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ABSTRACT 

Mobile robots have many industrial applications, including security, food service, and fire safety. Detecting 

smoke and fire quickly for early warning and monitoring is crucial in every industrial safety system. In 

this paper, a method for early smoke and fire detection using mobile robots equipped with cameras is 

presented. The method employs artificial intelligence for trajectory planning and navigation, and focus is 

given to detection and localization techniques for mobile robot navigation. A model of a mobile robot with 

Omni wheels and a modified YOLOv5 algorithm for fire and smoke detection is also introduced, which is 

integrated into the control system. This research addresses the issue of distinct objects of the same class by 

assigning each object a unique identification. The implementation not only detects fire and smoke but also 

identifies the position of objects in three-dimensional space, allowing the robot to map its environment 

incrementally for mobile navigation. The experimental results demonstrate the high accuracy achieved by 

the proposed method in identifying smoke and fire. 

Keywords-mobile robots; robot mapping; smoke and fire real-time detection; dynamic environment; 

localization; presumptive environment; robot navigation; object identification 

I. INTRODUCTION  

The accurate navigation of autonomous vehicles depends 
on precise information about the robot's state and surroundings, 

including position, orientation, speed, and acceleration. While 
GPS is widely used for position estimation, it can be limited by 
environmental conditions and sensor cost. To address these 
limitations, a camera-based method for position estimation that 
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eliminates the reliance on GPS is proposed. This method 
utilizes visual information to improve accuracy and reduce cost 
in autonomous vehicle navigation. Cameras with depth sensors, 
such as monocular, stereoscopic, or omnidirectional cameras, 
can be used in different localization strategies. These strategies 
include map-building systems, map-based systems, and maple 
systems [1]. While SLAM and deep learning-based approaches 
have been proposed for path planning, they may not adequately 
handle dynamic environments. To address this, we present a 
visual-based localization approach implemented through a deep 
learning architecture in this article. Furthermore, we propose a 
method that utilizes a camera equipped with YOLOv5 + object 
tracking for detecting and tracking objects like fire and smoke, 
enabling the construction of 3D maps of these objects. Through 
this method, the robot can navigate towards the identified 
location of the fire.  

II. RELATED WORK 

There is a growing interest in the field of smoke and fire 
detection, primarily due to its significant applications in 
various domains. Detecting smoke and fire in its early stages 
plays a vital role in preventing potential disasters and 
minimizing associated damages. As a result, researchers are 
extensively investigating and developing innovative techniques 
and algorithms to enhance the accuracy and efficiency of 
smoke and fire detection systems. A large body of related work 
exists in this domain, spanning across multiple disciplines such 
as computer vision, image processing, machine learning, and 
sensor technology. Early approaches primarily focused on 
using traditional image processing methods, relying on color-
based features and intensity transformations. In addition, 
smoke, temperature, or gas sensors can also be used for the 
purpose of early fire detection. For instance, authors in [2] used 
an MQ-5 sensor to continuously monitor the surrounding 
environment and prevent gas leakage, thus reducing the risk of 
fire and damage [2]. On the other hand, as mentioned above, a 
feasible method can be used to detect smoke using several 
techniques such as Haar features, Bhattacharya distance 
method, SIFT descriptors, Gabor wavelets approach, and SVM 
classifier to identify the smoke through video processing [3].  

Regarding object tracking algorithms, this method is 
commonly used to track and detect objects, such as the 
implementation in [4] which combines the Scale Invariant 
Feature Transform (SIFT) and Singular Spectrum Analysis 
(SSA) methods. Based on these results, we propose utilizing a 
combination of the YOLOv5 deep learning model with object 
tracking algorithms to detect and provide early alerts of fires in 
real-time through a camera. 

III. PROPOSED APPROACH 

A. Object Detection with the Modified YOLOv5 Model 

The YOLOv5 network consists of three main components, 
namely the backbone, neck, and head. The backbone is 
responsible for aggregating and generating image features from 
various fine-grained images through a Convolutional Neural 
Network (CNN). The neck, on the other hand, comprises a 
series of network layers that mix and combine these image 
features and transfer them to the prediction layer. Finally, the 

head utilizes the image features to produce bounding boxes and 
predict the categories of objects. To create different versions of 
the YOLOv5 network model, the width and depth of the 
backbone network are adjusted using the parameters 
depth_multiple and width_multiple. These adjustments result in 
4 versions termed as YOLOv5x, YOLOv5l, YOLOv5m, and 
YOLOv5s. Among these versions, YOLOv5s is the simplest, 
with a depth_multiple of 0.33 and width_multiple of 0.5 [5]. It 
has the least model parameters and offers the fastest detection 
speed.  

The purpose of the SPP (Spatial Pyramid Pooling) structure 
[6] in YOLOv5 network is to generate a fixed size feature 
vector as the output of a fully connected layer, regardless of the 
input image size. The SPP structure utilizes three convolution 
kernels with sizes of 3, 5, and 9, in order to extract features 
through the use of maximum pooling. This enhances the 
expressive capability of the feature graph and expands the 
network's receptive field. Figure 1(a) illustrates the SPP 
structure, which first applies 1×1, 3×3, 5×5, and 9×9 maximum 
pooling operations to the data transferred from the 
convolutional normalization activation function (Convolution + 
Banch Normalization + SiLU (Sigmoid Linear Unit), CBS 
(Conv-BN-SiLU)) in parallel. These results are then joined to 
the CBS structure using concatenation splicing to accomplish 
feature fusion and complete the feature extraction process. 
However, the original SPP structure increases the 
computational workload due to the parallel pooling operations 
with differently-sized convolutional kernels, which affects 
performance. As a result, the Spatial Pyramid Pooling Fast 
(SPPF) structure is introduced to improve the pooling 
performance while reducing computational requirements. The 
SPPF structure substitutes the parallel maximum pooling 
operation from three convolutional kernels with different sizes 
in the original SPP, with a sequential operation using three 
convolutional kernels of the same size. As depicted in Figure 1, 
the SPPF structure bears resemblance to the SPP structure. 
Initially, the SPPF layer conducts a successive 5×5 maximum 
pooling operation on the data obtained from the CBS structure 
[7]. Subsequently, the data are merged into the CBS structure 
through concatenation splicing, enabling acceleration in 
processing speed while simultaneously obtaining a more 
comprehensive feature extraction. 

 

 

Fig. 1.  (a) SPP structure diagram and (b) SPPF structure diagram. 
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Authors in [5] made some modifications to the SPP module 
with quite promising results. However, with the proposed 
multi-scale architecture of SPPD, there may be some 
difficulties such as more complex computations for the 
computer. With the embedded Jetson Nano computer, we need 
a lightweight model that still maintains faster recognition 
speed. Therefore, it is necessary to modify the YOLOv5 model 
by reducing the number of max pooling layers and replacing 
the activation function with Leaky ReLU (Leaky Rectified 
Linear Unit) in the SPPF module. Modifying the YOLOv5 
model may have some impacts on the model. Some possible 
impacts are the reduction of the number of max pooling layers. 
Max pooling is a transformation that not only reduces the size 
of feature maps but also decreases the accuracy of features by 
selecting the maximum value within the max pooling region. 
Reducing the number of max pooling layers can help retain 
more detailed information about the object's positions in the 
image.The advantages of replacing SiLU with Leaky ReLU can 
be described as: 

 No gradient vanishing problem: The biggest advantage of 
Leaky ReLU over SiLU is that it avoids the issue of the 
gradient approaching zero. In SiLU, the derivative of the 
activation function is nearly zero as the input value 
approaches infinity, making backpropagation difficult and 
leading to gradient loss. On the other hand, with Leaky 
ReLU, the gradient does not vanish and can be easily 
propagated, helping improve training efficiency. 

 Ability to learn complex models: Leaky ReLU allows the 
model to learn more complex non-linear properties by 
introducing negative outputs. This helps the model capture 
non-linear transformations in the data, while increasing 
flexibility and modeling ability. 

 Positivity and fast computation: The Leaky ReLU 
activation function simply multiplies negative inputs by a 
small non-zero coefficient, while positive inputs remain 
unchanged. This makes the positivity of Leaky ReLU 
higher than SiLU. Moreover, the computation of Leaky 
ReLU is simpler than SiLU, which helps increase 
computation speed in the model. 

Therefore, reducing the number of max pooling layers and 

replacing the activation function with leaky ReLU in the SPPF 

module of YOLOv5 can improve the model's object 

recognition capability and help the model converge better 

during training. Figure 2 shows the modified SPPF module of 

YOLOv5. Figure 3 demonstrates the training results of the 

modified YOLOv5 model. 
 

 

Fig. 2.  Modified SPPF structure. 

 

Fig. 3.  Model training graph. 

Through training the model, we observed the accuracy and 
strength of the early fire detection model using the modified 
YOLOv5 algorithm. This enables early fire alerts to be 
efficiently and quickly triggered, thereby helping to prevent or 
minimize damage. The basic system meets the necessary 
accuracy requirements and avoids data overfitting, while the 
output probability meets the evaluation and early fire alert 
goals. After experimenting with the Jetson Nano Developer 
Kit, it was observed that the system can detect at a speed of 
about 62 frames per second, meeting the set target and utilizing 
the available devices we have. 

B. Data Preparation and Processing 

Detecting smoke accurately in practice is a challenging task 
due to complex possible scenarios and limited image 
information. Creating a training dataset with paired smoke 
images and bounding box positions is a major challenge for 
comprehensive learning. However, well-constructed datasets 
can effectively train discriminative models as smoke detectors, 
ensuring accurate detection of smoldering fires. The dataset 
Smoke 100k [9] was used with options such as high smoke, 
low smoke, and medium smoke. Fire data, including videos, 
were collected from the internet. Cleaning the data is crucial 
but time-consuming, involving removing irrelevant data, 
outliers, filling missing values, standardizing patterns, and 
ensuring data confidentiality. Once cleaned, validation is 
essential to test for errors in the preparation process. The 
validation step helps identifying any remaining issues that need 
to be addressed before moving forward. All collected data were 
divided into 3 categories corresponding for smoke and fire: 
low, medium, and high. However, to keep it simple in 
programming, we only used 2 labels: fire and smoke. After 
collecting the data, we labeled them using the online platform 
makesense.ai [8]. Subsequently, we converted the annotated 
image into a text format based on the YOLO format. 

C. Object Tracking Algorithm 

In this algorithm, we use object tracking in combination 
with YOLOv5. Object tracking is the task of automatically 
identifying objects in a video and calculating the trajectories of 
each object. Object tracking is often used in the surveillance 
fields such as automatic number plate recognition. So that, we 
can see the difference with usual object detection algorithms is 
YOLO does not distinguish objects of the same class and 
YOLOv5 + object tracking gives a unique id in each object. 
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Assumption: The detector produces a detection per frame 
for every object to be tracked. Detections of an object in 
consecutive frames have a high overlap rate. 
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where fD  represents the detections at frame f  and df 

represents the thj detection at that frame. 

Figure 4 shows the flowchart of the proposed algorithm. To 
fully supervise the workspace, the robot's motion trajectory is 
determined based on the workspace. Figure 5 shows the robot's 
trajectory as it moves in the working environment, with 
coordinates determined by the encoder signal during its 
movement. 

 

 
Fig. 4.  Algorithm of YOLOv5 + object tracking. 

  

Fig. 5.  The trajectory of the robot in the workspace and when fire is 

detected. 

When a fire point is detected, the robot's trajectory is 
adjusted based on the distance and angle calculated using the 
stereo camera. To approach and alert the fire point, the 
trajectory changes to a vector with the robot's position at the 
detection point as the starting point and the location of the fire 
as the endpoint. 

D. Navigation 

The robot has omni wheels to enhance its flexibility when 
operating within the workspace. Moreover, the omni wheels, in 
combination with the three-wheeled robot structure, are highly 
suitable for adjusting the camera's vision flexibly. During 
movement, based on the omnidirectional nature of the omni 
wheels, the robot can follow the desired trajectories or rotate at 
desired angles in a stationary position. This not only enables 
the robot to fast and flexibly reach fire-risk locations but also 
facilitates camera vision adjustments. In this way, the camera 
can be directed more directly toward the fire location, thus 
enhancing the accuracy of the fire hazard recognition model. 

The robot navigates along the predetermined trajectory, 
enabling it to perform monitoring tasks and alerting upon fire 
detection. The starting position serves as the initial point, and if 
no fire is detected, the robot continues to navigate throughout 
the supervised area. The completion of a navigation cycle is 
indicated when the robot returns to its initial position. This 
navigation process is repeated in the absence of fire detections. 
When a fire is detected, the robot must accurately navigate 
along a new trajectory to make a   degree turn and move a 

distance of d . 

The multi-directional robot using omni wheels is described 

in [10]. The robot is positioned within the ˆ ˆ
w w w

O X Z 
 
 

 

coordinate system. This mobile robot consists of the robot body 
and three omnidirectional wheels labeled 1, 2, and 3. The 
wheels are arranged equidistantly from the center of the robot 
chassis with a spacing of 120 degrees. The parameters for an 
omnidirectional mobile robot are: 

tM : the total mass of the mobile robot, including the 

robot’s body mass and the components' mass. 

CL : the radius of the mobile robot. 

1 2 3, ,f f f : the reaction force applied by the ground to the 

omni-directional wheel, where the direction is vertical to wheel 
axes 1, 2, and 3, respectively 

Rw: the radius of the omni- directional wheels. 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11843-11849 11847  
 

www.etasr.com Ngoc et al.: Real-Time Fire and Smoke Detection for Trajectory Planning and Navigation of a Mobile … 

 

C : the angle between wheel 2 and the �MZ -axis of the 

mobile coordinate system.  

φ: the rotation angle of the omnidirectional mobile robot. 

Iy: the moment of inertia of the omni-directional mobile 

robot about the �MY -axis. 

1 2 3, ,   : the rotation angle of omni-directional wheel 1, 2, 

and 3, respectively. 

ω1, ω2, ω3: the angular velocity of omni-directional wheels 
1, 2, and 3, respectively. 

 TW WZ X : the position for the center of mass of the robot 

relative to the coordinate system. 

The dynamics and kinematics of the mobile robot can be 
described by: 

1 0.5 0.5
0 0 cos sin 0

3 30 0 sin cos 0 0
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0 0 0 0 1
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 (3) 

where Wzɺ , Wxɺ , ɺ  are the recent coordinates of the robot, 

determined by input parameters like Mt, Iy, sin , cos , and cL . 

Equation (14) describes the relationship between these 
parameters.  
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Based on the recent coordinates of the robot, the velocity in 
each wheel is calculated by (14). We can see that the velocity 
in each wheel depends on the radius of the Omni directional 
wheel. In the first matrix, the 3×3 parameters of the matrix are 

1 1 3 3
; ; ; ;0

2 2 2 2


  created by the initial angle (30 degrees) and 

the radius of the robot. The next 3×3 matrix is created by 

rotating by angle  and the final 1×3 matrix is based on the 

recent robot coordinates. The omnidirectional wheels in this 
study were powered by DC servo motors. The model for a DC 
motor can be simplified to: 

2

t t
m m

a a

K K
u

R R
       (5) 

where τm is the motor torque, calculated by u which is the 

control voltage, tK  is the motor torque constant, ωm is the 

angular velocity of the motor, and Rα is the armature resistance. 
The traction force f of the wheel is given by the calculated 
motor torque [11]: 

m

n
f

R

      (6)  

where n is the gear ratio. The three motors used in this mobile 
robot are identical. Therefore, combining (5) and (6), the 

relationship between 1f , 2f , u, and ω is given by: 
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The dynamics of the robot can be presented as: 
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We assume that the predicted fire-point of the ball in the 

ˆ ˆ
w w w

O X Z 
 
 

 coordinate system is    
T

b bz t x t    . The 

position reference to the mobile robot is set to be: 

      T

b b bP t z t x t          (17) 

where the rotation angle φ is assumed to be 0. The tracking 
error is defined as: 

     be t P t P t       (18) 

The tracking error is definitely important because of its role 
in the PID controller, which is described by: 

( ) ( ) ( ) ( )
0

t d
u t K e t K e t dt K e tp i d

dt
    (19) 

From ( )e t , eɺɺ can be given by: 

( )b Ce P A P B U        
ɺɺ ɺɺɺ    (20) 

The definition of a new control input U is: 
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 b CU P A P B U       
ɺɺ ɺ≜    (21) 

From the above, we obtain: 
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e I e
U

e e I

d
dt
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The feedback control CU  can be written as: 

  1

C w bw w wU B P A P U      
ɺɺ ɺ    (23) 

In (23), the system is decoupled into a linear form, and the 
PID control algorithm is employed to achieve tracking control 
and calibrate the speed as expected. Consequently, the 
subsequent PID control strategy applies in this scenario: 

e ɺ  and 
p d iU K e K e K    ɺ   (24) 

where dK , pK , and iK are 3×3 diagonal PID gain matrixes 

with equal diag 
idk , diag 

ipk , and diag 
ii

k , respectively, 

and i = 1, 2, 3. The closed-loop tracking error system using PID 
controller is given by: 

0 0
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i p d

I
d

e I e
dt

e K K K e
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  (25) 

According to the Routh–Hurwitz criterion, PID gain values

pk , ik , and dk must satisfy: , 1,2,3.
i i ii d pk k k i   

 

 

Fig. 6.  Rotation and movement of the robot. 

The PID control gain values are determined using the 
proposed control method in order to achieve closed-loop 
stability. The phase margin and gain margin have been set to 
45°. The maneuverability and controllability of a 3-omni wheel 
robot are inversely related. The robot exhibits exceptional 
maneuverability due to the flexibility of its omni wheels. 
However, precise control is necessary to maintain trajectory 
accuracy and prevent unwanted movements. To achieve this, 
encoders are installed on each driving motor of the robot to 
measure wheel speed and distance traveled. In the event of fire 
detection, the robot's trajectory is modified, and navigation is 
required to guide the robot along the new path towards the fire. 

The Jetson Nano and stereo camera determine the distance d 
and angle θ and the robot rotates by θ degrees and moves 
straight for the distance d based on this information (Figure 6).  

IV. RESULTS AND DISCUSSION 

The omni-directional 3-wheel robot successfully detected 
smoke and fire, navigated to their location utilizing a camera 
and YOLOv5 algorithm. Object tracking algorithms enabled 
the tracking of these objects across multiple frames with the 
help of a camera and Jetson Nano developer kit for detection 
and processing. Once an object is detected, YOLOv5 identifies 
its type and provides positional information. The object 
tracking algorithm tracks the object across frames and 
calculates the optimal path. With advanced algorithms and 
information processing, the robot can navigate accurately and 
safely toward the source of smoke or fire. This feature is 
valuable in emergency and firefighting scenarios. The results 
can be demonstrated using an embedded computer connected 
to a screen, enabling the robot to adjust its trajectory based on 
fire recognition signals captured by the camera (Figures 7-8). 
Figure 7 was captured after completing the trajectory change 
and reaching the fire detection point. In Figure 8, the robot 
follows a pre-programmed path, but alters its trajectory towards 
the detected fire location once it receives the camera signal. 

 

 

Fig. 7.  The result after the robot detects fire and moves to the fire point. 

 
Fig. 8.  Initial trajectory, change in trajectory, and movement to the fire 

location. 

V. CONCLUSION 

The current research has successfully developed an 
autonomous omni-directional robot equipped with a camera for 
navigation and early fire detection. The proposed method 
enables the robot to detect smoke and fire, calculate the 
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trajectory, and accurately navigate to the smoke/fire location. 
The control of the robot model moving along the trajectory is 
performed precisely according to the kinematics and dynamics 
problems. By applying the versatility of the omni wheels, the 
robot moves flexibly and accurately. In addition, the use of 
modified YOLOv5 in combination with object tracking 
provides a new solution for object recognition. The model's 
verification in fire and smoke detection has proven that 
YOLOv5 performs considerably better than the original model, 
with an accuracy of up to 95% on our fire and smoke dataset. 
Moreover, the enhanced YOLOv5 can detect 62 frames per 
second, meeting real-time demands. The omni robot has 
demonstrated its ability to identify and locate smoke and fire 
using the camera, YOLOv5, and object tracking. This 
advancement holds promise for various applications in robotics 
technology. However, the trajectory planning method used in 
this research may not have a high success rate in handling 
obstacles near the target location. Future work could focus on 
addressing this limitation to enhance the overall performance of 
the system. 
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