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ABSTRACT 

The impact of disasters on the population and environment is an important research area. Multiple criteria 

need to be analyzed while making policy decisions in order to control the effect of a disaster. Researchers 

have used many variants of the Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS), a Multi-Criteria Decision-Making (MCDM) method for prioritizing the alternatives. 

Additionally, the detrimental effects of disasters have compelled stakeholders to proactively prepare by 

strengthening crucial key elements of an Early Warning System (EWS) so that timely alerts can be 

produced. In this paper, a Disaster Information Provider (DIP) framework is proposed, which employs a 

TOPSIS variant to bolster weak elements of a people-centric EWS. Governments may utilize delivered 

rankings to strengthen the weak elements of the EWS in an affected area. Extensive experimentation 

proves the usability of the DIP framework for strengthening EWS. 
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I. INTRODUCTION  

Disasters severely impact an area, often beyond its response 
capacity, leading to environmental impact and considerable 
loss of human life and property [1]. To contain the spread and 
considerably reduce the impact of disasters, there is a need for 
an upgraded Early Warning System (EWS) [2]. 

A. Background and Motivation 

In 2020, use of multi-hazard EWSs successfully protected 
human life in 23 UN countries with a success rate of 93.63% 
[2], which proves their relevance and appropriateness. 
Communities, local organizations, and governments utilize 
EWSs to assess the risk and warn people in advance so that 
timely action could be taken [3]. Authors in [4] developed an 
EWS to mitigate the overall morbidity and mortality rates. 
Authors in [5] reviewed existing EWS methodologies for real 
time identification of at-risk patients in hospitals. Authors in 
[6] advocated the expansion of EWS for better forecasting and 
anticipatory action. The World Meteorological Organization 
recently employed Impact Based Forecasting (IBF), which 
creates warnings highlighting potential implications of a 
climate related threat in addition to providing weather 

information [7]. Authors in [8] suggested a low cost EWS to 
the people residing in nearby wildlife areas to resolve human-
wildlife conflicts [8]. Governments all over the world look for 
different ways to strengthen their respective EWSs. Driven by 
this objective, we propose a novel method to strengthen people-
centric EWS for better disaster preparedness in the future.   

B. Contribution 

In 2020, Data Knowledge Group (DKG) provided a 
COVID-19 Regional Safety Assessment Analytical Framework 
[9]. It ranked 200 affected regions emphasizing on monitoring 
6 criteria (quarantine efficiency, government efficiency of risk 
management, monitoring and detection, health readiness, 
regional resilience, and emergency preparedness). Such 
monitoring enables the government to lay out strategic plans 
for disaster preparedness. Motivated by this, we propose a 
novel Disaster Information Provider (DIP) framework. The 
ranking provided by DIP signals the disaster readiness of a 
region in comparison to other regions. This knowledge can be 
used by weaker regions (having lower ranking) to prepare 
against future disasters of a similar nature more effectively. 
Extensive experimentation was carried out to study the 
effectiveness of the proposed DIP framework. 
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II. DISASTER INFORMATION PROVIDER 
FRAMEWORK 

EWS sensors continuously observe disturbances in the 
environment to receive inputs and accordingly generate 
warnings for any impending disasters. This paper proposes an 
innovative DIP framework (Figure 1) to better combat disasters 
in future. The objective of the framework is to rank the disaster 
affected regions with respect to 4 key elements of people-
centric EWS, i.e. (i) Risk Knowledge (RK), (ii) Dissemination 
and Communication (DC), (iii) Monitoring and Warning 
Service (MWS), and (iv) Response Capability (RC) [10]. Each 
of these criteria (elements) is governed by multiple sub-criteria. 
Although these criteria and their sub-criteria are closely woven, 
sometimes they may get conflict [11]. We used the Technique 
for Order of Preference by Similarity to Ideal Solution 
(TOPSIS), a popular Multi-Criteria Decision-Making (MCDM) 
technique, which balances good results of some criteria with 
bad results of others, with the objective of minimizing the 
distance from the ideal case and maximizing the distance from 
the worst case [12]. A decision matrix, consisting of several 
alternatives (options) and sub-criteria (attributes) along with 
their weights is used as input in MCDM techniques. It ranks 
the alternatives with respect to sub-criteria in a real-world 
MCDM problem, e.g., ranking different car models on the basis 
of price, speed, and engine displacement. TOPSIS has also 
been applied to rank companies’ stock and determine priorities 
of stock purchase for investment [13]. Authors in [14] report 
that for effective decision-making during a crisis, choosing the 
appropriate risk analysis approach within the maritime 
transportation is essential. With the aim to minimize training 
rejection returns, authors in [15] used TOPSIS to provide 
prioritized accreditation training process model based on 
internal and external criteria established by the National 
Agency for Evaluation and Quality Assurance of Higher 
Education and Training [15]. Its applicability to project 
selection process for non-profit organizations having two 
sternly related factors viz. restricted budget and social aspects, 
proves its potency [16]. It has also been used in fields like 
evaluating green performance of suppliers [17] and improving 
human resource management [18]. Further, to obtain better 
ranking of alternatives, the literature suggests various variants 
of TOPSIS, with the aim to reduce Rank Reversal Problem 
(RRP) and to assign appropriate weights to the criteria/sub-
criteria. An RRP is a variation in the rank ordering of the 
alternatives when additional/existing alternatives are 
added/deleted [19]. Authors in [20] rank disaster affected 
regions using TOPSIS and suggested the use of variants of 
MCDM techniques and exploring refined sub-criteria for 
enhanced safety ranking and disaster preparedness [20].  

The proposed DIP framework uses a novel TOPSIS variant 
to obtain enhanced ranking. The DIP consists of three units: (i) 
Sub-Criteria Analyzer, (ii) Weight Analyzer, and (iii) Ranking 
Unit. The functionality of three units of the DIP framework is 
described below. 

A. Sub-Criteria Analyzer 

A key to any successful disaster management plan is 
choosing the right combination of decision criteria for the 
current situation. Several user-defined sub-criteria associated 

with a disaster may be conflicting to each other, so it is 
important to categorize them carefully under key elements of 
the EWS to make informed quality decisions [21]. The first 
element of the EWS is RK which establishes a systematic, 
standardized process to collect, assess and share data, maps, 
and trends on hazards. The second element, DC, is responsible 
for ensuring that people and communities are warned of an 
impending disaster, and facilitate coordination and information 
exchange at regional and/or national level. The third element, 
MWS, establishes an effective hazard monitoring and warning 
service with a sound scientific and technological basis. The 
fourth element, RC, strengthens the ability of communities to 
respond to natural disasters by educating them about hazard 
risks, community participation, and disaster preparedness [22].  

 

 
Fig. 1.  The Disaster Information Provider (DIP) framework. 

Authors in [23] highlight the importance of considering 
current data as well as past knowledge of EWS to handle 
disasters effectively. The Sub-Criteria Analyzer integrates 
information regarding the prior and the recent disasters in terms 
of user-defined sub-criteria to strengthen the key elements of 
the people-centric EWS. Using the past data, it reallocates the 
existing multiple sub-criteria related to disasters under the 4 
key elements of the people-centric EWS and delivers 4 
corresponding Decision Matrices (DMs), with rows as regions 
and columns as sub-criteria. Note that, in Figure 1, every user-
defined sub-criterion has not been categorized to the DC 
element due to the absence of their direct association. Further, 
red and green sub-criteria signify cost and benefit sub-criteria, 
which is a required input for TOPSIS to be operational (see 
Appendix I).  
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B. Weight Analyzer 

The four DMs corresponding to each key element of the 
EWS serve as input to the Weight Analyzer for computing the 
weights of the sub-criteria. These weights are used to construct 
4 weighted DMs which serve as input to the Ranking Unit. The 
weight Analyzer computes sub-criteria weights using the 
entropy metric (see (1a), (1b)). Literature suggests that entropy-
based weights methods are better than others because they 
avoid RRP [24].   

�� = − �
��� 	 ∑ ��

∑ ������
��� ��

∑ ������
	���   (1a) 

�� = ���
∑ ��������

     (1b) 

where �� indicates the resilience (weight) of � regions on sub-

criterion �, such that  ∑ �� = 1���� , �� indicates the vulnerability 

(entropy) of � regions on sub-criterion �, 0 ≤ �� ≤ 1 , and "�� 
is the performance value of region # on the sub-criterion �. 

C. Ranking Unit 

The Ranking Unit (Figure 2) deploys a novel TOPSIS 
variant, for ranking the regions considering the past 
performance of regions along with current performance of 
regions during catastrophes. It is executed in three phases, with 
two inputs, decision matrix $"%  and weight '� , for each sub-
criterion �, to output the rank of regions obtained as per the 
score of TOPSIS variant. For each EWS element, a region with 
low rank is implied to have outstanding disaster preparedness 
for that element. 

Phase I starts with the normalization of the input DM $"%  
using max-linear normalization to avoid RRP [24]. 
Subsequently, the weights (resilience) of the sub-criteria are 
multiplied with $"% to obtain the performance of each region 
DM $(% with respect to the overall performance of DIP on each 
sub-criterion. Phase II computes two separation vectors namely 
a hypothetically best ()*) and worst ()�) solution set [25] to 
identify the best solution which is not only closest to the best 
possible solution, but also the farthest from the worst possible 
solution [20]. In order to get the hypothetical best solution )*, 
the maximum value for the benefit criterion (�*  and the 

minimum value for the cost criterion (��  from � regions are 
considered. Similarly, the hypothetical worst solution )� 
corresponds to negative ideal (worst) criteria values in $(% 
where benefit criterion (�* takes the lowest value while the cost 

criterion (��  takes the highest. Further, separation vectors 

)�*and )�� are obtained for each region # from its corresponding 
positive and negative  ideal solutions respectively. Euclidean 
distance is used for the calculation of the separation vectors due 
to its popularity and simplicity over other distance measures 
[25, 26]. The computed separation vectors for each region # are 
used in phase III, to decide their ranking based on their distance 
from the optimized ideal reference point + . It is found that 
irregularities occur in traditional TOPSIS due to calculations of 
positive and negative ideal solutions using relative distance 
measure [27]. Instead of calculating the relative closeness to 
the positive ideal solution, the Ranking Unit obtains the 
absolute closeness to the positive ideal solution (,�*) and the 

absolute farness from the negative ideal solution (-��) for each 
region #. The idea is to get a solution that is closest to the ideal 
reference point +, so that the absolute rank score .�  for each 
region # is the closest to the positive ideal reference point and 
the farthest from the negative ideal reference point. The smaller 
the value of .� , the closer is ,�* to point + and the farther is -�� 
to point +. Thus, the regions are ranked in increasing order of .� . The Ranking Unit is executed four times to obtain four 
different ranks of a region, with each rank corresponding to a 
unique element of the EWS. Note that non-numerical factors 
(qualitative scales) of EWS, if any, are converted into 
quantitative ones before providing the input to the Ranking 
Unit. A numerical example detailing the three phases of the 
Ranking Unit is shown in Appendix II.  

 
Input:  $/% : DM where "��  is the performance value of region # on the sub-

criterion �. 01 weights indicating the resilience of � regions on sub-

criterion �, such that  ∑ �� = 1����  

Output: Dict 2 with regions ranked in increasing order of .�.  
Process of the Ranking Unit:   

// Phase I: Computing Weighted Normalized DM $3% 
// Normalizing Decision matrix $"% 
For "�� in $"% do  

      #4 � 5 6*7ℎ9:  "�� = ��
��;<        9�=9 "�� = 1 − ��

��;<              

// 6*: {set of user-specified benefit sub-criteria}  
// 6�: {set of user-specified cost sub-criteria}    
For each element  "�� in $"% do 

       (�� = �� ∗ "��                       

// Phase II: Construction of Separation Vectors     
// Set {)*} and {)�} indicates hypothetical positive and negative ideal 
solution for each region 
For (� in $(% do 

#4 � 5 6*7ℎ9:  (�* =  max ((��)  9�=9 (�* = min ((��) 

    {)*} = {)*}^ (�*                    

For (� in $(% do 

     #4 � 5 6*7ℎ9:  (�� =  min ((��)  9�=9  (�� = max ((��) 

 {)�} = {)�}^ (��                    

//Compute Separation Vectors ()�* & )��) for each region  
For (�  in $(% do 

  )�* =  ∑ H∑�(�� − (�*�I
�       

 )�� =  ∑ H∑�(�� − (���I
�       

//Phase III Ranking of Regions    
// create empty dictionary to store regions with their corresponding score  
D= {}   
// Point + indicates optimized ideal reference point  

Let +�,K,, -M�; ,K  = �#:()*) O:P -M  = �OQ()�)      

For each region # do 
 ,�* =  )�* − ,K       
 -�� =  )�� −  -M       
// ,�* is the absolute closeness of region # to positive ideal solution 
// ,�� is the absolute farness metric of region # to negative ideal solution 

      .� = H$,�*%I + S-��IT  

// .� is the score of the region # considering its closeness and farness from 
ideal solution 
     D.update(#, .�  ) 
Sort the dictionary D in increasing order of scores.  

Fig. 2.  Rankin Unit pseudo code. 
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III. EXPERIMENTAL PART 

In order to demonstrate the utility of the novel DIP 
framework, we used Python 3 for coding and DKG report for 
the dataset [9]. Usability of DIP framework is initially shown 
by testing the efficacy of the Sub-Criteria Analyzer in sub-
section A, followed by validating the performance of the 
Ranking Unit in sub-section B. The ranks obtained by the 
proposed DIP framework are discussed in sub-section C. We 
intend to work on sensitivity analysis in the future for 
signifying the use of vulnerability and resilience in the Weight 
Analyzer.  

A. Efficacy of the Sub-Criteria Analyzer using EWS Criteria 

The Sub-Criteria Analyzer allocates 34 sub-criteria [9] as 
per the definition of the four key elements of the people-centric 
EWS [22]. This allocation resulted into three DMs, each 
corresponding to a component of the EWS representing 
performance value. In each matrix, a row represents a region 
and a column indicates a sub-criterion. Each cell in the matrix 
shows the performance value of a sub criterion for a region 
(alternative). Mapping of sub-criteria is detailed in Appendix I. 

Nine sub-criteria were categorized under the RK class, 
reflecting prior knowledge of the risk faced by the 
communities, with 6 of them as benefit sub-criteria and 3 as 
cost sub-criteria. Seven fall under the MWS class emphasizing 
on technical monitoring and warning services in the disaster-
prone region. Considering the economic stability of the disaster 
affected region, 2 sub-criteria were classified as cost whereas 5 
were taken as benefit sub-criteria. The rest of the 17 sub-
criteria relate to the preparedness and the capability of the 
communities to cope up with disaster in the affected regions, so 
they were classified under the RC class of the EWS. Four were 
used as cost and 13 as benefit sub-criteria. In the absence of a 
direct association of any of the given 34 sub-criteria with the 
DC element, this element is not used while ranking. The 
Ranking Unit of the DIP framework is executed for each of the 
performance matrices to obtain rankings of all regions at level 
1. Hence, each region is assigned 3 ranks, where the rank of a 
particular region reflects the performance of the region with 
respect to a particular key element of the EWS. Ranks for 
regions at level 2, 3 and 4 are not calculated due to the 
unavailability of data in the DKG report.  

The 3 ranks for each region obtained by the Ranking Unit 
were aggregated for comparing the efficacy of the Sub-Criteria 
Analyzer with that of the DKG categorization. The Spearman 
rank correlation of the aggregated ranks was computed with 
that of DKG rank. In order to validate the efficacy of the Sub-
Criteria Analyzer, the obtained results were compared with 
those of the DKG-TOPSIS (see Table I). Further, the average 
Mean Absolute Error (MAE) and Root Mean Squared error 
(RMSE) were computed to measure the net error score for each 
of the three key elements. The EWS-TOPSIS method was 
found to perform slightly better, clearly indicating that the 
ranking reported in the DKG report was preserved when the 
Sub-Criteria Analyzer allocated sub-criteria using the EWS 
categorization. Lower values of the metrics for EWS-TOPSIS 
confirm the enhanced performance of the Sub-Criteria 
Analyzer deploying EWS categorization. We recommend the 

use of RMSE in strengthening EWS as it is more sensitive to 
outliers leading to avoidance of large errors in predicted scores.  

TABLE I.  COMPARISON OF SUB-CRITERIA ANALYZER 
WRT DKG-TOPSIS AND EWS-TOPSIS 

Error Value/ Rank Correlation DKG-TOPSIS EWS-TOPSIS 
Average MAE 0.19 0.14 

Average RMSE 0.22 0.09 
Spearman rank correlation 0.85 0.88 

 

B. Validating the Performance of the Ranking Unit  

The ranks of the disaster affected regions at levels 1 are 
computed by employing 6 standard benefit criteria as 
mentioned in the DKG report using the Ranking Unit (RU-
TOPSIS) and by using the traditional TOPSIS method (T-
TOPSIS). Average MAE and RMSE were also calculated to 
measure the errors in the predicted scores by RU-TOPSIS and 
T-TOPSIS methods using the actual DKG scores along with 
Spearman rank correlation (Table II). Lower error values for 
RU-TOPSIS compared to T-TOPSIS and higher values of rank 
correlation vindicate the capability of the Ranking Unit in 
generating scores nearly close to the DKG scores. Hence, that 
variant of TOPSIS used in Ranking Unit seems promising for 
ranking disaster affected regions efficiently. 

TABLE II.  COMPARISON OF RANKING WITH RESPECT TO 
T-TOPSIS AND RU-TOPSIS 

Error Value/ Rank Correlation T-TOPSIS RU-TOPSIS 
Average MAE 0.27 0.15 
Average RMSE 0.31 0.11 

Spearman rank correlation 0.83 0.86 
 

C. Discussion on the Ranks obtained by the Proposed DIP 
Framework 

The results presented above depict that the proposed DIP 
framework is effective for understanding the preparedness of 
regions for combating similar disasters in future. The ranks 
obtained by DIP for regions of level I with respect to each key 
element of EWS are shown in Table III. Regions with higher 
scores compared to the DKG report should concentrate more 
on pre-disaster preparedness with respect to that particular key 
element of the EWS. Precisely, Switzerland (CH) and Israel 
(IL) should pay heed to all the three elements of EWS although 
they were ranked first in the DKG framework. Improved ranks 
for Netherlands (NL), Saudi Arabia (SA), and Vietnam (VN) 
compared to DKG ranks reveal better preparedness and hence, 
must pursue existing strategies to excel further. Countries like 
Canada (CA), Denmark (DK), New Zealand (HU), and 
Singapore (SG) should re-evaluate the strategies to strengthen 
the RC element of EWS. The line graph plotted in Figure 3 
uses the scores computed by the components for better 
visualization of the preparedness as per the EWS framework. It 
is visible that most of the countries, excluding China (CH) and 
Vietnam (VN), are aware of RK. However, all except Austria 
(AT) fallback on MWS criteria. Intermediate scores for RC 
reveal further strengthening of the adopted strategies for 
combating the disaster by all countries, excluding Japan (JP) 
and Korea (KA). 
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TABLE III.  REGION RANKS AS PER KEY ELEMENTS OF 
EWS 

Region 
Rank 

Region 
Rank 

DKG RK MWS RC DKG RK MWS RC 

AU 8 6 15 14 NL 19 13 11 17 
AT 6 8 1 13 NZ 9 12 3 15 
CA 12 10 10 16 NO 14 11 18 18 
CN 7 19 9 5 SA 17 16 17 11 
DK 15 7 12 20 SG 4 3 2 8 
DE 2 1 19 3 KR 10 9 20 4 
HK 13 17 4 6 CH 1 5 8 2 
HU 18 14 14 19 TW 16 18 7 9 
IL 3 4  7 AE 11 15 13 10 
JP 5 2 6 1 VN 20 20 16 12 

Australia (AU), Austria (AT), Canada (CA), China (CN), Denmark (DK),, Germany (DE), 
Hong Kong (HK), Hungary (HU), Israel (IL), Japan (JP), Netherlands (NL), New Zealand 
(NZ), Norway (NO), Saudi Arabia (SA), Singapore (SG), South Korea (KR), Switzerland 

(CH), Taiwan (TW), United Arab Emirates (AE), Vietnam (VN) 

 

 
Fig. 3.  Comparison of the scores obtained by the three key elements of the 
EWS. 

IV. CONCLUSION 

To better train governments to fight disasters like COVID-
19 there is a need to reinforce key elements of a people-centric 
Early Warning System (EWS). Inspired by this, the authors 
propose a Disaster Information Provider (DIP) framework with 
the goal of ranking disaster-affected regions based on their past 
performance under the key elements of the EWS. The obtained 
ranking provided by DIP identifies weak elements of EWS in a 
specific region, allowing policymakers to plan more operative 
tactical strategies to fight future pandemics. The proposed DIP 
framework is a stand-alone model and can work for different 
disasters by modifying the input data to the Sub-Criteria 
Analyzer, such as reducing the risk accompanying with 
cyclones and sidestepping the probable damages due to 
tsunamis. 

APPENDIX I 

TABLE IV.  CATEGORIZATION OF SUB-CRITERIA UNDER 
KEY ELEMENTS OF EWS 

Criteria/ Sub-Criteria 
Description 

Type Name 

Risk Knowledge: RK 

RK1 
Geopolitical 

vulnerabilities 
Region's political instability based on its 

economic & military strength. 

RK2 Economic sustainability 
Region’s capacity to remain economically 

sustainable after pandemic. 
RK3 Previous national Emergencies focusing on preparation 

emergency experience policies and government-led emergency 
relief efforts. 

RK4 
Societal emergency 

resilience 
Resilience, preparedness, past history, 

psychological/cultural/religious attitudes. 

RK5 Chronic diseases 
Geographic risk in terms of proximity to 
infection prone areas, # border crossings, 

number of # population dense areas. 

RK6 Infection spread risk 
Number of citizens prone to risk of getting 

infected with covid. 

RK7 
Level of modern 

sanitization methods 
Poor sanitization higher risk 

RK8 
Covid-19 equipment 

availability 
Total and per capita emergency equipment 

stockpiles. 

RK9 
Epidemiology system 
level of development 

Epidemiology system of a region in terms 
of quantity, distribution and sophistication. 

Monitoring and Warning Service: MWS 

MWS1 
Monitoring & disaster 

management 
Sophisticated surveillance and monitoring 

technologies. 

MWS2 
Government surveillance 

technology 
Monitoring infection rate & compliance 

with quarantine measures. 

MWS3 
Reliability and 

transparency of data 
Reliability of reported statistics. 

MWS4 
Scope of diagnostic 

methods 
Diverse diagnostic techniques and their 

effectiveness 

MWS5 
AI for diagnostics and 

prognostics 
Usage of AI analysis of results reducing the 

manpower needed. 
MWS6 Scale of quarantine Lockdown/social distancing. 
MWS7 Quarantine timeline How early quarantine measures are taken. 

Response Capability: RC 

RC1 
Economic and supply 

chain freezing 
Freeze via lockdown. 

RC2 Travel restrictions Restrictions on citizens and tourists. 

RC3 
Economic support for 

quarantines 
Support for citizen’s capacity to stay at 

home. 

RC4 
Criminal penalties for 
violating quarantine 

Presence and severity of region’s criminal 
penalties for violation. 

RC5 
Mobilization of new 
healthcare resources 

Region’s preparedness to mobilize 
additional healthcare resources. 

RC6 
Quantity and quality of 

medical staff 
Education and expertise 

RC7 
Level of healthcare 

progressiveness 
Quality of medical treatment 

RC8 
Level of technological 

advancement 
Sophistication/modernization/effectiveness 

of healthcare system. 

RC9 Testing efficiency 
Time of testing and availability of lab 

personnel 

RC10 
Culture specifics and 

societal discipline 
Cultural and societal focus on health and 

sanitization 
RC11 Demography Vulnerable demographics 

RC12 
Level of security and 
defense advancement 

To neutralize external threat 

RC13 Legislative efficiency 
Deploying emergency response legislation 

(law) 

RC14 
Rapid emergency 

mobilization 
Capacity to mobilize emergency response 

RC15 
Emergency military 

mobilization experience 
Past experience of mobilizing military 

RC16 
Efficiency of government 

structure 
Effective governance to identify risk-prone 

regions 

RC17 Surveillance capabilities 
Scale, scope and sophistication of 

surveillance capabilities. 
* Considered as Cost in order to take care of the economic situation of a region. 
** Considered as Cost as these activities may cause havoc among the people of 

a region. 
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APPENDIX II 

Illustration of HU-TOPSIS on MWS Elements of EWS 

Table V shows two inputs for the MWS element of EWS, 
namely the decision matrix $/% taken from the DKG report [9] 
and the sub-criterion weight ( 01 ). Note that weights are 
calculated using (1b). In Phase I, the weight of each criterion 
(01) is multiplied with the corresponding normalized values of 
$/% to obtain the weighted normalized decision matrix $(% , 
shown in the same table. In Phase II, positive ()*) and negative 
()�) ideal solutions are obtained and the values are shown as 
the last two rows in Table V. Subsequently, for each region, 
positive and negative separation distances ()�*  and )�� ) are 
computed with respect to the ideal solutions ()*, )�), which 
are plotted in Figure 4. Here, the values of )�*  and )��  are 
plotted on the y-axis for all the regions plotted on the x-axis. It 
clearly shows that )UV*  attains minimum value among all the 
regions (shown in blue color). Also, )UV�  attains maximum 
value among all the regions (shown in red color). Hence, 
Austria is closest to its positive ideal solution )UW*  and farthest 
from its negative ideal solution )UW� . So, it should be given rank 
1. Likewise, )XY*  gets maximum value among all the regions 

(shown in blue color) and )XY�  gets minimum value among all 
the regions (shown in red color), thereby making South Korea 
(KR) the farthest from its positive ideal solution and the closest 
to its negative ideal solution. So, it should be given the last 
rank. It is difficult to find the rank for regions like IL (Israel) 
and JP (Japan) by simply visualizing the graph in Figure 4. So, 
we move to phase III. On execution of RU-TOPSIS on level 1 
regions, score .�  obtained is shown in Figure 5 with the 
corresponding ranks shown in red squares. 

 

 
Fig. 4.  Plot of )�* and )�� obtained by RU-TOPSIS. 

TABLE V.  INPUT FOR THE RANKING UNIT AS PER THE MWS ELEMENTS OF THE EWS 

Region MWS1 MWS2 MWS3 MWS4 MWS5 MWS6 MWS7 

AU 18 1 8.5 0.5 11.33 0.65 15 1 15 1 16.51 0.07 5.67 0.63 
AT 18 1 8.5 0.5 11.33 0.65 15 1 15 1 16.64 0.07 15.67 0 
CA 18 1 17 1 11.33 0.65 15 1 15 1 15.67 0.12 5.67 0.63 
CN 12 0.6 17 1 11.33 0.65 15 1 15 1 17.91 0 5.67 0.63 
DK 18 1 12.75 0.75 11.33 0.65 15 1 15 1 16.82 0.06 5.67 0.63 
DE 18 1 13.6 0.8 17 0.98 15 1 15 1 16.51 0.07 4.25 0.72 
HK 18 1 17 1 17.33 1 15 1 15 1 10.54 0.41 10.63 0.32 
HU 18 1 8.5 0.5 11.33 0.65 15 1 15 1 17.75 0 5.67 0.63 
IL 18 1 15.98 0.94 17 0.98 15 1 15 1 12.67 0.29 10.63 0.32 
JP 18 1 15.3 0.9 17 0.98 15 1 15 1 17.81 0 10.63 0.32 
NL 18 1 17 1 11.33 0.65 15 1 15 1 14.87 0.16 5.67 0.63 
NZ 18 1 12.75 0.75 11.33 0.65 15 1 15 1 17.76 0 11.33 0.27 
NO 18 1 8.5 0.5 11.33 0.65 15 1 15 1 14.34 0.19 5.67 0.63 
SA 18 1 8.5 0.5 11.33 0.65 15 1 15 1 14.57 0.18 5.67 0.63 
SG 18 1 14.96 0.88 17 0.98 15 1 15 1 13.65 0.23 12.75 0.18 
KR 18 1 14.17 0.83 11.33 0.65 15 1 15 1 15.1 0.15 0 1 
CH 18 1 9.18 0.54 17 0.98 15 1 15 1 15.36 0.14 10.63 0.32 
TW 18 1 13.6 0.8 11.33 0.65 15 1 15 1 15.2 0.15 10.63 0.32 
AE 18 1 13.6 0.8 8.5 0.49 15 1 15 1 15.75 0.12 5.67 0.63 
VN 18 1 8.5 0.5 11.33 0.65 15 1 15 1 15.33 0.14 5.67 0.63 
01 0.015846 0.180596 0.116155 6.88E-15 6.88E-15 0.036619 0.650784 

{Z*} 0.015846 0.180596 0.116155 6.88E-15 6.88E-15 0 0 

{Z�} 0.010564 0.090298 0.056972 6.88E-15 6.88E-15 0.015069 0.650784 
 

 
Fig. 5.  RU-TOPSIS scores and ranks for level 1 regions for the MWS 
criteria of an EWS. 

REFERENCES 

[1] C. J. Winter, "Disaster? No surprise," Environmental Politics, vol. 31, 
no. 1, pp. 70–88, Jan. 2022, https://doi.org/10.1080/09644016.2020. 
1865726. 

[2] M. Esposito, L. Palma, A. Belli, L. Sabbatini, and P. Pierleoni, "Recent 
Advances in Internet of Things Solutions for Early Warning Systems: A 
Review," Sensors, vol. 22, no. 6, Jan. 2022, Art. no. 2124, 
https://doi.org/10.3390/s22062124. 

[3] "Early warning system | UNDRR," Aug. 30, 2007. http://www.undrr.org/ 
terminology/early-warning-system. 

[4] T. Kelhe, C. Jain, M. Bhandarkar, and A. Deshpande, "A Smart Early 
Warning System for Disease Outbreak with a Case Study of COVID-19 
in India," in IEEE Pune Section International Conference, Pune, India, 
Dec. 2020, pp. 113–118, https://doi.org/10.1109/PuneCon50868.2020. 
9362380. 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11917-11923 11923  
 

www.etasr.com Ahuja et al.: A Novel Framework to Strengthen Early Warning Systems 

 

[5] A. H. S. Fang, W. T. Lim, and T. Balakrishnan, "Early warning score 
validation methodologies and performance metrics: a systematic 
review," BMC Medical Informatics and Decision Making, vol. 20, no. 1, 
Jun. 2020, Art. no. 111, https://doi.org/10.1186/s12911-020-01144-8. 

[6] T. D. G. Hermans, R. Sakic Trogrlic, M. J. C. van den Homberg, H. 
Bailon, R. Sarku, and A. Mosurska, "Exploring the integration of local 
and scientific knowledge in early warning systems for disaster risk 
reduction: a review," Natural Hazards, vol. 114, no. 2, pp. 1125–1152, 
Nov. 2022, https://doi.org/10.1007/s11069-022-05468-8. 

[7] W. Wang, T. Zhang, T. Yao, and B. An, "Monitoring and early warning 
system of Cirenmaco glacial lake in the central Himalayas," 
International Journal of Disaster Risk Reduction, vol. 73, Apr. 2022, 
Art. no. 102914, https://doi.org/10.1016/j.ijdrr.2022.102914. 

[8] E. K. Ronoh, S. Mirau, and M. A. Dida, "Human-Wildlife Conflict Early 
Warning System Using the Internet of Things and Short Message 
Service," Engineering, Technology & Applied Science Research, vol. 12, 
no. 2, pp. 8273–8277, Apr. 2022, https://doi.org/10.48084/etasr.4662. 

[9] DKG 2020, "COVID-19 Regional Safety Assessment." 
https://analytics.dkv.global/covid-regional-assessment-200-regions/full-
report.pdf. 

[10] EWC III, "Developing Early Warning Systems: A Checklist," in Third 
International Conference on Early Warning, Bonn, Germany, Mar. 
2006. 

[11] M. F. Abdullah, S. Siraj, and R. E. Hodgett, "An Overview of Multi-
Criteria Decision Analysis (MCDA) Application in Managing Water-
Related Disaster Events: Analyzing 20 Years of Literature for Flood and 
Drought Events," Water, vol. 13, no. 10, Jan. 2021, Art. no. 1358, 
https://doi.org/10.3390/w13101358. 

[12] M. E. Banihabib, F.-S. Hashemi-Madani, and A. Forghani, "Comparison 
of Compensatory and non-Compensatory Multi Criteria Decision 
Making Models in Water Resources Strategic Management," Water 
Resources Management, vol. 31, no. 12, pp. 3745–3759, Sep. 2017, 
https://doi.org/10.1007/s11269-017-1702-x. 

[13] E. S. Saleh and A. M. Kimiagari, "Ranking Tehran’s Stock Exchange 
Top Fifty Stocks Using Fundamental Indexes and Fuzzy TOPSIS," 
Engineering, Technology & Applied Science Research, vol. 7, no. 4, pp. 
1863–1869, Aug. 2017, https://doi.org/10.48084/etasr.1252. 

[14] M. Mousavi, I. Ghazi, and B. Omaraee, "Risk Assessment in the 
Maritime Industry," Engineering, Technology & Applied Science 
Research, vol. 7, no. 1, pp. 1377–1381, Feb. 2017, https://doi.org/ 
10.48084/etasr.836. 

[15] N. Benmoussa, A. Elyamami, K. Mansouri, M. Qbadou, and E. 
Illoussamen, "A Multi-Criteria Decision Making Approach for 
Enhancing University Accreditation Process," Engineering, Technology 
& Applied Science Research, vol. 9, no. 1, pp. 3726–3733, Feb. 2019, 
https://doi.org/10.48084/etasr.2352. 

[16] A. R. Radhi and A. M. Burhan, "Non-Profit Organization Project 
Selection Process Using the Hygiene Method of Multi-Criteria Decision 
Making," Engineering, Technology & Applied Science Research, vol. 
12, no. 5, pp. 9097–9101, Oct. 2022, https://doi.org/10.48084/etasr.5175. 

[17] K. R. Ramakrishnan and S. Chakraborty, "A cloud TOPSIS model for 
green supplier selection," Facta Universitatis, Series: Mechanical 
Engineering, vol. 18, no. 3, pp. 375–397, Oct. 2020, 
https://doi.org/10.22190/FUME200307036R. 

[18] U. Rahardja, N. Lutfiani, S. Sudaryono, and R. Rochmawati, "The 
Strategy of Enhancing Employee Reward Using TOPSIS Method as a 
Decision Support System," Indonesian Journal of Computing and 
Cybernetics Systems, vol. 14, no. 4, pp. 387–396, Oct. 2020, 
https://doi.org/10.22146/ijccs.58298. 

[19] B. Yang, J. Zhao, and H. Zhao, "A robust method for avoiding rank 
reversal in the TOPSIS," Computers & Industrial Engineering, vol. 174, 
Dec. 2022, Art. no. 108776, https://doi.org/10.1016/j.cie.2022.108776. 

[20] S. Hezer, E. Gelmez, and E. Ozceylan, "Comparative analysis of 
TOPSIS, VIKOR and COPRAS methods for the COVID-19 Regional 
Safety Assessment," Journal of Infection and Public Health, vol. 14, no. 
6, pp. 775–786, Jun. 2021, https://doi.org/10.1016/j.jiph.2021.03.003. 

[21] H. Maleki and S. Zahir, "A Comprehensive Literature Review of the 
Rank Reversal Phenomenon in the Analytic Hierarchy Process," Journal 

of Multi-Criteria Decision Analysis, vol. 20, no. 3–4, pp. 141–155, 2013, 
https://doi.org/10.1002/mcda.1479. 

[22] WMO, "Multi-hazard Early Warning Systems: A Checklist," in Outcome 
of the first Multi-hazard Early Warning Conference, Cancun, Mexico, 
Dec. 2017, pp. 1–20. 

[23] D. Baneres, M. E. Rodriguez, A. E. Guerrero-Roldan, and A. Karadeniz, 
"An Early Warning System to Detect At-Risk Students in Online Higher 
Education," Applied Sciences, vol. 10, no. 13, Jan. 2020, Art. no. 4427, 
https://doi.org/10.3390/app10134427. 

[24] R. F. de F. Aires and L. Ferreira, "The rank reversal problem in multi-
criteria decision making: A literature review," Pesquisa Operacional, 
vol. 38, no. 2, pp. 331–362, Aug. 2018, https://doi.org/10.1590/0101-
7438.2018.038.02.0331. 

[25] P. Talukdar and P. Dutta, "A Comparative Study of TOPSIS Method via 
Different Distance Measure," International Journal of Research in 
Advent Technology, vol. 7, no. 5, pp. 118–126, Jun. 2019, https://doi.org/ 
10.32622/ijrat.75201937. 

[26] R. F. de F. Aires and L. Ferreira, "A new approach to avoid rank reversal 
cases in the TOPSIS method," Computers & Industrial Engineering, vol. 
132, pp. 84–97, Jun. 2019, https://doi.org/10.1016/j.cie.2019.04.023. 

[27] W. Yang, "Ingenious Solution for the Rank Reversal Problem of 
TOPSIS Method," Mathematical Problems in Engineering, vol. 2020, 
Jan. 2020, Art. no. e9676518, https://doi.org/10.1155/2020/9676518. 

 

 

 

 

 

 

 

 

 
 


