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ABSTRACT 

Clustering-based routing solutions have proven to be efficient for wireless networks such as Wireless 

Sensor Networks (WSNs), Vehicular Ad Hoc Networks (VANETs), etc. Cognitive Radio WSN (CR-WSN) 

is a class of WSNs that consists of several resource-constrained Secondary Users (SUs), sink, and Primary 

Users (PUs). Compared to WSNs, there are several challenges in designing the clustering technique for 

CR-WSNs. As a result, one cannot directly apply the WSN clustering protocols to CR-WSNs. Developing a 

clustering protocol for CR-WSNs must address challenges such as ensuring PU protection, and SU 

connectivity, selecting the optimal Cluster Head (CH), and discovering the optimal cluster size. Present 

CR-WSN clustering solutions failed to resolve the trade-off among all essential clustering objectives. To 

address these challenges, this study presents a novel approach called Dynamic Fuzzy-based PU aware 

Clustering (DFPC) for CR-WSNs. DFPC uses a dynamic approach to discover the number of clusters, a 

fuzzy-based algorithm for optimal CH selection, and reliable multi-hop data transmission to ensure PU 

protection. To enhance the performance of CR-WSNs, an effective strategy was designed to define the 

optimal number of clusters using the network radius and live node. Fuzzy logic rules were formulated to 

assess the four CR-specific parameters for optimal CH selection. Finally, reliable intra- and intercluster 

data transmission routes are discovered to protect the PUs from malicious activities. The simulation results 

showed that the DFPC protocol achieved an improved average throughput of 48.04 and 46.49, a PDR of 

93.36 and 84.37, and a reduced delay of 0.0271 and 0.0276 in static and dynamic topologies, respectively, 

which were better than those of ABCC, ATEEN, and LEACH protocols. 

Keywords-ant colony optimization; artificial bee colony; cognitive radio; clustering; energy efficiency; fuzzy 

logic 

I. INTRODUCTION  

A Wireless Sensor Network (WSN) consists of tiny, low-
cost sensor devices that are used in hazardous environments 
where it is difficult to recharge sensor device batteries [1-2]. 
The Internet of Things (IoT) is a concept in which things are 

wirelessly connected to computers for several reasons, some of 
which include Big Data [3-5]. The expansion of this concept 
has been driven by the relatively low cost of sensor devices. 
These applications call for the transfer of enormous volumes of 
data, the creation of a hierarchical structure, the provision of 
low-latency services, an increase in spectrum availability, and 
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low levels of power consumption. For instance, the 2.4 GHz 
frequency range is already occupied by various wireless 
applications such as Bluetooth and Wi-Fi. Fifth-generation 
network technology is also on the horizon, which calls for 
cautious planning for spectrum availability. In recent times, 
much focus has been given on the application of cognitive 
radio to WSNs [6]. Building an effective cognitive radio WSN 
for spectrum access to an underutilized band licensed to a 
Primary User (PU) presents several problems. 

Cognitive Radio (CR) networks could potentially address 
the spectrum access challenge for the future IoT technology, 
which is envisioned to be built on cognitive networks. 
Cognitive Internet of Things (CIoT) solutions for WSNs offer a 
higher level of intelligence to improve data sensing and 
processing. It is vital to have an intelligent and upgraded 
Medium Access Control (MAC) architecture that allows the 
presence of sensor networks to coexist with the existing 
wireless infrastructure [7], as it is required for the complete 
integration of CIoT into WSN. To adequately incorporate 
CIoT, there is a need to address cognition in spectrum access. 
In simpler terms, while most of the spectrum is used 
sporadically, specific portions remain consistently engaged. 

There are situations, both manufactured and natural, in 
which spectrum is scarce and require the most efficient 
spectrum use. The strategy known as Opportunistic Spectrum 
Access (OSA) or Dynamic Spectrum Access (DSA) can be 
applied to alleviate spectrum inefficiencies. OSA is essential 
for CR because it enables wireless devices to observe, learn, 
and adapt to their environments. On the other hand, CRSN 
contributes to improving both the performance of IoT networks 
and the requirements of their users. Sensor devices use energy 
to perform spectrum detection and sharing to meet the criteria 
of quality of service and high throughput imposed by 
applications [8]. Due to the lack of knowledge of the network, 
these applications must have access to scattered channels. A 
concept resembling this was recently suggested for single-user 
and multi-user cognitive users. On the other hand, this cutting-
edge technique causes a network collision when applied to a 
situation with several users. Priority, random access, and fair 
resource allocation models have been presented as ways to 
reduce the risk of crashes caused by interference and the 
inconsiderate actions of certain users of CR-WSN [9]. 
However, these models can only provide a single channel to a 
cognitive individual at any moment. As a result, if the preferred 
channel is already occupied, they must wait for the next 
available slot. Similarly, if multiple channels are unoccupied 
simultaneously, the spectrum goes to waste, even if only one 
channel can be used. 

A precise channel model is constructed to evaluate the 
signal intensity in various sections of a complicated interior 
environment. A discrete event simulator is then used to 
compare the performance of the recommended routing protocol 
and the performance of two alternative routing techniques. A 
single cognitive radio source-destination environment may 
have many amplify-and-forward relays, emphasizing the most 
effective approach for allocating power to them. The problem 
may be theoretically expressed as reducing total energy 
consumption while considering sensor reliability in terms of 

detection and likelihood of false alarms, secondary user 
throughput, and interference threshold of the primary user. 
Then, there is the concept of assigning uneven amounts of 
electricity to relays based on clusters. In recent years, the use of 
licensed spectrum has been shallow, leading to a significant 
waste of spectrum resources [10]. The limited spectrum 
problem can be adequately addressed by CR-WSN, which 
combines sensor networking with cognitive technology [11]. 

Cognitive users take advantage of unoccupied frequencies 
to maximize spectrum use. Both routing and spectrum are 
considered the most critical research hotspots in CR-WSNs 
[12]. Clustering-based WSN algorithms are not compatible 
with CR-WSNs and hence cannot be used with them directly. 
On the other hand, the Low-Energy Adaptive Clustering 
Hierarchy (LEACH) was implemented in CR-WSN without 
regard for how to use energy efficiently. One of the downsides 
of CR-WSNs is that node energy cannot be conserved, which is 
one of the reasons why it is limited. It is essential to use an 
efficient routing protocol to increase the energy economy of 
CR-WSN and extend the time it can remain operational. For 
CR-WSN, it is necessary to have a reduction in the amount of 
energy used during data transmission. 

Clustering algorithms originally developed for WSNs face 
significant challenges when applied to CR-WSNs. In contrast 
to traditional WSNs, developing a suitable clustering technique 
for CR-WSNs presents many complexities and hurdles. This 
study aimed to address these clustering issues and improve the 
overall performance of CR-WSNs beyond previous attempts. 
Although optimization methods have demonstrated their 
effectiveness in WSNs [13-17], adapting such approaches to 
CR-WSNs could potentially lead to an increase in the 
computational overhead associated with the clustering process. 
In contrast, compared to optimization-focused techniques, 
fuzzy-based solutions [18-20], offer a more lightweight and 
efficient alternative for addressing clustering challenges in CR-
WSNs. These unique challenges serve as the driving force to 
propose an innovative clustering solution and provide a robust 
and efficient method explicitly tailored to the distinctive 
characteristics and requirements of CR-WSNs. 

This study developed the novel Dynamic Fuzzy-based PU 
aware Clustering (DFPC) protocol to address the challenges of 
current clustering solutions for CR-WSNs. The DFPC protocol 
has multiple objectives: dynamic discovery of the optimum 
number of clusters, optimal Cluster Head (CH) selection using 
CR-specific parameters, and PU protection from malicious SU 
data. According to these objectives, the novelty of DFPC is 
highlighted as follows: 

 A novel dynamic mechanism is proposed to discover the 
optimal number of clusters in the network using the SU 
node's Maximum Connectivity Frequency (MCF) to 
compute each cluster's Upper Bound (UB). According to 
the UB, the number of clusters for the CR-WSN was 
discovered. 

 For each cluster, the optimal CH node is selected using a 
fuzzy logic mechanism to evaluate each SU by computing 
their CR-specific linguistic parameters such as the distance 
from the SU to the Sink, the SU residual energy, the 
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mobility of the SU, and Signal-to-Noise-Ratio (SNR) of the 
SU. 

 An algorithm of reliable route formation for inter- and 
intra-cluster data transmissions to protect the PU from 
malicious users or unauthorized access was designed. 

 The DFPC protocol was modeled, simulated, evaluated, and 
compared with previous clustering protocols for static and 
dynamic network scenarios. 

II. RELATED WORK 

The issues of constructing mobile and static CR-WSNs 
using the clustering mechanism have been recently studied, as 
clustering has been proven effective for WSN routing. Because 
WSN clustering is ineffective for CR-WSNs, clustering 
intellectual WSNs should be an NP-complete problem. Several 
CR-WSN routing strategies were reviewed and analyzed, 
highlighting current research problems that need to be 
addressed for a future roadmap in this sector. 

A. State-of-the-Art Solutions 

In [21], a clustering method for CR-WSNs was presented 
using physical layer data while keeping the component of 
arbitrary CH selection in LEACH. The objective was to shift 
CHs to more appropriate locations while reducing their number 
to the absolute minimum. In [12], the current literature on this 
rapidly growing application area of CR-WSNs was reviewed, 
analyzing previous studies and introducing outstanding 
questions from recent efforts. The use of Energy-Aware 
Clustering (EAC) routing can improve spectrum detection 
while reducing energy consumption [22]. In this study, an 
energy expenditure model was presented that included 
spectrum detection and cluster energy consumption before 
determining the optimal number of clusters for the 
organization's activities. It is necessary to evaluate the value of 
direct assets in reducing energy consumption, using the 
lopsided clustering technique to regulate energy consumption 
among CHs under multiple bounce transmission conditions 
[23]. In [24], LEAUCH was proposed, considering channel 
resources and uneven clustering for balancing energy 
consumption. In [25], Hybrid Data-type Clustering (CR-HDC) 
routing was suggested to improve the organization lifespan of 
CR-WSNs, identifying the appropriate transmission scope of a 
sensor hub for both cases when spectrum handoff is applied 
and when it is not by analyzing the general energy usage of CR 
sensor hubs under a range of scenarios. In [26], spectrum-
aware clustering routing was introduced to elucidate the 
challenges of portable CR-WSNs in coordinating 
communication to a sink node during deployment. This process 
involved two steps: first, evaluation of the eligibility of hubs 
for clustering and, subsequently, forming clusters among those 
hubs based on vacant spectrum groups. The possibility for 
normal re-clustering, the anticipated cluster inclusion zone, and 
the most extreme age recurrence for energy-producing 
activities were all considered as variables in the routing 
selection. In [27], the prerequisites for CR-WSNs and the 
benefits of hub clustering were investigated, underlining the 
differences between WSNs and CR-WSNs with hub clustering. 
In addition, the characteristics, engineering, and geographic 
distribution of CR-WSNs were discussed. 

In [28], a unique Artificial Bee Colony Clustering (ABCC) 
technique was proposed to cope with the energy consumption 
of CR-WSNs. A restricted clustering strategy was developed 
for CR-WSNs to boost sufficiency, flexibility, valuable 
spectrum of heads, and correspondence overhead while 
minimizing the data transmission. In [29], event-based 
clustering was proposed using Ant Colony Optimization 
(ACO) to improve energy efficiency. In [30], a localized 
clustering algorithm was proposed, where each center point 
calculates and distributes its weight to its one-hop neighbor, 
and the center point with the most weight becomes CH. In [31], 
an Advanced TEEN (ATEEN) clustering-based routing was 
proposed for CR-WSNs, forming a limit delicate energy-
effective sensor organization that was both delicate and 
effective for stable clustering and energy efficiency. In [32], 
three distinct CR-WSN cluster structures were explored: an 
adjusted single-jump structure, a multibounce cluster structure, 
and a half-and-half cluster structure. At the first site, the impact 
of three buildings in various configurations on the movement 
of the defined region was investigated. According to [33], each 
CH in CR-WSNs should have a separate fixed channel to 
reduce difficulties. The segregated nodes of the layer take on 
the role of CH, use the asset assigned to each CH, and send the 
information to the next leap CH in the chain. In [34], Multiple 
Revealing Channels (MRC) were used for cluster-based CR-
WSNs to increase the potential to use the detail time allocation 
by extending the detection season of optional customers. To 
expedite the execution of spectrum detection and minimize the 
delay in revealing periods for all CHs, this method introduced 
multiple announcing channels based on frequency division and 
incorporated multiple access. In [35], the Modified Adaptive 
Cluster-Based Heuristic Approach (MACHBA) was proposed 
to solve the optimal spectrum identification problem in various 
applications. In [36], a localized clustering approach was 
proposed to promote stability, effective spectrum management, 
scalability, and reduced communication overhead. Each node 
computes its weight and communicates it to its one-hop 
neighbors, and the node with the greatest importance is 
designated as the CH.  

B. Motivation 

Establishing a clustering mechanism for CR-WSNs is more 
complex than in WSNs due to difficulties in PU security, SU 
connection, spectrum collisions, optimal cluster discovery, etc. 
This study aims to fill these research gaps: 

 Optimization-based clustering protocols report insufficient 
use of techniques for optimal CH selection in CR-WSNs. 

 As the optimal CH selection was achieved using traditional 
WSN parameters, the performance trade-off has not been 
achieved in static and mobile CR-WSNs. 

 There is a lack of a multiple-purpose CR-WSN clustering 
protocol to satisfy essential requirements such as optimal 
cluster discovery, optimal CH selection using CR-specific 
parameters, and PU protection. 

 Existing clustering approaches for CR-WSNs incorporate 
the PU, significantly undermining its security. 
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The proposed DFPC protocol aims to overcome the above 
challenges. 

III. DFPC METHOD 

Figure 1 shows the overall architecture of the DFPC 
protocol, which consists mainly of three phases: cluster 
numbers, optimal CH selection, and PU protection. The cluster 
number phase is launched after the network deployment to 
discover the optimal number of possible clusters in the 
network. Using MCF and UB, k clusters are initially formed. 
After discovering k optimal clusters, the next phase is a 
selection of the optimal CH for each cluster. The optimal CH 
selection is periodically evaluating each cluster for re-
clustering, performing operations such as selecting new stable 
CH with joining and disjoining Cluster Members (CMs) due to 
their mobilities. A fuzzy logic approach was used to evaluate 
each SU in the network using four different linguistic input 
variables mapped to an integrated fuzzy score for CH selection. 
Finally, the last phase belongs to PU protection by forming a 
reliable route for inter- and intra-cluster data transmission. 
CMs periodically sense and transmit data to the associated CH, 
which then transmits periodically collected information to the 
intended sink node. The data will then be distributed from the 
sink to the connected PUs. A reliable route formation approach 
was used to prevent malicious data transmission and ensure 
integrity and security in the PUs. 

 

 

Fig. 1.  The graphical abstract-proposed DFPC protocol for CR-WSNs. 

A. System Model 

Suppose a CR-WSN deployed in an area of X×Y network 
size with n SUs, SU = {su1

, su2
, …, sun

}, and one sink. The 
initial k groups formed using the K-means clustering algorithm 
after discovering the optimal number clusters k is C = {c1

, c2
, 

… , ck
}. For each jth

, j ∈ k, cluster cj
, the proposed optimal CH 

selection algorithm is applied to maximize energy efficiency 
and Quality of Service (QoS) with PU protection. A fuzzy 
logic-based approach was used to solve this optimization 
problem for optimal CH nodes for each cluster and reliable 
route formation. The proposed clustering protocol is based on 
the following assumptions: 

 All SUs are static and move randomly with resource 
limitations. 

 PUs are assumed to be outside entities and will not be 
considered parts of the clustering protocols. 

 The sink node is placed outside the network with all 
security provisions and without resource limitations. 

 The distance parameter was measured using the Received 
Signal Strength Indicator (RSSI). 

B. Optimal Clusters Discovery 

The ideal number of clusters in cluster-based CR-WSN is a 
problem. Due to the significant number of clusters, extensive 
paths are established that incur more delay. On the other hand, 
a limited number of clusters depletes the CH's energy and 
results in inefficient spectrum sharing. An effective technique 
should be developed to determine the optimal number of 
clusters and improve the performance of CR-WSN. At first, the 
network's total number of clusters and CHs was computed. The 
cluster size was optimized proportionally to the CR-WSN size. 
The proposed clustering method populates every cluster as 
much as possible in order to reduce the total number of clusters 
in the network. However, oversizing the cluster also has a 
significant impact on CH performance. For a CR-WSN with n 
nodes in a network area of X×Y, the MCF for each SU is 
estimated in meters as follows: 

��� = �. ��     (1) 

where r represents the specific distance in meters. This 
calculation determines the network's radius, typically half its 
height or width, following standard conventions. The radius r is 
crucial in estimating the MCF and UB. The value of r was set 
equal to X/2. The primary objective is to determine MCF for 
each SU within the network. To achieve an optimal clustering 
of SUs, it is essential to identify SU groups that share similar 
connectivity frequency characteristics. Consequently, the most 
effective approach to ensure an optimal number of clusters is to 
estimate the MCF. Subsequently, appropriate actions can be 
taken to discover the ideal number of clusters within the 
deployed network. CH forms the connectivity p using the node 
density parameter, calculated as [36]: 

	 = 

��      (2) 

Thus, the maximum SUs in each cluster are calculated as 
[36]: 

�� = 	. �. ��     (3) 

UB indicates the maximum allowable SUs in each cluster in 
the network, makes the cluster formation process efficient, and 
reduces the burden of finding the number of clusters at every 
interval. The initial step in determining the network's UB 
involves computing MCF. Estimating the connectivity 
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frequency for each SU in the network is essential to calculate 
the UB. Leveraging the MCF, the maximum count of SUs that 
can be accommodated within a single cluster is identified based 
on the input network's characteristics. This is based on a 
combination of the MCF and the node density parameters. The 
UB, derived from the MCF, ensures an accurate assessment of 
the number of SUs accommodated within a cluster, accounting 
for their density and connectivity frequency attributes. 
Subsequently, once the UB is determined, the network can be 
optimally partitioned into the ideal number of clusters. 
Identifying the optimal cluster count through UB and MCF 
directly influences the overall improvement in performance in 
the proposed protocol. Therefore, the number of clusters is 
calculated using UB as [36]: 

� = � 

��� + 1     (4) 

where the addition of 1 represents the reliability of cluster 
formation to prevent the condition of non-clustered SUs in the 
network. 

C. Optimal CH Selection 

The optimal CH selection is launched for each cluster in the 
network after network deployment and clustering. First, the CH 
selection method is performed using the fuzzy model. The 
type-2 fuzzy rules aim to choose the best CH node from a set of 
nodes. The rules combine four language input variations: 
distance (f1), residual energy (f2), SNR (f3), and speed (f4). In 
addition to residual energy and distance parameters, CR-
specific metrics were evaluated, such as the speed and SNR of 
each SU node in the proposed protocol. 

Algorithm 1: Optimal CH Selection using Fuzzy Logic 
Inputs: 

k: number of clusters 

CM: set of nodes in a cluster 

RT: routing table for each node 

T: Total network duration 

 

Output: 

CH: set of CHs at current cycle  

While (Τ) 

  For each cluster c1:k 

    Compute the number of nodes in the cluster:  

    m  size(CM(c)) 

    For each SU  1:m 

      Compute linguistic inputs: 

      f1  getDist(su
i
, sink) 

      f2  getEnergy(su
i
) 

      f3  getSNR(su
i
) 

      f4  getSpeed(su
i
) 

      DF(i)  T2FIS(f1, f2, f3, f4) 

      Updated routing table entry: 

      RT(CM(c, su
i
))  update(DF(i)) 

    End For 

    Optimal CH selection for current cluster c: 

    CH(c)  index(max(DF)) 

  End For 

T-- 

Return CH 

End While 

 
Algorithm 1 shows the functionality of the suggested fuzzy 

logic-based optimum CH selection process. For each cluster � ∈ � , the number of Cluster Members (CMs) is first 

discovered. These CM values are different for each cluster, 
thus, for the m CMs belonging to the current cluster c, they are 
analyzed using the fuzzy logic technique. Before applying the 
Type-2 fuzzy model for the optimal CH selection, the four 

parameters of each SU node sui
 ∈  m are calculated. The 

linguistic variables f1, f2, f3, and f4 for each sui
 ∈ m are then 

entered into the Type-2 Fuzzy Interference System (T2FIS) 
function. Then, fuzzy if-then rules map the inputs to the fuzzy 
output, comprising linguistic control rules. The FIS replicates 
human decision-making using fuzzy if-then rules for the 
language factors shown in Table I. The defuzzifier takes the 
aggregated linguistic values of the FIS and creates a nonfuzzy 
control output that picks the best CH for each cluster. The next 
section presents the computation of four linguistic variables 
and the design of the fuzzy logic model. 

 Distance: This parameter ensures clustering and data 
transmission phase reliability by assisting in selecting the 
SU as the CH for each cluster with the shortest 
geographical distance to the sink node. RSSI was used to 
estimate the geographical distance between the sui

 to sink 
node at time t, as follows: 

�1 ������� = ["#������ , �#%�� < ���#]  (5) 

where dist(sui
, sink) represents the geographical distance 

between two nodes, and rssi is the communication range of 
sui

. As the proposed objective function is maximization-
based, it can be rewritten as:  

�1 ������� = ( )
*+�,-.,/0,,�
1234,,�56    (6) 

The higher the value of f1(sui
(t)), the better its chances of 

becoming CH. 

 Residual Energy: This parameter is extensively used in 
various WSN clustering methods and intends to guarantee 
that nodes with more residual energy consume less and 
have a longer network lifespan. The f2(sui

) at time t is 
computed as:  

�2 ������� =  89:;0<=>?�,/0�-��
80@0A0>?�,/0�    (7) 

where Einitial(sui
(t)) represents the initial energy of the node 

sui
 and Eresidual(sui

(t)) represents the remaining energy of the 
node sui at time t. The node with higher f2(sui(t)) is an 
excellent candidate to become CH. 

 SNR: The SNR level of SUs is another vital parameter to 
suppress the challenges of spectrum efficiency and 
interference mitigations in CR-WSNs. The calculation of 
SNR requires both information on the rssi and the noise 
power (np) at the receiver. The node with a higher SNR will 
be a good candidate for the optimal CH selection. The SNR 
fitness value f3(sui

(t)) at time t is computed by: 

�3 ������� = 1 − ( )
*4,,�.,/02D
E.,/0256  (8) 

The node with higher f3(sui
(t)) is an excellent candidate to 

become CH. 
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 Speed: Because CR-WSNs are static or dynamic, mobility 
becomes critical in ensuring dependable and optimum CH 
selection. The SU with the slowest mobility will be a viable 
contender for achieving energy-efficient and stable 
clustering in the network. The present moving speed of SUs 
is calculated using a simplified location differentiation 
technique between the two relevant time intervals, t-1 and t. 
The f4(sui) at time t is computed by: 

�4 ������� = G )
HIJ�K�-L �,/0�-M)�, ,/0�-� N   (9) 

The node with higher f4(sui
(t)) is an excellent candidate to 

become CH. 

Figure 2 shows the T2FIS() fuzzy model, which accepts the 
fuzzy inputs (f1, f2, f3, and f4) and is forwarded to Madani FIS 
via the fuzzy rule set. The purpose of establishing these value 
thresholds is to categorize these parameters into three distinct 
levels: low (below 0.25), medium (ranging from 0.25 to 0.65), 

and high (above 0.65). These linguistic variables were used 
within the context of a fuzzy logic system to facilitate mapping 
based on the categorization mentioned above. The 
implementation of these value limits showed improved 
simulation results when experimenting with various thresholds. 

TABLE I.  MEMBERSHIP FUNCTIONS FOR FUZZY INPUTS 

Variable "far" "medium" "near" 

Distance f1 ≤ 0.25 
f1 > 0.25 &&  

f1 < 0.65 
f1 ≥ 0.65 

Variable "low" "medium" "high" 

Residual 

Energy 
f2 ≤ 0.25 

f2 > 0.25 &&  

f2 < 0.65 
f2 > 0.65 

Variable "sparse" "medium" "dense" 

SNR f3 ≤ 0.25 
f3 > 0.25 &&  

f3 < 0.65 
f3 ≥ 0.65 

Variable "fast" "average" "slow" 

Speed f4 ≤ 0.25 
f4 > 0.25 &&  

f4 < 0.65 
f4 ≥ 0.65 

 

 

 
Fig. 2.  The proposed fuzzy model for each SU evaluation. 

The output was then defuzzified to generate DF(sui
). The 

defuzzification result indicates the fitness score of each SUs. 
After computing the value for each SU in the current cluster, 
the SU with the highest DF value is chosen as the best CH for 
this cluster. This method is performed for each TDMA slot to 
update and maintain each cluster. Table I shows the definition 
of the membership functions for each linguistic variable. Using 
these variables, 48 fuzzy rules were designed to evaluate the 
linguistic output of each SU. During the defuzzification 
process, the input membership functions, shown in Table I, are 
applied, and accordingly, the output mappings are performed 
for each input SU. That mapping is either of three classes: 
"worst", "good", or "best". The defuzzification mappings are 
extended to a unique integrated score for each SU. In the 
defuzzification phase, FIS established at each of the SU in the 
CM set can be expressed as: 

O������ =  defuzzification��1, �2, �3, �4� (10) 

The result of the fuzzy logic approach DF is in the range of 
0 to 1, where a value close to 1 is the preferable option for 
optimal CH selection. In this process, four linguistic variables 
(f1, f2, f3, and f4) are used as input to the Type-2 fuzzy logic 
system. This system determines the optimal CH node among 
the available SUs within the current cluster. The result 
produced by the T2FIS is also a numeric value that falls from 0 
to 1, and again a value closer to 1 indicates the most suitable 
candidate for CH selection. Fuzzy rules guide the 
transformation of linguistic input into linguistic output during 

the defuzzification process, ultimately aiding in selecting the 
ideal CH for the cluster. 

D. PU Protection 

The problem of PU protection was formulated using a 
reliable route formation algorithm for intra- and inter-cluster 
data transmissions. The reliable forwarding relay is selected by 
evaluating each SU candidate via their calculated trust value 
during the CH selection phase. Algorithm 2 outlines the 
procedure for safeguarding PUs through a robust route 
discovery method. It is important to note that PUs are external 
entities and do not play a role in clustering and routing 
algorithms. Several previous studies integrated PUs into 
routing strategies, but this approach was vulnerable to security 
threats. This study chose to omit PUs from the clustering 
process. Instead, the routing algorithm shown in Algorithm 2 
focuses primarily on preventing PUs from being inadvertently 
incorporated into the routing process, improving security and 
reliability. 

Algorithm 2 shows the reliable routes for any source node s 
(CM or CH node) and its corresponding destination node d 
(CH or BS). The forwarding relay is selected by fetching and 
comparing its periodically computed DF value. The node with 
a higher DF value is selected as the forwarding relay f. This 
process continues until the destination is reached. This reliable 
route formation ensures stable routes on the network that do not 
transmit insecure or malicious information to the BS node. 
Therefore, it protects the PU connected to the BS as well. 
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Algorithm 2: PU Protection via Reliable Route Formation   
Inputs: 

s: source code, s ∈ CM || CH 

d: destination node, d ∈ CH || BS 
RT: routing table for each SU 

Output: 

Reliable route formation  
s  broadcast(RREQ, d) 

q  getResponse(RREP) 

For each i ∈ q 

  temp(i)  RT(DF(i)) 

End For 

If (f == d) 

  Return R 

Else 

  s  f, continue 

  // update routing table with currently selected 

  // forwarding relay 

  R  update(s, f) 

End If 

Return (R) 
 

IV. RESULTS AND DISCUSSION 

The proposed DFPC protocol was compared with three 
existing protocols. ABCC [28], ATEEN [31], and conventional 
LEACH [21]. ABCC and ATEEN have recently been proposed 
for CR-WSN clustering using optimization algorithms. These 
protocols were implemented and tested under identical 
simulation parameters, detailed in Tables II and III, using the 
NS2 tool version 2.34 on an Ubuntu 12.04 OS using a VMware 
workstation with 4GB RAM, 80 GB hard drive, Intel Core-i3 
processor, and an Intel graphics card. Two network types were 
used to assess the reliability and efficiency of the clustering 
protocols: one with varying SU density and static topology and 
the other with varying SU density and dynamic topology. In the 
static topology, the position of each SU is fixed. In the dynamic 
topology, each SU moves randomly across the network with 
speeds ranging from 2 to 10 m/s. Moving sensor nodes are 
nothing more than moving CR users, such as in healthcare 
applications. The performance of each protocol was evaluated 
using the average throughput, Packet Delivery Ratio (PDR), 
average energy consumption, average delay, and 
communication overhead. The primary variable of interest is 
the number of SUs. Values ranging from 50 to 200 were 
considered, encompassing a low- to high-density spectrum to 
assess the scalability and reliability of the protocols. 

TABLE II.  SIMULATION PARAMETERS FOR STATIC CR-
WSNs SCENARIOS 

Number of SU sensors 50-200 (50, 80, 120, 150, 200)  

Number of channels 6-10 

MAC 802.11 

Queue limit 50 packets 

Simulation time 100 s 

Transmission range 250 m 

Clustering protocols LEACH 

Traffic type CBR 

Number of connections 5 

Network size 500 m × 500 m 

Sink position Center of the network 

Packet size 512 bytes 

Initial energy  0.5 nj 

Transmitter energy consumption 16.7 nj 

Receiver energy consumption 36.1 nj 

TABLE III.  SIMULATION PARAMETERS FOR DYNAMIC CR-
WSNs SCENARIOS  

Number of SU sensors 50-200 (50, 80, 120, 150, 200)  

Number of channels 6-10 

MAC 802.11 

Queue limit 50 packets 

Simulation time 100 s 

Transmission range 250 m 

Clustering protocols LEACH 

Traffic type CBR 

Number of connections 5 

Network size 500 m × 500 m 

Sink position Center of the network 

Packet size 512 bytes 

Initial energy  0.5 nj 

Transmitter energy consumption 16.7 nj 

Receiver energy consumption 36.1 nj 

Mobility speed 2-10 m/s 

Mobility model Random Waypoint  
 

A. Simulation Results for Static Topology 

This section presents the simulation results for static CR-
WSNs with a density variation scenario. Figures 3 to 7 show 
the results of average throughput, PDR, average delay, routing 
overhead, and average energy consumption for each clustering 
protocol. The results show that increasing SU density harms 
network performance. With increasing SUs, average 
throughput and PDR performance degraded, while average 
delay and routing overhead increased. The average energy 
consumption is the only parameter that is efficient against the 
increased SU density. 

 

 

Fig. 3.  Average throughput analysis for static CR-WSNs. 

 
Fig. 4.  PDR analysis for static CR-WSNs. 

 

Fig. 5.  Average delay analysis for static CR-WSNs. 
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Fig. 6.  Routing overhead analysis for static CR-WSNs. 

 

Fig. 7.  Average energy consumption analysis for static CR-WSNs. 

The average throughput, PDR, delay, and overhead became 
worse with increasing density as a result of the increased 
routing operations in the network. For average throughput and 
PDR, DFPC significantly outperformed the other protocols, the 
leading causes for this being the designed mechanisms for 
optimal clusters, optimal CH selection, and reliable route 
formation. Apart from this, the higher PDR directly affected 
the lower communication delay and overhead in the network 
when using the DFPC protocol, because DFPC requires fewer 
clustering rounds and packet retransmissions than the other 
protocols, reducing average delay and overhead performance. 
On the other hand, since the existing LEACH, ABCC, and 
ATEEN protocols relied heavily on static clustering with 
conventional WSN parameters for optimal CH selection, they 
resulted in lower performance. Consequently, the reduced 
clustering rounds and retransmissions reduce energy 
consumption.  

B. Simulation Results for Dynamic Topology 

Figures 8-12 show the results for average throughput, PDR, 
average latency, average used energy, and communication 
overhead, respectively. The networks were built with different 
SUs, such as 50, 80, 120, 150, and 200. The mobility speed of 
the SUs in each network ranged from 2 to 10 m/s. The results 
show that increased density reduces throughput and PDR 
performance. This is mainly due to the growing number of 
communication lines and interference in CR-WSNs. Figures 10 
and 11 show that increasing SU density negatively influenced 
average latency and communication overhead. As the density 
of SUs increased, frequent clustering and routing processes led 
to a significant escalation in communication latency and 
overhead. On the other hand, as shown in Figure 12, increasing 
SU density had a beneficial influence on average energy usage 
due to the huge number of idle SUs in the network. 

 

 
Fig. 8.  Average throughput analysis for dynamic CR-WSNs. 

 

Fig. 9.  PDR analysis for dynamic CR-WSNs. 

 

Fig. 10.  Average delay analysis for dynamic CR-WSNs. 

 

Fig. 11.  Overhead analysis for dynamic CR-WSNs. 

 

Fig. 12.  Average energy consumption analysis for dynamic CR-WSNs. 
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The results show the efficiency of the proposed DFPC 
compared to the other protocols. The main reasons are the 
dynamic discovery of the number of clusters, the optimal CH 
selection considering speed as one of the parameters, and the 
reliable route formation. These characteristics are missing in 
the three existing protocols. Among them, the ATEEN protocol 
outperformed LEACH and ABCC in terms of throughput, 
PDR, latency, energy consumption, and communication 
overhead. The ATEEN protocol outperformed LEACH and 
ABCC because it employs a better data-transfer mechanism 
based on TEEN's thresholding approaches. Compared to 
ABCC and ATEEN protocols, the traditional LEACH 
procedure performed the poorest, since it relies on the only 
known energy parameter for clustering. Optimization methods 
with updated fitness functions were used in both the ABCC and 
ATEEN protocols. Table IV shows a qualitative comparative 
analysis of the proposed protocol, indicating that it is the best 
candidate for use in CR-WSNs. 

TABLE IV.  QUALITATIVE COMPARATIVE ANALYSIS OF 
THE PROPOSED METHOD  

Static CR-WSN with SU density 200 

Contribution 
Avg. 

throughput 
PDR 

Avg. 

delay 
Overhead 

Avg. energy 

consumption 

LEACH [21] 42.82 81.45 0.0297 2.91 0.03243 

ABCC [28] 44.74 86.94 0.0284 2.74 0.03153 

ATEEN [31] 46.12 88.8 0.0280 2.822 0.03112 

Proposed  48.04 93.36 0.0271 2.588 0.02993 

Dynamic CR-WSN with SU density 200 

LEACH [21] 40.42 68.75 0.0299 4.173 0.03243 

ABCC [28] 42.61 77.08 0.0291 3.709 0.03153 

ATEEN [31] 44.25 80.2 0.0280 3.927 0.03112 

Proposed  46.49 84.37 0.0276 3.366 0.03049 

 

Compared to the other protocols, the experimental results 
consistently demonstrate that the proposed DFPC protocol 
stands out as the most effective choice. Several key factors 
contribute to its superiority. First, the DFPC protocol 
dynamically determines the optimal number of clusters, a 
feature that distinguishes it from other protocols. Additionally, 
it excels at selecting CHs by factoring in speed as one of the 
critical characteristics, ensuring an efficient and reliable 
clustering process. Moreover, it excels at establishing reliable 
routes for data transmission. The efficacy of DFPC depends on 
its innovative processes to achieve these ideal clusters, select 
the most suitable CHs, and construct robust routes. The 
multifaceted approach differentiates DFPC from previous 
single-objective clustering protocols. 

Security threats were not adequately considered during the 
evaluation of the DFPC protocol. To improve its robustness 
and credibility, it should be subjected to a comprehensive 
assessment that includes various security threat scenarios. 
Neglecting to address security concerns may significantly limit 
its viability and adoption. 

V. CONCLUSIONS AND FUTURE WORK 

The design of clusters for CR-WSNs is one challenging 
research problem considering essential requirements such as 
optimal deployment, the optimal number of clusters, CR-
specific CH selection, and protection of PUs from malicious 

activities. This study proposed a novel CR-WSN clustering 
solution to address these challenges and lead to improved 
performance. The proposed DFPC protocol mainly consists of 
an optimization mechanism of the number of cluster 
formations, fuzzy-based optimal CH selection, and a reliable 
route formation for PU protection. The proposed approach 
produced a better clustering solution for CR-WSNs. DFPC was 
simulated, evaluated, and compared with the LEACH, ATEEN, 
and ABCC protocols using static and dynamic CR-WSNs. For 
both scenarios, the DFPC outperformed the other clustering 
protocols. The average throughput and PDR performance of 
DFPC were improved by approximately 9.45% and 11.21%, 
respectively. The average delay, energy consumption, and 
overhead performance of the DFPC protocol were reduced by 
7.8%, 12.3%, and 13.2%, respectively. In the future, the 
performance of the proposed DFPC protocol can be verified by 
introducing different CR-WSN threats, the use of optimization 
algorithms, and AI. 

REFERENCES 

[1] J. Azrul Amri and M. Nor Aida, "Wireless sensor networks, internet of 
things, and their challenges," International Journal of Innovative 
Technology and Exploring Engineering (IJITEE), vol. 8, no. 12S2, pp. 
556–566, Dec. 2019. 

[2] B.-S. Kim, H. Park, K. H. Kim, D. Godfrey, and K.-I. Kim, "A Survey 
on Real-Time Communications in Wireless Sensor Networks," Wireless 
Communications and Mobile Computing, vol. 2017, Oct. 2017, Art. no. 
e1864847, https://doi.org/10.1155/2017/1864847. 

[3] H. B. Mahajan et al., "Integration of Healthcare 4.0 and blockchain into 
secure cloud-based electronic health records systems," Applied 
Nanoscience, vol. 13, no. 3, pp. 2329–2342, Mar. 2023, 
https://doi.org/10.1007/s13204-021-02164-0. 

[4] H. B. Mahajan and D. A. Badarla, "Experimental Analysis of Recent 
Clustering Algorithms for Wireless Sensor Network: Application of IoT 
based Smart Precision Farming," Journal of Advanced Research in 
Dynamic and Control Systems, vol. 11, no. 9, pp. 116–125, 2019, 
https://doi.org/10.5373/JARDCS/V11I9/20193362. 

[5] A. Ali, Y. Ming, S. Chakraborty, and S. Iram, "A Comprehensive 
Survey on Real-Time Applications of WSN," Future Internet, vol. 9, no. 
4, Dec. 2017, Art. no. 77, https://doi.org/10.3390/fi9040077. 

[6] A. Ali and W. Hamouda, "Advances on Spectrum Sensing for Cognitive 
Radio Networks: Theory and Applications," IEEE Communications 
Surveys & Tutorials, vol. 19, no. 2, pp. 1277–1304, 2017, 
https://doi.org/10.1109/COMST.2016.2631080. 

[7] A. Surampudi and K. Kalimuthu, "An adaptive decision threshold 
scheme for the matched filter method of spectrum sensing in cognitive 
radio using artificial neural networks," in 2016 1st India International 
Conference on Information Processing (IICIP), Delhi, India, Dec. 2016, 
pp. 1–5, https://doi.org/10.1109/IICIP.2016.7975334. 

[8] S. P. Singh and S. C. Sharma, "A Novel Energy Efficient Clustering 
Algorithm for Wireless Sensor Networks," Engineering, Technology & 
Applied Science Research, vol. 7, no. 4, pp. 1775–1780, Aug. 2017, 
https://doi.org/10.48084/etasr.1277. 

[9] S. Chatterjee, A. Banerjee, T. Acharya, and S. P. Maity, "Fuzzy C-
Means Clustering in Energy Detection for Cooperative Spectrum 
Sensing in Cognitive Radio System," in Multiple Access 
Communications, Halmstad, Sweden, 2014, pp. 84–95, https://doi.org/ 
10.1007/978-3-319-10262-7_8. 

[10] D. Cavalcanti, S. Das, J. Wang, and K. Challapali, "Cognitive Radio 
Based Wireless Sensor Networks," in 2008 Proceedings of 17th 
International Conference on Computer Communications and Networks, 
St. Thomas, VI, USA, Dec. 2008, pp. 1–6, https://doi.org/10.1109/ 
ICCCN.2008.ECP.100. 

[11] A. Araujo, J. Blesa, E. Romero, and D. Villanueva, "Security in 
cognitive wireless sensor networks. Challenges and open problems," 
EURASIP Journal on Wireless Communications and Networking, vol. 



Engineering, Technology & Applied Science Research Vol. 13, No. 6, 2023, 12058-12067 12067  
 

www.etasr.com Panbude et al.: DFPC: Dynamic Fuzzy-based Primary User Aware clustering for Cognitive Radio … 

 

2012, no. 1, Feb. 2012, Art. no. 48, https://doi.org/10.1186/1687-1499-
2012-48. 

[12] G. P. Joshi, S. Y. Nam, and S. W. Kim, "Cognitive Radio Wireless 
Sensor Networks: Applications, Challenges and Research Trends," 
Sensors, vol. 13, no. 9, pp. 11196–11228, Sep. 2013, https://doi.org/ 
10.3390/s130911196. 

[13] A. J. Manuel, G. G. Deverajan, R. Patan, and A. H. Gandomi, 
"Optimization of Routing-Based Clustering Approaches in Wireless 
Sensor Network: Review and Open Research Issues," Electronics, vol. 9, 
no. 10, Oct. 2020, Art. no. 1630, https://doi.org/10.3390/electronics 
9101630. 

[14] S. Yang, X. Long, H. Peng, and H. Gao, "Optimization of 
Heterogeneous Clustering Routing Protocol for Internet of Things in 
Wireless Sensor Networks," Journal of Sensors, vol. 2022, Jan. 2022, 
Art. no. e4327414, https://doi.org/10.1155/2022/4327414. 

[15] A. M. Jubair et al., "Optimization of Clustering in Wireless Sensor 
Networks: Techniques and Protocols," Applied Sciences, vol. 11, no. 23, 
Jan. 2021, Art. no. 11448, https://doi.org/10.3390/app112311448. 

[16] J. Wen, Q. Yang, and S. J. Yoo, "Optimization of Cognitive Radio 
Secondary Information Gathering Station Positioning and Operating 
Channel Selection for IoT Sensor Networks," Mobile Information 
Systems, vol. 2018, Apr. 2018, Art. no. e4721956, https://doi.org/ 
10.1155/2018/4721956. 

[17] L. Singh and N. Dutta, "Various Optimization Algorithm used in CRN," 
in 2020 International Conference on Computation, Automation and 
Knowledge Management (ICCAKM), Dubai, United Arab Emirates, Jan. 
2020, pp. 95–100, https://doi.org/10.1109/ICCAKM46823.2020. 
9051553. 

[18] D. R. Das Adhikary and D. K. Mallick, "Fuzzy Logic-Based Unequal 
Clustering with On-Demand-Based Clustering Approach for a Better 
Lifetime of Wireless Sensor Network," in Advances in Computational 
Intelligence, Singapore, 2017, pp. 33–43, https://doi.org/10.1007/978-
981-10-2525-9_4. 

[19] S. Pariserum Perumal, G. Sannasi, and K. Arputharaj, "FIRMACA-
Fuzzy intelligent recommendation model using ant clustering algorithm 
for social networking," SN Applied Sciences, vol. 2, no. 10, Sep. 2020, 
Art. no. 1704, https://doi.org/10.1007/s42452-020-03486-4. 

[20] H. He, H. Xing, D. Hu, and X. Yu, "Novel fuzzy uncertainty modeling 
for land cover classification based on clustering analysis," Science China 
Earth Sciences, vol. 62, no. 2, pp. 438–450, Feb. 2019, 
https://doi.org/10.1007/s11430-017-9224-6. 

[21] N. Panahi, H. O. Rohi, A. Payandeh, and M. S. Haghighi, "Adaptation of 
LEACH routing protocol to cognitive radio sensor networks," in 6th 
International Symposium on Telecommunications (IST), Aug. 2012, pp. 
541–547, https://doi.org/10.1109/IS℡.2012.6483049. 

[22] I. Mustapha, B. M. Ali, A. Sali, M. F. A. Rasid, and H. Mohamad, 
"Energy-aware cluster based cooperative spectrum sensing for cognitive 
radio sensor networks," in 2014 IEEE 2nd International Symposium on 
Telecommunication Technologies (ISTT), Langkawi, Malaysia, Aug. 
2014, pp. 45–50, https://doi.org/10.1109/ISTT.2014.7238174. 

[23] A. H. Alaidi, C. S. Der, and Y. W. Leong, "Increased Efficiency of the 
Artificial Bee Colony Algorithm Using the Pheromone Technique," 
Engineering, Technology & Applied Science Research, vol. 12, no. 6, 
pp. 9732–9736, Dec. 2022, https://doi.org/10.48084/etasr.5305. 

[24] E. Pei, H. Han, Z. Sun, B. Shen, and T. Zhang, "LEAUCH: low-energy 
adaptive uneven clustering hierarchy for cognitive radio sensor 
network," EURASIP Journal on Wireless Communications and 
Networking, vol. 2015, no. 1, Apr. 2015, Art. no. 122, https://doi.org/ 
10.1186/fs13638-015-0354-x. 

[25] J. H. Park, Y. Nam, and J.-M. Chung, "Sustainability Enhancement 
Multihop Clustering in Cognitive Radio Sensor Networks," 
International Journal of Distributed Sensor Networks, vol. 11, no. 10, 
Oct. 2015, Art. no. 574340, https://doi.org/10.1155/2015/574340. 

[26] M. Ozger, E. Fadel, and O. B. Akan, "Event-to-Sink Spectrum-Aware 
Clustering in Mobile Cognitive Radio Sensor Networks," IEEE 
Transactions on Mobile Computing, vol. 15, no. 9, pp. 2221–2233, Sep. 
2016, https://doi.org/10.1109/TMC.2015.2493526. 

[27] G. P. Joshi and S. W. Kim, "A Survey on Node Clustering in Cognitive 
Radio Wireless Sensor Networks," Sensors, vol. 16, no. 9, Sep. 2016, 
Art. no. 1465, https://doi.org/10.3390/s16091465. 

[28] S. S. Kim, S. McLoone, J. H. Byeon, S. Lee, and H. Liu, "Cognitively 
Inspired Artificial Bee Colony Clustering for Cognitive Wireless Sensor 
Networks," Cognitive Computation, vol. 9, no. 2, pp. 207–224, Apr. 
2017, https://doi.org/10.1007/s12559-016-9447-z. 

[29] S. D. Chavan and A. V. Kulkarni, "Event Based Clustering Localized 
Energy Efficient Ant Colony Optimization (EBC_LEE-ACO) for 
Performance Enhancement of Wireless Sensor Network," Engineering, 
Technology & Applied Science Research, vol. 8, no. 4, pp. 3177–3183, 
Aug. 2018, https://doi.org/10.48084/etasr.2121. 

[30] S. Kumar and A. K. Singh, "A localized algorithm for clustering in 
cognitive radio networks," Journal of King Saud University - Computer 
and Information Sciences, vol. 33, no. 5, pp. 600–607, Jun. 2021, 
https://doi.org/10.1016/j.jksuci.2018.04.004. 

[31] Y. Ge, S. Wang, and J. Ma, "Optimization on TEEN routing protocol in 
cognitive wireless sensor network," EURASIP Journal on Wireless 
Communications and Networking, vol. 2018, no. 1, Feb. 2018, Art. no. 
27, https://doi.org/10.1186/s13638-018-1039-z. 

[32] R. Samir, M. S. El-Mahallawy, S. M. Gasser, and N. Zaher, "Exploring 
the Effect of Various Cluster Structures on Energy Consumption and 
End-to-End Delay in Cognitive Radio Wireless Sensor Networks," IEEE 
Access, vol. 6, pp. 38062–38070, 2018, https://doi.org/10.1109/ 
ACCESS.2018.2854872. 

[33] L. Bhagyalakshmi, S. K. Suman, and T. Sujeethadevi, "Joint Routing 
and Resource Allocation for Cluster Based Isolated Nodes in Cognitive 
Radio Wireless Sensor Networks," Wireless Personal Communications, 
vol. 114, no. 4, pp. 3477–3488, Oct. 2020, https://doi.org/10.1007/ 
s11277-020-07543-4. 

[34] M. A. Hossain, M. Schukat, and E. Barrett, "Enhancing the Spectrum 
Sensing Performance of Cluster-Based Cooperative Cognitive Radio 
Networks via Sequential Multiple Reporting Channels," Wireless 
Personal Communications, vol. 116, no. 3, pp. 2411–2433, Feb. 2021, 
https://doi.org/10.1007/s11277-020-07802-4. 

[35] S. A. Devaraj and T. Aruna, "MACBHA: Modified Adaptive Cluster-
Based Heuristic Approach with Co-operative Spectrum Sensing in 
Wireless Sensor Networks," Wireless Personal Communications, vol. 
114, no. 1, pp. 69–84, Sep. 2020, https://doi.org/10.1007/s11277-020-
07350-x. 

[36] Z. Tang, J. Zhang, L. Wang, J. Han, D. Fang, and A. Wang, "NDSL: 
Node Density-Based Subregional Localization in Large Scale 
Anisotropy Wireless Sensor Networks," International Journal of 
Distributed Sensor Networks, vol. 11, no. 11, Art. no. 821352, Nov. 
2015, https://doi.org/10.1155/2015/821352. 

 


