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ABSTRACT 

Diabetic Retinopathy (DR) is a major source of sightlessness and permanent visual damage. Manual 

Analysis of DR is a labor-intensive and costly task that requires skilled ophthalmologists to observe and 

evaluate DR utilizing digital fundus images. The images can be employed for analysis and disease 

screening. This laborious task can gain a great advantage in automated detection by exploiting Artificial 

Intelligence (AI) techniques. Content-Based Image Retrieval (CBIR) approaches are utilized to retrieve 

related images in massive databases and are helpful in many application regions and most healthcare 

systems. With this motivation, this article develops the new Manta Ray Foraging Optimizer with Deep 

Learning-based Fundus Image Retrieval and Classification (MRFODL-FIRC) approach for the grading of 

DR. The suggested MRFODL-FIRC model investigates the retinal fundus imaging effectively to retrieve 

the relevant images and identify class labels. To achieve this, the MRFODL-FIRC technique uses Median 

Filtering (MF) as a pre-processing step. The Capsule Network (CapsNet) model is used to produce feature 

vectors with the MRFO algorithm as a hyperparameter optimizer. For the image retrieval process, the 

Manhattan distance metric is used. Finally, the Variational Autoencoder (VAE) model is used for 

recognizing and classifying DR. The investigational assessment of the MRFODL-FIRC technique is 

accomplished on medical DR and the outputs highlighted the improved performance of the MRFODL-

FIRC algorithm over the current approaches. 

Keywords-fundus images; image classification; diabetic retinopathy; deep learning; Manta Ray foraging 

optimization 

I. INTRODUCTION  

Diabetic Retinopathy (DR) denotes a complication of 
diabetes that happens due to damaged Blood Vessels (BVs) in 
the retina caused by higher blood sugar levels, leading to 
leaking and swelling in BV [1]. The vision can be completely 
lost in an advanced DR phase. Currently, ophthalmologists 
routinely use digital retinal fundus images for grading and 
classifying DR [2]. During this process, the ophthalmologist 
must visually observe digital fundus images, compare those 
with standard images such as EDTRS images, or images from 
archival DR image datasets, for interpreting images with more 
accuracy or for clarifying confusion [3]. This procedure is 
vulnerable to error or review fatigue and is a laborious process. 
The ophthalmologists find it difficult to use a large volume of 
past medical reports with proven pathology because they are 
not readily accessible to the historical medical reports that are 
appropriate to a new image that has to be identified [4]. Thus, 

the enormous quantity of diagnosis knowledge concealed in 
historical databases has been wasted [5].  

Images can be medically relevant if they comprise similar 
kinds of lesions having the same visual appearance [6]. One 
method that has proved very beneficial in the early diagnosis of 
retinal diseases is the CBIR method. The fundus images 
obtained from many diabetic patients are useful data for 
analysing retinal diseases with the help of image processing 
methods. The CBIR process has two stages in it [7], the feature 
extraction stage and the query matching stage. In the first stage, 
a feature vector is generated by extracting features like texture, 
color, and shape of images. Feature vector is an optimized form 
of imagery [8]. Query matching depends on similarity 
measurement, which makes use of the distance of the query 
from all images in the database to detect the closest image. It is 
a time-consuming process if done manually, it needs significant 
effort, and may lead to misdiagnosis [9]. Hence, to reduce the 
overall cost and avoid misdiagnosis, time, and effort, 
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Computer-Aided Detection (CAD) methods can be used as 
potential means. In the past, Deep Learning (DL) techniques 
have been applied in several domains, including medical image 
analysis [10]. DL has the potential to detect features precisely 
from input datasets for segmentation or classification and 
normally outpaces all classical image analysis methods.   

In the current study, the new Manta Ray Foraging 
Optimizer with Deep Learning based Fundus Image Retrieval 
and Classification (MRFODL-FIRC) approach for the grading 
of DR. The presented MRFODL-FIRC approach exploits 
Median Filtering (MF) as a pre-processing step. The Capsule 
Network (CapsNet) model is used to produce feature vectors 
with the MRFO algorithm as a hyperparameter optimizer. For 
the image retrieval process, the Manhattan distance metric is 
used. Finally, the Variational Autoencoder (VAE) model is 
used for recognizing and classifying DR. The investigational 
assessment of the MRFODL-FIRC technique is accomplished 
on a medical DR dataset. 

II. RELATED WORKS 

Authors in [11] introduced the new diabetic retinopathy 
screening algorithm utilizing an asymmetric DL feature. 
Through U-Net for BV segmentation and optic disc, the 
asymmetric DL features were derived. For the DR lesion 
classification, a CNN with an SVM was utilized. The lesions 
were categorized into 4 classes, i.e. haemorrhages, normal, 
exudates, and microaneurysms. Author in [12], presented a 
two-step training approach using a supervised contrastive loss 
function called SCL technique for identifying the DR and its 
robust phases from fundus image. The pre-trained Xception 
CNN method was deployed as the encoder with TL and the 
CLAHE model was implemented to enrich the image quality. 
The SNE technique was utilized to visualize embedding space 
made up of 128D space into 2D space to interpret the SCL 
model. Authors in [13] suggested a dual-phase technique for 
the automatically classification of DR. Due to the lower 
fraction of positive samples in the BV and asymmetric Optic 
Disk (OD) detection system, data augmentation and pre-
processing methods were utilized for enriching the image 
quantity and quality. The first step utilized 2 U-Net approaches 
for OD and BV segmentation. After pre-processing, the 
symmetric fusion CNN-SVD algorithm was employed to 
choose and extract the discriminative factors followed by BV 
and OD extraction through InceptionV3 depending on TL. 
Authors in [14] introduced ML-CAD systems that visualized 
the pathological variations and identified DR images. Firstly, 
the authors reduced noise, standardized the size, and enhanced 
the quality of the retinal images. Then, by computing the gray-
level average of run length matrix in 4 diverse directions, the 
authors distinguished between the DR and healthy cases with 
the help of a DL method (UNet). The system mechanically 
derived 4 major classes: haemorrhages, BVs, microaneurysms, 
and exudates.  

Authors in [15] presented a DL-related technique for 
automatically evaluating DR in retina FIs. For increasing the 
discriminative capability of the retrieved features, a multi-scale 
attention system was implemented in a deep CNN structure. A 
brand-new loss function termed modified grading loss was 
provided that boosts the training convergence of the suggested 

method by considering the distance between different grades of 
various DR categories. Authors in [16] devised an innovative 
technique for precise haemorrhage detection from retinal 
images. Initially, this technique makes use of the contrast 
advancement approach to enrich the edge information from 
input fundus imaging. Next, an innovative CNN structure was 
devised for identifying haemorrhages. An adapted pretrained 
CNN technique was utilized for extracting features from 
identified haemorrhages. In stage 3, each extracted feature 
vector was merged through the convolutional sparse image 
decomposition algorithm. 

III. THE PROPOSED MODEL 

In this research, an automatic DR grading and classification 
model, named the MRFODL-FIRC technique is developed. 
The proposed MRFODL-FIRC technique examines retinal 
fundus images efficaciously for retrieving related images and 
determining the classes. It encompasses different sub-
processes, namely MF-based pre-processing, CapsNet-based 
feature extracting process, MRFO-based tuning process, 
Manhattan distance-based similarity measurement, and VAE 
classification. Figure 1 demonstrates the comprehensive flow 
of the MRFODL-FIRC model. 

 

 
Fig. 1.  Overall flow of the MRFODL-FIRC approach. 

A. MF-based Preprocessing 

At first, the MF technique is used to pre-process the fundus 
images. MF is a procedure utilized to remove noise in the 
image [17]. This mechanism is exchanging all the pixels from 
the image with the median value of their neighboring pixels. 
The simple steps contained in MF are: 
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 Select the size of filter window: This window is classically 
a square or rectangular region centred in the pixel being 
filtered. 

 Slide the filter window on the image: The filtering window 
is then slid on the image, one pixel at a time. 

 Compute the median value: the median value of the pixel in 
the filter window can be computed for every pixel of the 
image. 

 Exchange the pixel with the median value: The pixel being 
filtered is then exchanged by the computed median value. 

B. Feature Extraction using the CapsNet Model 

To produce feature vectors, the CapsNet model is utilized. 
CapsNet is a kind of NN which contains a set of neurons from 
which activity vectors point out the instantiate parameter of a 
specific entity [18], for instance, an object or object portion. It 
integrates 2 convolution layers with an entirely associated layer 
(termed as RecCaps). The 1st layer is utilized for converting 
the character images of the input as activation blocks. The 
second layer performs as PrimaryCaps. The modification of 
"neurons" with a singular scalar output was completed to 
PrimaryCaps with an 8‐dimension vector procedure. Lastly, the 
the RecCaps layer is utilized for encapsulating the spatial 
connection amongst every local feature in the PrimaryCaps. 
Afterwards every feature can be provided as a superior 
dimension advanced capsule taking a dimension of 16. During 
the final layers, this method utilizes a nonlinear "squashing" 
activation function for ensuring the decrease of vector lengths 
from 0 to 1. This formula demonstrated provides the resultant 
vector of capsule �. 

�� = ‖	
||�
�‖	
‖�

	

‖	
‖    (1) 

where ��  signifies the resultant vector for capsule � and �� 
denotes the input vector. 

Accordingly, the length of the capsule's resultant vector is 
utilized for representing the possibility of recovered local 
features. The lower-level factors in the input character can be 
removed by the first layer termed as ����1. Afterwards, the 
primary capsule layer is utilized for applying convolution 
functions on the chosen group of features for acquiring 3D 
matrices. The dimensions of the matrices are 18×16×128 and 
lastly, the matrices are gathered as 16 capsules. Each matrix 
has dimensions of 18×16×8. An overall of 4680 capsules can 
be attained by utilizing squashing activation function once the 
stacking and flattening of capsules are completed. The 
extraction feature ��  is signified as 8-dimension vectors for 
each capsule. 

The dynamic routing technique was utilized for recognizing 
a part of PrimaryCaps that is highly co‐relatable with advanced 
capsules which determine the local features which are best 
probably connected to higher-level features. This procedure 
supports creating a model added to spatial connection needed 
for interpreting and detecting handwritten words. For every 
iteration, the coupling coefficient can be computed. 
Afterwards, the resultant vector for the capsule of the 
subsequent layer can be calculated. Lastly, the sum of 

agreements among every capsule proceeds to the last outcome 
obtained. 

C. Hyperparameter Tuning with the MRFO Algorithm 

In this work, the MRFO algorithm adjusts the 
hyperparameters of the CapsNet model. Authors in [19] 
proposed MRFO as a nature-inspired metaheuristic that was 
applied to resolve different optimization issues [19]. The 
primary motivation of the MRFO derives from the behavior of 
Manta Rays (MRs) when capturing food. Somersault foraging, 
chain foraging, and cyclone foraging are the 3 major foraging 
approaches in the MRFO algorithm. 

1) Chain Foraging 

In this phase, MRs start foraging by moving sequentially 
and forming head-to-tail chains. Apart from the first individual, 
the others move towards the food and nearby MRs for 
cooperation. The chain foraging can be mathematically 
modelled as: 

���� =
���� + �. (��� � − ���) + #. (��� � − ���), % = 1

��� + �. (��&� − ���) + #. (��� � − ���), % = 2, … , )  (2) 

# = 2. �. + log (�)      (3) 

In (2), ���  signifies the %-th individual location at / iteration, � denotes a randomly generated integer within [0,1], # denotes 
a weighted coefficient and ��� �  signifies the optimum found 
location. 

2) Cyclone Foraging 

This approach is considered as the spiral displacement of 
MRs towards the prey as follows: 

���� = ���� + �. (��� � − ���) + 0. (��� � − ���), % = 1
��� + �. (��&� − ���) + 0. (��� � − ���), % = 2, … , ) (4) 

�12�3 = 45 + �. (65 − 45)   (5) 

���� = ���� + �. (�12�3 − ���) + 0. (�12�3 − ���), % = 1
��� + �. (��&� − ���) + 0. (�12�3 − ���), % = 2, … , ) (6) 

0 = 2. 7(189:;<8
9 ). sin (2. @. �)   (7) 

where A  shows the maximal number of iterations,  �12�3 
characterizes a randomized location in the space defined by 
lower and higher boundaries 45 and 65, 0 represents a weight 
coefficient, and � denotes a random value within [0,1]. 

3) Somersault Foraging 

In such cases, the location of the prey is represented as a 
pivot. The MRs will be swimming toward the food and 
somersault to the newest location: 

��1� = ��� + B. (�C. ��� � − �D. ���), % = 1, … , ) (8) 

where B characterizes the somersault feature set to 2, r2  and r3 
are randomly generated numbers within [0,1 ]. The MRFO 
manner produces a Fitness Function (FF) for classification. The 
minimized classifier error rate is:  

 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11661-11666 11664  
 

www.etasr.com Shazuli & Saravanan: Manta Ray Foraging Optimizer with Deep Learning-based Fundus Image … 

 

�%/�7EE(F�) = �GHEE%�%7�I����JH/7(F�)  

= �K�L�1 MN �� OP2  �N��3  2�QP� 
RM�2P �K�L�1 MN  2�QP� ∗ 100   (9) 

4) Similarity Measurement 

The Manhattan distance metric was used for the image 
retrieval process. Manhattan distance is a metric whereas the 
distance between 2 points is the total of the absolute variances 
of Cartesian co-ordinates [20]: 

T = |� − U| + |�C − UC|   (10) 

and the generalization equation to n-dimensional space is 
expressed as: 

V� = ∑ |�� − U�|�
�X     (11) 

whereas, � denotes the number of dimensions and pi, qi are data 
points. 

5) Image Classification using VAE 

At the final stage, the VAE model is utilized for the image 
classification process. An Auto-Encoder (AE) is an NN which 
is given the training to try to duplicate its input to output [21]. 
The Hidden Layer (HL) ℎ  defines the code utilized for 
representing the input. The network could be observed as 
containing two parts like the encoded function Z = �(F) and 
decoding generates a reconstruction [(Z), where F implies the 
input dataset. One method to attain suitable features in the AE 
is to make Z  have lesser dimension than F . The AE code 
dimension number is lower than the input dimensional and is 
termed complete. For generating an instance in the method, the 
VAE primary draws the Z  instance in the code distribution 
��M3�P(Z). An instance is run over by a differentiable generator 
network (Z) . Eventually, F  has a distribution ��M3�P(F,⋅
[(Z)) = ��M3�P(F|Z). In the trained method, the approximate 
inference network (or encoded) U(ZF) is utilized for obtaining 
Z and ��M3�P  (FZ) is observed as a decoded network. The main 
insight behind VAEs is that it is trained by maximizing the 
variational lower bounds 4(U) connected to F data points: 

4(U) = I]∼_(]|`) log ��M3�P(Z, F) + abU(Z|F)c (12) 

= I]∼_(]|`)  log ��M3�P(F|Z) − Vde(U(Z|F)|f��M3�P(Z)c (13) 

Equation (12) distinguishes the first term as the joint log 
possibility of hidden and visible variables in the estimated 
hidden variable posterior. If U has a Gaussian distribution with 
noise and mean value, it maximizes the entropy term and 
stimulates enhancing the Standard Deviation (SD). Usually, the 
entropy term stimulates the variational posterior to locate the 
maximum possibility mass on the Z value which is created as F, 
instead of disintegrating toward a singular point evaluation of 
probable value. The network defined in (13) is the same. The 
"reparameterization trick" is used for moving the sample 
towards the input layers. After computing ��M3�PZ = g(F) +
h/C(F) ∗ 7 , its instance in )(g(F), h(F))  by sample ∼
)(0, j),. g(F) and h(F) denotes the mean and co-variance of 
(Z|F). Therefore, (13) is measured as follows: 

4(U) = Ik∼l(m,n)��M3�P(F|Z = g(F) + h
8
�(F) × p) −

Vde(U(Z|F)|f��M3�P(Z)c     (14) 

VAE contains multiple AE, input, and output layers. Every 
AE layer has been trained individually in an unsupervised 
method, and the outcome of HL in the preceding AE was 
utilized as input to the subsequent layer. The supervised fine-
tuning stage was executed in order to learn the overall 
parameters of the network utilizing the BP system. This model 
contains five HLs, one input layer, and one output layer. In 
Figure 2, the overall confusion matrix of the MRFODL-FIRC 
method on the DR classification process is illustrated. The 
outcome shows that the MRFODL-FIRC method gains 
effectual identification of DR over the existing approaches. 

 

 
Fig. 2.  Confusion matrices of MRFODL-FIRC method (a)-(b) 80:20 and 

(c)-(d) 70:30 of TRP/TSP. 

IV. PERFORMANCE VALIDATION 

The suggested technique was simulated by employing 
Python 3.6.5 on PC i5-8600k, 250GB SSD, GeForce 1050Ti 
4GB, 16GB RAM, and 1TB HDD. The parameter set up is: 
learning rate: 0.01, activation: ReLU, epoch count: 50, dropout: 
0.5, and batch size: 5. 

The detailed classification output of the MRFODL-FIRC 
approach on 80:20 of TRP/TSP is shown in Table I. The 
obtained output infers the effectual identification of different 
DR stages. As a sample, on 80% of TRP, the MRFODL-FIRC 
approach obtains an average Hqqrs  of 99.70%, ��7q�  of 

98.12%, �7qHP  of 98.09%, t OM1�  of 98.10%, and u6� OM1�  of 
98.89%. Alongside, on 20% of TSP, the MRFODL-FIRC 

methodology attains an average Hqqrs  of 99.78%, ��7q�  of 

98.51%, �7qHP of 98.26%, and t OM1�  of 98.38%, and u6� OM1� 
of 99.00%. In Table II, the detailed classification output of the 
MRFODL-FIRC approach on 70:30 of TRP/TSP is shown. The 
attained output infers the effectual identification of different 
DR stages. For instance, on 70% of TRP, the MRFODL-FIRC 

approach obtains an average Hqqrs  of 98.75%, ��7q�  of 

              (a)                                                         (b) 

              (c)                                                         (d) 
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91.50%, �7qHP  of 93.12%, t OM1�  of 92.24%, and u6� OM1�  of 
95.93%. On 30% of TSP, the MRFODL-FIRC method obtains 

an average Hqqrs  of 98.80%, ��7q�  of 91.68%, �7qHP  of 

93.55%, and t OM1�  of 92.50%, and u6� OM1� of 96.15%. 

TABLE I.  CLASSIFICATION OUTPUT OF MRFODL-FIRC 
MODEL ON 80:20 OF TRP/TSP 

Class vwwxy z{|w} ~|w�� ��w�{| v���w�{| 
Training Phase (80%) 

No DR 99.37 99.62 99.52 99.57 99.24 

Mild DR 99.75 97.34 99.08 98.21 99.44 

Moderate DR 99.68 98.97 98.94 98.95 99.38 

Severe DR 99.83 97.85 95.38 96.60 97.66 

Proliferative DR 99.89 96.84 97.53 97.18 98.73 

Average 99.70 98.12 98.09 98.10 98.89 

Testing Phase (20%) 

No DR 99.47 99.65 99.64 99.64 99.32 

Mild DR 99.84 98.16 99.59 98.87 99.72 

Moderate DR 99.83 99.52 99.32 99.42 99.62 

Severe DR 99.86 98.05 95.57 96.79 97.76 

Proliferative DR 99.89 97.18 97.18 97.18 98.56 

Average 99.78 98.51 98.26 98.38 99.00 

TABLE II.  CLASSIFICATION OUTPUT OF MRFODL-FIRC 
MODEL ON 70:30 OF TRP/TSP 

Class vwwxy z{|w} ~|w�� ��w�{| v���w�{| 
Training Phase (70%) 

No DR 97.56 98.57 98.11 98.34 97.07 

Mild DR 99.31 95.26 94.58 94.92 97.12 

Moderate DR 98.06 92.99 94.15 93.57 96.45 

Severe DR 99.44 90.13 87.36 88.72 93.56 

Proliferative DR 99.36 80.55 91.41 85.64 95.47 

Average 98.75 91.50 93.12 92.24 95.93 

Testing Phase (30%) 

No DR 97.57 98.46 98.23 98.34 97.00 

Mild DR 99.30 95.51 94.76 95.14 97.21 

Moderate DR 98.23 94.24 94.12 94.18 96.54 

Severe DR 99.59 93.12 89.84 91.45 94.84 

Proliferative DR 99.33 77.06 90.82 83.37 95.15 

Average 98.80 91.68 93.55 92.50 96.15 

TABLE III.  OUTPUT COMPARISON OF THE MRFODL-FIRC 
MODEL WITH EXISTING APPROACHES 

Methods vwwxy z{|w} ~|w�� ��w�{| 
WFDLN 98.00 95.29 94.70 95.11 

AlexNet 89.50 90.87 91.60 91.52 

MobileNet 92.90 93.28 93.12 93.46 

Xception 92.80 92.33 92.93 92.75 

ResNet-50 94.51 95.13 95.33 95.14 

MRFODL-FIRC 99.78 98.51 98.26 98.38 

 

Table III demonstrates the comprehensive comparison of 
the MRFODL-FIRC approach with recent approaches. The 
results demonstrate the enhanced performance of the 
MRFODL-FIRC technique with increasing Hqqrs  and t OM1�  

values. Based on Hqqrs , the MRFODL-FIRC technique 

reaches an improving Hqqrs  of 99.78% while the AlexNet, 

MobileNet, Xception, and ResNet-50 approaches obtain lesser 

Hqqrs  values. The MRFODL-FIRC technique reaches an 

improved t OM1�  of 98.38% while the AlexNet, MobileNet, 
Xception, and ResNet50 models obtain smaller t OM1�  values. 
These outputs confirm the enhanced achievement of the 

MRFODL-FIRC approach over the rest of the currently used 
methods. 

V. CONCLUSION 

In this research, an automatic DR grading and classification 
model, named MRFODL-FIRC is proposed. The presented 
MRFODL-FIRC technique examined the retinal fundus images 
efficaciously for retrieving related images and determining 
classes. It encompasses different sub-processes namely 
CapsNet-based feature extraction, MF-based pre-processing, 
MRFO-based tuning process, Manhattan distance-based 
similarity measuring, and VAE classification. The 
experimental assessment of the MRFODL-FIRC technique was 
conducted on a medical DR dataset and the outputs highlighted 
the improved performance of the MRFODL-FIRC technique 
over the currently used techniques. Therefore, the presented 
MRFODL-FIRC technique is useful for effectual retrieving and 
classification of retinal images. In the future, the MRFODL-
FIRC method can be boosted by a deep instance segmenting 
process. Besides, the computation complexity of the proposed 
model needs to be investigated. 
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