0

Backward movement and then right movement 0 0 1

TABLE III. SEVERAL INPUT PATTERNS AND
CORRESPONDING TARGET VECTORS

Distances from the robot to obstacles (mm)
Target vectors

Left Central Right

65.32 20.09 19.89 0 1 0

117.12 63.04 47.49 1 0 0

20.73 24.69 124.07 0 0 1

81.65 43.43 29.93 0 1 0

88.82 61.87 47.58 1 0 0

Based on Table I, the robot was programmed to move in an

environment with some obstacles. Then the data from the three
ultrasonic sensors corresponding to the robot navigation modes
were recorded as shown in Table IV.

TABLE IV. PATTERNS OF TRAINING DATA

Navigation mode Number of patterns

Forward movement 315

Left movement 40

Right movement 44

Total 399

B. Network Training Procedure

The network training was performed using the Netlab
software [16], which is an open-source MATLAB neural
network toolbox with the following features:

 Netlab was developed using pure MATLAB programming
language and does not depend on other MATLAB
toolboxes.

 It was developed with the automated neural network
regularization using the Bayesian technique.

 Based on Netlab, users can rank and compare different
neural networks with different numbers of hidden nodes to
finally choose the most suitable number of hidden nodes for
their applications.

 Instead of using a fixed value of the learning rate, advanced
neural network training algorithms in Netlab can be used to
obtain true convergences when minimizing highly
nonlinear cost functions.

The raw data need to be normalized into a range from 0 to 1
to be used in the network training process. In particular, the
measured distance sensor values were divided by 1500. The
structure of the BNN consists of three input nodes, an
appropriate number of hidden nodes, and three output nodes.
The network training procedure includes the following steps:

 Step 1: Values of the network weights and biases were
randomly initialized using a zero-mean Gaussian
distribution.

 Step 2: Initial values of the four hyperparameters
constraining magnitudes of weights and biases in the four
groups were also assumed to be small.

 Step 3: Quasi-Newton optimization was used to minimize
the cost function. This step can be also known as the weight
and bias update process.

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12188

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

 Step 4: When the cost function reaches a local minimum,
the hyperparameters can be re-estimated using the
following equations:

K = M + ∑ -.pqrN.0.'� (30)

Y.pqr = F. − -.pqr�X�K��
N. (31)

-.$�6 = Z=stu
[9=

 (32)

Direct calculation of the Hessian matrix of the data error
function M can be alternated by an efficient method that does
not require time-consuming computations [17]. Steps 3 and 4
were repeated until the hyperparameter values did not change
significantly in subsequent iterations.

C. Optimization of Network Structure

To find the most suitable network structure corresponding
to the optimal number of hidden nodes, seven networks with
different numbers of hidden nodes, ranging from 2 to 8, were
trained and evaluated. As shown in Figure 5, the network with
four hidden nodes provided the highest log evidence.
Therefore, the optimal number of hidden nodes is four.

Fig. 5. Log evidence versus the number of hidden nodes.

Table V shows the confusion matrix of the network
performance with the training data. The overall accuracy was
97.24%. After training the network, the robot operated on a
new terrain. During this period, the information from the
ultrasonic sensors and the corresponding navigation modes
were recorded to form the test data, as shown in Table VI.
Table VII shows the confusion matrix of the network
performance with the test data. The overall accuracy of the
navigation mode classification was also relatively high, with a
successful rate of 96.29%.

TABLE V. CONFUSION MATRIX ON THE TRAINING DATA

 Predicted classification

Forward

movement

Left

movement

Right

movement

Actual

classification

Forward

movement
309 4 2

Left movement 3 36 1

Right movement 0 1 43

Overall accuracy (%) 97.24

TABLE VI. PATTERNS OF THE TEST DATA

Navigation mode Number of patterns

Forward movement 161

Left movement 15

Right movement 40

Total 216

TABLE VII. CONFUSION MATRIX ON THE TEST DATA

Predicted classification

Forward

movement

Left

movement

Right

movement

Actual

classification

Forward

movement
156 1 4

Left movement 2 11 0

Right movement 1 0 39

Overall accuracy (%) 96.29

IV. CONCLUSIONS

This study demonstrated an interesting exploration of BNN
classification in developing an effective obstacle avoidance
algorithm for an educational autonomous mobile robot
platform. The BNN was trained offline using the quasi-Newton
optimization technique, and its structure was also optimized
based on the Bayesian approach. The proposed BNN can
handle the uncertainty of the training data, so that it can
generalize well with unseen data. The future direction of this
research is to investigate obstacle avoidance algorithms based
on other machine learning algorithms, including Decision
Trees, Support Vector Machines, Gaussian Naive Bayes, K-
Nearest Neighbors, and Random Forests. Ffurther studies
should also be performed using other input devices, such as
laser sensors and cameras, to develop more effective obstacle
avoidance methods.

ACKNOWLEDGMENT

The authors would like to acknowledge Professor Ian
Nabney at the University of Bristol, United Kingdom, for
spending his valuable time supporting the free open-source
Netlab software used in this research.

REFERENCES

[1] O. Esan, S. Du, and B. Lodewyk, "Review on Autonomous Indoor
Wheel Mobile Robot Navigation Systems," in 2020 International
Conference on Artificial Intelligence, Big Data, Computing and Data
Communication Systems (icABCD), Durban, South Africa, Dec. 2020,
pp. 1–6, https://doi.org/10.1109/icABCD49160.2020.9183838.

[2] S. Kumar, M. Majeedullah, A. B. Buriro, and Rohibullah, "Autonomous
Navigation and Real Time Mapping Using Ultrasonic Sensors in NAO
Humanoid Robot," Engineering, Technology & Applied Science
Research, vol. 12, no. 5, pp. 9102–9107, Oct. 2022,
https://doi.org/10.48084/etasr.5180.

[3] M. I. Ibrahim, N. Sariff, J. Johari, and N. Buniyamin, "Mobile robot
obstacle avoidance in various type of static environments using fuzzy
logic approach," in 2014 2nd International Conference on Electrical,
Electronics and System Engineering (ICEESE), Kuala Lumpur,
Malaysia, Sep. 2014, pp. 83–88, https://doi.org/10.1109/ICEESE.
2014.7154600.

[4] L. Ren, W. Wang, and Z. Du, "A new fuzzy intelligent obstacle
avoidance control strategy for wheeled mobile robot," in 2012 IEEE
International Conference on Mechatronics and Automation, Chengdu,
China, Dec. 2012, pp. 1732–1737, https://doi.org/10.1109/ICMA.
2012.6284398.

1 2 3 4 5 6 7 8 9

-300

-250

-200

-150

-100

-50

Number of hidden nodes

L
o
g
 E

v
id

e
n
c
e

Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12183-12189 12189

www.etasr.com Pham et al.: A Bayesian Neural Network-based Obstacle Avoidance Algorithm for an Educational …

[5] A. Pandey, R. K. Sonkar, K. K. Pandey, and D. R. Parhi, "Path planning
navigation of mobile robot with obstacles avoidance using fuzzy logic
controller," in 2014 IEEE 8th International Conference on Intelligent
Systems and Control (ISCO), Coimbatore, India, Jan. 2014, pp. 39–41,
https://doi.org/10.1109/ISCO.2014.7103914.

[6] S. H. A. Mohammad, M. A. Jeffril, and N. Sariff, "Mobile robot obstacle
avoidance by using Fuzzy Logic technique," in 2013 IEEE 3rd
International Conference on System Engineering and Technology, Shah
Alam, Malaysia, Dec. 2013, pp. 331–335, https://doi.org/10.1109/
ICSEngT.2013.6650194.

[7] Y. Chen, Y. Wang, and X. Yu, "Obstacle avoidance path planning
strategy for robot arm based on fuzzy logic," in 2012 12th International
Conference on Control Automation Robotics & Vision (ICARCV),
Guangzhou, China, Sep. 2012, pp. 1648–1653, https://doi.org/10.1109/
ICARCV.2012.6485438.

[8] B. Kasmi and A. Hassam, "Comparative Study between Fuzzy Logic
and Interval Type-2 Fuzzy Logic Controllers for the Trajectory Planning
of a Mobile Robot," Engineering, Technology & Applied Science
Research, vol. 11, no. 2, pp. 7011–7017, Apr. 2021,
https://doi.org/10.48084/etasr.4031.

[9] H. Medjoubi, A. Yassine, and H. Abdelouahab, "Design and Study of an
Adaptive Fuzzy Logic-Based Controller for Wheeled Mobile Robots
Implemented in the Leader-Follower Formation Approach,"
Engineering, Technology & Applied Science Research, vol. 11, no. 2,
pp. 6935–6942, Apr. 2021, https://doi.org/10.48084/etasr.3950.

[10] W. Budiharto, "Intelligent Surveillance Robot with Obstacle Avoidance
Capabilities Using Neural Network," Computational Intelligence and
Neuroscience, vol. 2015, May 2015, Art. no. e745823,
https://doi.org/10.1155/2015/745823.

[11] K. H. Chi and M. F. R. Lee, "Obstacle avoidance in mobile robot using
Neural Network," in 2011 International Conference on Consumer
Electronics, Communications and Networks (CECNet), Xianning, China,
Apr. 2011, pp. 5082–5085, https://doi.org/10.1109/CECNET.2011.
5768815.

[12] B. Ko, H. J. Choi, C. Hong, J. H. Kim, O. C. Kwon, and C. D. Yoo,
"Neural network-based autonomous navigation for a homecare mobile
robot," in 2017 IEEE International Conference on Big Data and Smart
Computing (BigComp), Jeju, Korea (South), Oct. 2017, pp. 403–406,
https://doi.org/10.1109/BIGCOMP.2017.7881744.

[13] K. K. A. Farag, H. H. Shehata, and H. M. El-Batsh, "Mobile Robot
Obstacle Avoidance Based on Neural Network with a Standardization
Technique," Journal of Robotics, vol. 2021, Nov. 2021, Art. no.
e1129872, https://doi.org/10.1155/2021/1129872.

[14] D. J. C. MacKay, "The Evidence Framework Applied to Classification
Networks," Neural Computation, vol. 4, no. 5, pp. 720–736, Sep. 1992,
https://doi.org/10.1162/neco.1992.4.5.720.

[15] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK:
Clarendon Press, 1995.

[16] I. Nabney, NETLAB: Algorithms for Pattern Recognition. Berlin,
Germany: Springer Science & Business Media, 2002.

[17] M. F. Møller, "A scaled conjugate gradient algorithm for fast supervised
learning," Neural Networks, vol. 6, no. 4, pp. 525–533, Jan. 1993,
https://doi.org/10.1016/S0893-6080(05)80056-5.

AUTHORS PROFILE

Tuan V. Pham received a B.Eng., an M.Sc., and a

Ph.D. in electrical engineering from Hanoi University

of Science and Technology (HUST), Vietnam, in

2008, 2012, and 2019, respectively. He has worked as

a lecturer in the Faculty of Electrical Engineering, at

Vinh University of Technology Education, Vietnam.

His research interests include electric machines and

drives, power electronics, electrical motor parameter

estimation, artificial intelligence, and machine

learning.

Son T. Nguyen received a B.Eng. and an M.Sc. in

electrical engineering from Hanoi University of

Science and Technology (HUST), Vietnam, in 1997

and 1999, and a Ph.D. in electrical engineering from

the University of Technology, Sydney (UTS),

Australia in 2007. He worked as a postdoctoral
researcher in computer science at the University of

Kent (United Kingdom) in 2012. He holds an

Australian patent for an effective hands-free control

system used by severely disabled people based on head direction and

electroencephalography. He is currently a main lecturer at the School of

Electrical and Electronic Engineering, HUST. His research interests include

electric machines, power electronics, and assistive technologies for severely

disabled people.

Anh Hoang is currently a lecturer at the Hanoi

University of Science and Technology. He received his

Ph.D. in Sustainable Industrial Systems from Lorraine

University, France. He is currently focusing on design

and installation of electrical systems, sustainability,

and renewable energy systems. He was also active in

energy/emission auditing programs and built up

roadmap for energy efficiency standards. His current

research interests include prognostic, energy audit,

maintenance plan, and energy management.

Tu M. Pham received a B.Eng. and an M.Sc. in

electrical engineering from the Hanoi University of

Science and Technology (HUST), Vietnam, in 2009

and 2012, respectively. He is currently pursuing a
Ph.D. in Electrical Engineering, at the School of

Electrical and Electronic Engineering, HUST. He has

worked as a lecturer in the School of Electrical and

Electronic Engineering, HUST. His research interests

include high-efficiency electrical machines, power

reactors, reactive power compensation technology, and

renewable energy.

Linh V. Trieu received an M.Sc. in electrical

engineering from St. Petersburg State Transport

University (PGUPS), Russia, in 1993 and a Ph.D. in

electrical engineering from the Russian University of

Transport (MIIT) in 1997. He has worked as a lecturer

at the Hanoi University of Science and Technology

(HUST). His research interests include the design of

electrical machines.

Trung T. Cao was born in Vietnam in 1978. He
received a B.S. and an M.Sc. in automatic control from
the Hanoi University of Science and Technology
(HUST), in 2001 and 2010, respectively. Since 2002,
he has been a lecturer at the School of Electrical and
Electronic Engineering, HUST. His research interests
include fault detection and isolation, optimization, and
optimal control.

