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ABSTRACT 

Over the past few years, there has been an undeniable surge in the deployment of IoT devices. However, 

this rapid growth has brought new challenges in cybersecurity, as unauthorized device deployment, 

malicious code modification, malware deployment, and vulnerability exploitation have emerged as 

significant issues. As a result, there is a growing need for device identification mechanisms based on 

behavior monitoring. To address these challenges, Machine Learning (ML) and Deep Learning (DL) 

techniques have been increasingly employed due to advances in the field and improved processing 

capabilities. However, cyber attackers have developed adversarial attacks that focus on modifying contexts 

and evading ML evaluations applied to IoT device identification solutions. This article highlights the 

importance of addressing cybersecurity challenges in the IoT landscape and proposes a hardware 

behavior-based individual device identification approach using an LSTM-MLP architecture. The proposed 

architecture was compared to the most common ML/DL classification techniques using data collected from 

45 Raspberry Pi devices running identical software and showing promising results in improving device 

identification. The proposed LSTM-MLP method outperformed previous solutions, achieving an average 

increase in F1-Score of +0.97 and a minimum TPR of 0.97 for all devices. 

Keywords-IoT devices; cybersecurity challenges; device identification; LSTM-MLP architecture; adversarial 

attacks 

I. INTRODUCTION  

The latest revolution in communication technologies and 
processing has paved the way for a significant increase in the 
deployment of Internet-of-Things (IoT) devices [1]. The 
versatility of these devices has led to their widespread use in 
various applications, including Industry 4.0, Smart Cities, 
homes, and healthcare, resulting in a diverse range of IoT 
device types to meet different scenarios. System-on-Chip 
(SoC) devices, such as Raspberry Pi (RPi), have become 
popular due to their relatively high processing power, 
flexibility, and cost-effectiveness, making them even more 
appealing than less powerful alternatives [2]. However, this 
increase in processing power has also brought about 
cybersecurity challenges, as more powerful IoT devices can be 
used for more powerful attacks, such as Distributed Denial of 
Service (DDoS) attacks or crypto jacking attempts [3]. 
Securing the IoT landscape, especially with the use of SoCs, is 
crucial to ensure its proper functioning and protection against 
potential threats. 

A vital aspect of IoT security lies in accurately identifying 
each deployed device to prevent the presence of unauthorized 
devices. While traditional static identifiers were used, attackers 

can easily manipulate or duplicate them. To address this issue, 
many methods deal with the behavior of the device during the 
identification process [4]. IoT device identification based on 
behavior can be approached from different levels related to 
specific environment requirements [4]. Behavioral 
identification is treated by two main approaches: type 
identification or device model, which categorizes devices based 
on characteristics like network activities and running processes, 
and individual device identification, which distinguishes 
devices of the same model through low-level component 
analysis or radio frequency fingerprinting. Individual device 
identification offers the highest level of security but requires 
meticulous monitoring of chip manufacturing variations to 
differentiate between devices with identical hardware and 
software [5]. The analysis of hardware performance is a widely 
used technique, in which the behavior of components such as 
the CPU, GPU, or RAM is monitored during specific tasks [6]. 
However, attackers can exploit the usage patterns or context of 
the device to manipulate the values that generate the device 
fingerprint, thus disrupting the identification process. 

In recent years, the application of Machine Learning (ML) 
techniques has become increasingly prominent in IoT security 
and is now widely used for device identification [7-8]. 
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However, with the adoption of ML/DL techniques, adversarial 
attacks against these models have emerged that aim to interfere 
with the training process or deceive the model predictions, 
posing various threats to the ML/DL pipeline [9]. Attackers can 
poison training data, exploit vulnerabilities in testing data, or 
infringe privacy by inferring data from the model and its 
gradients [10-11]. Even ML/DL-based IoT identification 
solutions have not been immune to these adversarial attacks 
[12]. Context modifications and the use of crafted adversarial 
samples during the identification process have demonstrated 
that these solutions are also vulnerable [13-15]. 

This study tackled the complex challenges associated with 
merging hardware-based individual device identification, 
ML/DL techniques, and adversarial attacks, encompassing 
several significant contributions: 

 Comprehensive threat model: A comprehensive threat 
model was defined that covers the entire data lifecycle, 
from the creation of device fingerprints to their evaluation. 
This model mainly involves the utilization of ML and DL 
techniques, considering the potential vulnerabilities and 
threats at each stage of this process. 

 Innovative neural network architecture: This study applied 
a neural network architecture called LSTM-MLP (Long 
Short-Term Memory - Multi-Layer Perceptron). This 
architecture was designed to identify individual devices 
based on their hardware performance behavior. Instead of 
treating performance measurements as isolated data points, 
this model treats them as time series data, allowing more 
effective data processing and pattern extraction to improve 
the accuracy of device identification. 

 Performance evaluation: A performance comparison was 
conducted to assess the effectiveness of the proposed 
LSTM-MLP architecture with various ML and DL 
classification approaches. The LwHBench dataset [16] was 
used, which consists of hardware performance and behavior 
data collected from 45 RPi devices running identical 
software configurations. The proposed model achieved 
remarkable results, with an average F1-Score of 97.5% and 
a True Positive Rate (TPR) of 97.2%. These results 
demonstrate the superiority of the proposed approach in 
accurately identifying individual devices based on their 
hardware performance behavior. 

II. RELATED WORKS 

A. Hardware-centric Individual Device Recognition 

In [6], the variance in the GPU and CPU cycle counters 
within RPi devices was juxtaposed to achieve a distinctive 
identification of 25 devices, using XGBoost and achieving a 
TPR of 91.92%. In [15], GPU performance patterns were 
coupled with ML and DL classification algorithms, achieving 
accuracy levels ranging from 95.8% to 32.7% for nine batches 
of similar devices. In [5], variations in code execution 
proficiency were evaluated to recognize more than 260 
indistinguishable computers. The Real-Time Clock (RTC), 
equipped with its unique physical oscillator, was used to 
identify subtle deviations in the execution capabilities of 
individual CPUs. This process involved comparing the CPU 

time counter, RTC chip, and the Digital Signal Processor 
(DSP) within the sound card to precisely identify identical 
computers. In [17], Physical Unclonable Functions (PUFs) 
were investigated for IoT device identification, although this 
study exclusively focused on hardware behavior fingerprinting 
driven by device performance and did not consider PUFs. 
Hardware-centric approaches suffer from many limitations: 

 Hardware-centric focus: While this approach can be 
effective for certain scenarios, it may not be suitable for 
cases where device hardware is not readily accessible or 
where software-based emulation can deceive the 
recognition system. 

 Dependency on specific hardware elements: These methods 
heavily rely on specific hardware elements, such as GPU 
and CPU cycle counters, RTC chips, and DSPs, to 
distinguish devices. This reliance limits its applicability to 
devices that possess these particular components and may 
not work on devices lacking them. 

 Limited scalability: Some studies achieved recognition of a 
relatively small number of devices. This limited scalability 
may restrict its utility for large-scale deployments or 
networks with numerous identical devices. 

 Varying accuracy: Using this approach, the accuracy of 
device identification varies widely, ranging from high to 
lower accuracy levels. Such variability in accuracy can be 
problematic for applications that require consistent and 
reliable identification. 

 Exclusion of PUFs: These approaches did not use PUFs for 
IoT device identification, which is a distinct and widely 
investigated method in the field. PUFs offer unique 
advantages, including enhanced security, and their 
exclusion may limit effectiveness in certain contexts. 

B. Context-focused Attacks 

In hardware-based identification solutions, the context in 
which the identification code or tasks are executed can 
significantly influence the collected data and, consequently, the 
results. For example, temperature variations may affect the 
frequency of crystal oscillators, and hardware load can 
introduce delays due to process scheduling. In the hands of a 
malicious attacker, these context conditions can be manipulated 
to disrupt the identification process, rendering it unusable or 
generating measurements that mimic another device. 

The studies mentioned in the previous section briefly 
addressed context-related issues that could affect the 
identification process. In [6], it was found that device rebooting 
and concurrent processes had an impact on identification 
results if not implementing proper process isolation 
mechanisms for data collection. However, the usual 
temperature changes based on the device load did not appear to 
significantly affect the results. In [15], it was shown that 
environmental temperatures between 26.4 ºC and 37 ºC did not 
have a significant impact on the identification results, but 
device rebooting had a considerable negative effect, reducing 
the accuracy to 50.3%. This study suggested that voltage 
variations should be considered as a future evaluation line. On 
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the other hand, in [5], the identification application was 
evaluated under different CPU loads and temperatures, 
obtaining positive results in both scenarios, while the 
temperature impact analysis was only mentioned as part of 
future work, and no context-based experiments were 
performed. Despite the existing research on device 
fingerprinting and identification based on hardware 
performance behavior, none of the previous studies extensively 
explored the potential impact of context-focused attacks on 
their results. This aspect remains largely unexplored and 
presents a crucial area for further investigation. 

C. ML/DL-focused Adversarial Attacks 

Adversarial ML/DL is a research area dedicated to 
developing accurate and highly robust models that can 
withstand tampering attempts [10]. It involves the study of 
various attacks against ML/DL models and the defense 
techniques employed to enhance their security. These attacks 
can be categorized into different types:  

 Poisoning attacks during the training process, where 
malicious samples are used to compromise the integrity of 
the model. 

 Evasion attacks target the model evaluation process, 
attempting to deceive a legitimately trained model into 
misclassifying samples. 

 Model extraction attacks involve an attacker trying to infer 
the model based on its predictions. 

This study focused on evasion attacks, specifically to 
deceive a model trained for device identification into 
misclassifying a malicious device as a legitimate one. Within 
evasion attacks, there are two main types: non-targeted attacks, 
which aim to misclassify samples into any different class than 
their original one, and targeted attacks, which aim to make the 
model classify a malicious sample as a specific target class. 

Numerous evasion attacks are commonly found. One of the 
first DL-based attacks is the Fast Gradient Sign Method 
(FGSM) [18], which performs one-step updates on an 
adversarial sample, following the direction of gradient loss in 
an attempt to move the sample to the boundary of a different 
class. The Basic Iterative Method (BIM) [19] builds on FGSM 
by incorporating iterative optimization. This involves applying 
FGSM multiple times with small perturbation steps. The 
Momentum Iterative Method (MIM) [20] introduces 
momentum in iterative FGSM or BIM to mitigate the influence 
of local minimum or overfitting in generating adversarial 
samples. Projected Gradient Descent (PGD) [21] is an 
extension of BIM that does not impose constraints on the 
iteration steps. The DeepFool L2 attack [22] minimizes the 
Euclidean distance between the original and adversarial 
samples by estimating the model decision boundary using a 
linear classifier. Jacobian-based Saliency Map Attack (JSMA) 
[23] is a common attack based on the Jacobian matrix [24] of 
the model to determine the sensitivity direction and perform 
feature selection, minimizing the number of modified 
characteristics from the original data sample. Boundary Attack 
[25] generates a random adversarial sample and optimizes the 
L2 norm of the perturbation to make the sample similar to the 

original legitimate vector while maintaining the 
misclassification result. Carlini and Wagner (C&W) Attack 
[26] proposes an optimization-based method to generate 
adversarial samples, which can be applied to three distance 
metrics: L0, L2, and L1. L0 measures the number of modified 
features, L2 measures the Euclidean distance between benign 
and adversarial samples, and L1 measures the maximum 
change in any feature. The Generative Adversarial Network 
(GAN) attack uses GAN models to generate realistic 
adversarial samples that can deceive the classifier. 

Several defense mechanisms have been developed against 
such attacks [27]. These countermeasures aim to make models 
resilient to adversarial samples and can be classified into 
detection and robustness methods. Detection methods focus on 
identifying crafted malicious samples before evaluation, while 
robustness methods aim to make the model resistant to the 
evaluation of adversarial samples. Additionally, defense 
mechanisms can be attack-specific or attack-agnostic, 
depending on whether they target improving resilience against 
a specific attack. Adversarial Training [28] is a widely used 
defense technique that involves training models with malicious 
samples to reduce the impact of attacks that generate them. 
Knowledge distillation [29] is another method applied to 
improve robustness during training, by generating smaller 
models using the base model outputs as features, leading to 
smoother decision boundaries and reduced sensitivity to 
adversarial samples [30]. 

In [31], the effects of different non-targeted and targeted 
adversarial attacks (such as FGSM, BIM, PGD, and MIM) 
were investigated on a CNN used for radiofrequency-based 
individual device identification. Similarly, in [32], the 
resilience of network-based IoT identification ML models was 
assessed against adversarial samples generated using FGSM, 
BIM, and JSMA. The results showed that classifier models 
with more than 90% accuracy experienced a performance drop 
to 75-55% when exposed to maliciously crafted samples. From 
a different perspective, in [33], the impact of adversarial 
samples on ML/DL models for user identification based on 
motion sensors was evaluated, achieving nearly 100% attack 
success rates with FGSM, JSMA, DeepFool, and Boundary 
Attacks. In [34], it was shown that GAN-based attacks had 
even more significant effects in the user identification context. 
In [14] and [35], a review of adversarial attacks in ML 
solutions applied in network security was conducted, 
demonstrating the substantial impact of adversarial attacks on 
ML-based security systems and underscoring the need for 
further research on attack and defense methods in this area. 

The novelty of the proposed approach lies in its exploration 
of uncharted territory within the field of cybersecurity. Several 
key aspects set this work apart from previous research: 

 Combining context and ML/DL attacks: At first, unlike 
previous studies, context-based attacks were combined with 
ML/DL-focused attacks. This fusion of attack 
methodologies has not been extensively investigated in the 
past. This focus opens new avenues for understanding and 
mitigating threats that arise from both contextual factors 
and advanced ML/DL techniques. 
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 Untapped potential of defense mechanisms: Furthermore, 
while ML and DL-focused attacks have been examined in 
the context of device or user identification, previous studies 
did not fully exploit the potential of existing defense 
mechanisms. This study recognized this oversight and 
actively explored the benefits and effectiveness of these 
defense strategies. 

 Addressing a literature gap: This study serves as a 
pioneering contribution to the field, offering valuable 
insight into the intricate interplay between attack and 
defense techniques within the specific context of hardware-
based individual device identification and LSTM/ML-based 
methods. By addressing this gap, this study enriches the 
understanding of security challenges in these domains and 
paves the way for more robust and effective security 
solutions. 

III. THE PROPOSED ARCHITECTURE 

A. Threat Model 

The threat model centers on the phase where the 
identification solution is already trained and operational, thus 
exclusively focusing on threats that impact device evaluation. 
In this context, potential attackers can target either the 
hardware that generates the data or the LSTM/ML models 
responsible for data assessment. Within this framework, the 
following threats are identified: 

 Fingerprint eavesdropping and hijacking [36]: An adversary 
could intercept the data that constitute a fingerprint, 
whether during in-device data collection, communication, 
or processing (on a server or the device itself). The data 
obtained could then be used on another device to 
impersonate the identity of the original device. This threat 
assumes limited knowledge of the fingerprint generation 
process, as well as of the functions and components used 
during the process. 

 Fingerprint forgery [37]: Given that the components and 
frequencies of the device are public knowledge, an attacker 
who knows the functions used to generate fingerprints 
might attempt to craft a new fingerprint that closely 
resembles that of a legitimate device. This threat might 
involve a trial-and-error or brute-force approach, 
necessitating an in-depth understanding of the fingerprint 
generation process and the values comprising the 
fingerprint. 

 Context modification [38]: As fingerprints are constructed 
from data collected during the execution of specific 
software tasks, an attacker might attempt to alter the 
conditions under which the fingerprint is generated. This 
could lead to the failure to recognize a genuine device or 
result in forged fingerprints emulating another device. 
Context manipulation can take various forms, such as 
increasing the device temperature (using external tools or 
intensive hardware usage) or introducing software that 
introduces kernel interruptions into the fingerprint 
collection process. Efforts must be made to isolate the 
fingerprint collection program from these interactions as 
much as possible. 

 ML/DL evaluation evasion [39]: In LSTM/ML-based 
solutions, an attacker possessing sufficient access to the 
evaluation model could craft malicious data samples to 
deceive the LSTM/ML solution. These samples might 
impersonate a specific device through trial and error or 
targeted attacks, as mentioned above. 

In light of these considerations, a robust individual device 
identification solution must thoroughly account for and 
evaluate these identified threats. Doing so is essential to ensure 
accurate operation and resilience against potential attacks. The 
LSTM/ML framework is run for hardware-based individual 
device identification, providing the foundational results that 
will underpin subsequent analysis of attack and defense 
techniques. 

B. Data Collection and Preprocessing 

Within the realm of hardware-driven individual device 
recognition, it becomes crucial to oversee the variations 
occurring within the device's chips, with the intent of 
subsequent assessment. Previous studies contrasted 
components via different crystal oscillators or fundamental 
frequencies, leveraging the ability to detect discrepancies in 
component behavior originating directly from the device. 
Establishing the foundation for individual device identification 
requires the creation of a dataset comprising metrics linked to 
specific hardware components within devices. This dataset, 
labeled LwHbench, was further expanded in [16]. In pursuit of 
this goal, performance metrics that include GPU, CPU, 
Storage, and Memory were amassed from 45 distinct RPi 
devices representing various models over 100 days. An array of 
functions was executed across these components, with other 
hardware components operating at distinct frequencies to 
facilitate performance measurement. These functions were 
related to device core temperature, timestamp, elapsed GPU 
cycles during sleep, times taken by CPU, memory, storage, and 
others. The dataset consists of a set of samples as described in 
Table I. Countermeasures were taken to mitigate noise from 
other processes on the devices, including fixed component 
frequency, kernel-level priority, execution on an isolated CPU 
core, and randomized memory address deactivation. In 
addition, the dataset was built according to the variation of the 
temperature conditions, facilitating analysis of the contextual 
impact on component performance. 

TABLE I.  LWHBENCH DATASET FEATURES 

Hardware Model Number of boards Number of samples 

RPi 1B+ 10 505,584 

RPi4 15 784,095 

RPi3 10 547,800 

RPiZero 10 548,647 

 
Following the approach outlined in [6], feature extraction 

using sliding windows was performed in each device. This 
involved extracting statistical features such as median, average, 
maximum, minimum, and summation. The rationale behind 
this lies in the overlap in the distribution of raw feature values 
across devices due to limited variability in component 
performance. Thus, statistical metrics, such as median and 
average, help to distinguish partially overlapping distributions. 
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For this step, only a subset of available raw features was 
chosen, as having fewer features helps to streamline the 
training of ML/DL models. A total of 440 features were 
extracted from each device's dataset, composed of many 
operations such as sleeping time, string hashing, urandom, 
matrix mul, matrix sum, list creation, memory reserve, CSV 
read, storage read, and storage write. In addition to sliding 
windows, a direct assessment of raw data vectors without the 
aforementioned sliding window processing was undertaken. 
This approach was guided by the belief that a vast dataset of 
raw values could yield favorable results in DL models, which 
can gain internal insights from the data. In this scheme, only 
timestamp and temperature features were filtered and the 
remaining values (totaling 215) were used as features for the 
models. Furthermore, a time series-based assessment was 
performed, in which samples were concatenated into groups of 
10 vectors. This grouping method allows the application of 
time series DL models like LSTM and 1D-CNN [40], which 
are adept at extracting intricate trends that can yield superior 
results than the isolated processing and assessment of 
individual samples. 

Mitigating noise in the LwHBench dataset is essential to 
ensure the accuracy of data analysis and identification tasks. 
Several countermeasures were used: 

 Isolation and Resource Allocation: Allocate dedicated 
resources to target processes to reduce interference from 
background tasks. 

 Real-Time Systems: Use real-time operating systems to 
prioritize critical tasks and prevent interruptions during data 
collection. 

 Data Filtering and Preprocessing: Apply data filtering and 
preprocessing techniques, such as signal processing and 
outlier removal, to extract relevant information and 
eliminate noise. 

 Data Averaging: Reduce the impact of transient noise by 
averaging multiple measurements over time to obtain a 
more stable dataset. 

C. Architecture of LSTM-MLP 

This study used an LSTM-MLP neural network to 
categorize performance data acquired from the devices. This 
architecture has shown robust capabilities in various time series 
contexts, such as identifying human activities [41], predicting 
gold prices [42], and analyzing DNA protein binding [43]. The 
structure of the neural network merges the LSTM and MLP 
layers, facilitating the extraction of patterns from the input 
sequences. The significant benefit of this approach is the 
combination of recurring patterns obtained through the LSTM 
layer's memory capabilities and the spatial patterns derived by 
the MLP layer's utilization of kernels on neighboring features, 
resulting in the generation of more intricate patterns. Figure 1 
provides an overview of the LSTM-MLP architecture to 
distinguish sanctioned and unsanctioned devices. In the training 
phase, the binary cross-entropy loss function is applied to 
samples as follows: 

� � �
�

�
∑ ��	 log�� � 1 � �	�log 1 � ���    �  (1) 

where s is the number of features in the vector, Rl is the real 
label of the identification attempt, and p is the probability of 
the predicted model. 

 

 
Fig. 1.  The proposed LSTM-MLP architecture. 

IV. EXPERIMENTATION AND RESULTS 

After applying the two data preprocessing approaches to 
generate the two datasets, one encompassing raw values and 
the other incorporating sliding-window-based features, device 
identification experiments were carried out to compare the 
proposed LSTM-MLP and prevalent ML/DL classification 

models. In [6], ML classifiers were directly used, utilizing 
statistical features related to CPU and GPU. In addition, the 
LSTM and MLP networks were evaluated for time series 
approaches. Additionally, a more intricate multi-input network, 
fusing one LSTM and one MLP input layer, was implemented 
for comparison. These experiments were carried out on a server 
equipped with an Intel Xeon Silver 4310 CPU and an NVIDIA 
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A100 GPU. Table II shows the algorithms and hyperparameters 
explored. Furthermore, for algorithms that require data 
normalization, the Quantile Transformer [44] was applied due 
to variations in data distribution between different device 
models based on hardware capabilities. Training and cross-
validation used 80% of the data, while testing used the 
remaining 20%. To avoid potential order-related correlations, 
the train/test split was conducted without vector shuffling. 

TABLE II.  CLASSIFICATION ALGORITHMS AND 
HYPERPARAMETERS 

Model Hyperparameters 

Naive Bayes No hyperparameter tunning required 

k-NN K ∈ [3, 20] 

SVM 
C ∈ [0.01, 100], gamma ∈ [0.001, 10], kernel ∈{'rbf', 

linear',' sigmoid',' poly'} 

AdaBoost n_estimators ∈ [10, 100] 

XGBoost 
lr ∈ [0.01, 0.3], max_depth ∈ [3,15], min_child_weight ∈ 

[1, 7], gamma ∈ [0, 0.5], colsample_bytree ∈ [0.3, 0.7] 

Decision Tree 
max_depth ∈ [None, 5, 10, 15, 20], min_samples_split ∈ 

[2, 3, 4, 5]  

Random Forest 
number_of_trees ∈ [50, 1000], max_depth ∈ [None, 5, 

10, 15, 20], min_samples_split ∈ [2, 3, 4, 5] 

MLP 

n_layers ∈ [1, 3], neurons_layer ∈ [100, 500], batch_size 

∈ [32, 64, 128, 256, 512] activation = relu, optimizer = 

[SGD, adam, adamax] 

1D-CNN 
filters = [16, 32, 64, 128], kernel_size = [3, 5, 7], 

n_layers = [1, 2, 3], optimizer = [SGD, adam, adamax] 

LSTM 
neurons = [10, 100], n_layers = [1, 2, 3], optimizer 

[SGD, adam, adamar]  

Multi_1DCNN 

LSTM 

input_layers = [2, 3], cnn_filters = [16, 32, 64, 128], 

cnn_kernel_size = [3, 5, 7], 1stm_neurons = [10, 100], 

n_layers = [1, 2, 3], optimizer = [SGD, adam, adamax] 

 
The MLP model was iterated across various epoch counts 

(50, 100, 150, and 250) accompanied by batch sizes ranging 
from 300 to 500. After evaluation, it was determined that the 
most favorable configuration consisted of an epoch count of 
150 paired with a batch size of 500. During training, ten rounds 
of cross-validation tests were carried out and Figure 2 presents 
the results, showcasing an average accuracy of 97.23%, 
indicating its notable effectiveness.  

 

 

Fig. 2.  Accuracy results. 

Table III presents a comparison between the proposed 
LSTM/MLP and other artificial intelligence models. The 
LSTM-MLP model had the most robust performance, 
achieving approximately 97% accuracy when using raw data 
features, as shown in Figure 3. 

TABLE III.  COMPARISON BETWEEN MODELS 

Model Accuracy Precision Recall F1-score 

SVM 78.3% 79.5% 78.2% 78.4% 

k-NN 45.2% 46.7% 45.2% 44.7% 

Naïve Bayes 45.6% 47.3% 45.6% 44.7% 

XGBoost [6] 90.5% 91.7% 90.5% 90.8% 

AdaBoost [45] 7% 0.6% 7% 1.1% 

Decision Tree [46] 78.1% 78.9% 78.2% 78.3% 

Random Forest [47] 85.4% 86.6% 85.4% 85.7% 

MLP [48] 88.9% 89.6% 88.8% 88.9% 

LSTM [49] 93.4% 94.3% 93.4% 93.4% 

1D-CNN [50] 94.2% 94.5% 94.2% 94.2% 

1D-CNN-LSTM [51] 95.3% 95.5% 95.3% 95.3% 

LSTM-MLP 97.2% 97.6% 97.5% 97.5% 

 

 
Fig. 3.  MLP trained-test accuracy. 

Metrics such as accuracy, precision, recall, and F1-score 
assess the performance of classification models. Accuracy 
calculates the proportion of accurately predicted instances 
compared to the total instances within a dataset, providing a 
holistic understanding of the model's performance in accurately 
categorizing data points. Precision focuses on the number of 
accurate positive predictions compared to the total instances 
predicted as positive, denoting the percentage of positive 
predictions that were genuinely accurate. Precision becomes 
valuable when there is a significant consequence for making 
false positive predictions. Recall evaluates the accurate positive 
predictions for the total actual positive instances, showcasing 
the model's capability to correctly recognize all occurrences of 
a specific class. The F1-score constitutes the harmonic average 
of precision and recall, establishing an equilibrium between 
them considering both false positives and false negatives. The 
F1-score proves especially beneficial when aiming for a trade-
off between precision and recall, particularly in scenarios 
characterized by an imbalanced distribution of classes. The 
LSTM-MLP provided higher results by achieving 
approximately 97.2% accuracy, 97.6% precision, 97.5% recall, 
and 97.5% F1-score.  

V. DISCUSSION 

The proposed LSTM-MLP model introduced significant 
advantages that promise to revolutionize the way to safeguard 
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IoT ecosystems and authenticate individual devices. Foremost 
among its merits is its ability to significantly enhance security 
in IoT environments. By shifting the paradigm from traditional 
static identifiers, such as MAC addresses, to dynamic hardware 
performance behavior, the LSTM-MLP model thwarts 
attackers' attempts to impersonate or clone devices. This 
innovative approach creates formidable barriers against 
malicious incursions, reinforcing the overall security 
infrastructure of IoT ecosystems. Moreover, the model 
masterfully addresses the pervasive vulnerability of spoofing, a 
perennial concern in IoT security. Static identifiers are 
notoriously susceptible to manipulation and imitation, whereas 
the LSTM-MLP model, rooted in behavior-based attributes, 
resiliently resists such attempts and mitigates a major security 
loophole in IoT environments.  

The LSTM-MLP's proficiency in anomaly detection is 
another hallmark of its utility. Protection of IoT devices 
involves vigilant monitoring for deviations from established 
behavior patterns, as they could signal security breaches or 
device malfunctions. The model's ability to capture long-term 
dependencies within device behavior data proves invaluable, as 
it excels in identifying unusual activities, facilitates the early 
detection of potential threats, and enables swift responses to 
security incidents. This adaptability extends to the model's 
ability to accommodate the inherent variability among IoT 
devices. The IoT encompasses a multitude of devices, each 
with its unique hardware components and performance 
characteristics. The LSTM-MLP model exhibits remarkable 
adaptability, learning to differentiate between individual 
devices regardless of their idiosyncrasies. This adaptability 
positions it as a versatile and reliable solution for 
heterogeneous IoT environments. Furthermore, the model's 
resilience to environmental fluctuations is notable. IoT devices 
operate in diverse and dynamic settings. The proficiency of the 
LSTM-MLP model in processing sequential data and adapting 
to evolving behavior patterns makes it suitable for such 
challenging scenarios, as it remains strong in the face of 
environmental changes and maintains the integrity of device 
identification and security measures. 

False positives in security alerts have been a persistent 
headache for IoT security practitioners. However, the LSTM-
MLP model reduces the incidence of false alarms, as it 
distinguishes between normal variations in device behavior and 
genuine security threats with a high degree of accuracy. This 
accuracy translates into more actionable and reliable alerts, 
allowing security teams to respond effectively to real threats. 
Scalability is a quintessential requirement for IoT, which often 
involves vast networks of numerous devices. The LSTM-MLP 
model excels in this regard, demonstrating the ability to process 
and identify devices in real-time, even at the scale of IoT 
ecosystems consisting of thousands or even millions of devices. 
This scalability is crucial for the effective implementation of 
security measures in expansive IoT deployments. The 
versatility of the LSTM-MLP model is further exemplified by 
its applicability in a wide spectrum of IoT use cases. Whether it 
is securing smart homes, industrial IoT systems, healthcare 
applications, or other domains, the model proves its mettle in 
protecting device integrity and fortifying security. 

A key attribute that elevates the LSTM-MLP model is its 
capacity for continuous learning. In the ever-evolving 
landscape of IoT security, threat landscapes morph and device 
behavior patterns evolve. Its ability to adapt and refine its 
accuracy over time is a strategic advantage, as it ensures that 
IoT security measures remain effective, even as threats grow in 
sophistication and diversity. Lastly, the model significantly 
reduces reliance on centralized servers, a potential weak point 
in IoT security architectures. Although some approaches 
heavily depend on centralized infrastructure for authentication 
and identification, the LSTM-MLP model can operate locally 
on devices. This decentralization minimizes the risk associated 
with single points of failure and network vulnerabilities, 
reinforcing the robustness of IoT security. 

VI. CONCLUSIONS AND FUTURE WORK 

The surge in IoT device deployment has spurred the 
creation of novel device identification solutions based on 
hardware behavior and ML/DL processing. However, these 
solutions face challenges from adversarial attacks that aim to 
undermine their efficiency. This study delved into the 
assessment of hardware behavior-based device identification 
performance. The LwHBench dataset, comprising samples 
from 45 RPi devices operating on identical software images, 
was harnessed to train ML/DL classifiers entrusted with 
individual device identification. This study proposed an 
artificial intelligence model that combined LSTM and MLP. 
The experimental results showed an average F1-score of 97.5% 
while successfully identifying all devices by setting a threshold 
at a TPR of 97.2%, outperforming other methods. Future work 
involves exploring adversarial attack and defense techniques, 
including those grounded in generative models, to 
comprehensively improve the robustness of this solution. 
Additionally, the research roadmap involves experimenting 
with fully distributed model generation and harnessing 
federated learning to circumvent data sharing and centralization 
challenges. 
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