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ABSTRACT 

Today, cyber attackers use Artificial Intelligence (AI) to boost the sophistication and scope of their attacks. 

On the defense side, AI is used to improve defense plans, robustness, flexibility, and efficiency of defense 

systems by adapting to environmental changes. With the developments in information and communication 

technologies, various exploits that are changing rapidly constitute a danger sign for cyber security. 

Cybercriminals use new and sophisticated tactics to boost their attack speed and size. Consequently, there 

is a need for more flexible, adaptable, and strong cyber defense systems that can identify a wide range of 

threats in real time. In recent years, the adoption of AI approaches has increased and maintained a vital 

role in the detection and prevention of cyber threats. This paper presents an Ensemble Deep Restricted 

Boltzmann Machine (EDRBM) to classify cybersecurity threats in large-scale network environments. 

EDRBM acts as a classification model that enables the classification of malicious flowsets in a large-scale 

network. Simulations were carried out to evaluate the efficacy of the proposed EDRBM model under 

various malware attacks. The results showed that the proposed method achieved a promising malware 

classification rate in malicious flowsets. 

Keywords-malware; restricted Boltzmann machine; cyberthreat; deep learning 

I. INTRODUCTION  

Nowadays, the Internet has become more complex due to 
the increasing number of smart devices [1]. Various studies 
have shown that malware exploits newly discovered holes in 
network equipment [2]. In terms of technology, there is a fight 
between virus developers and network security professionals. 
Regarding network data, the amount of information included 
limits the number of countermeasures that can be implemented 
[3]. Although packet-level data can provide a finer level of 
detail, the resources required to collect them in an enterprise 
setting make them unfeasible to collect. This problem was 
addressed by introducing the concept of network flow, which 
provides the ability to develop algorithms that only consider 
specific data on network traffic [4-5]. These methods can be 
used to detect various security breaches. Malware is a severe 
threat, and its existence is one of the most difficult to detect. 
Vulnerable devices can be used to launch denial-of-service 
attacks, send spam emails, or steal sensitive data as soon as 
they are infected [6]. Using social engineering techniques, 
attackers can send email messages that entice recipients to 
download and install malware software [7]. Unlike other 

scenarios, the victim is not required to engage with the virus, as 
it is installed and launched without his knowledge [8]. 

In a download attack, there are three stages in the infection 
process. At first, the attacker hopes to execute a small code 
(shellcode) on the target computer to gather information about 
the victim. To accomplish this, the attacker establishes a 
website that allows users to download exploit code using a 
drive-by download mechanism. When a victim navigates to a 
malicious page, the browser retrieves and executes the drive-by 
code [9]. When the exploit is successful, the browser executes 
the shellcode on the victim's computer. The shellcode executes 
the malware binary after downloading it (installation phase). 
Finally, the malware program is run (the control phase). 
Malicious software frequently uses a remote command and 
control server. Attackers can use this connection to send and 
receive commands, drop new executables, and steal data from 
the infected host [10]. 

A significant increase has been observed in the number of 
assaults against honey clients using fingerprint and obfuscation 
techniques to avoid detection [11]. Control phase research also 
focuses on identifying malicious code that has been executed 
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on the end host. Antivirus software may be the initial layer of 
security used by the vast majority of computer users around the 
world. Antivirus software relies primarily on signatures to 
detect and prevent potentially harmful apps from being 
executed on a computer. As malware developers adapt their 
code to circumvent detection, the effectiveness of antivirus 
software is steadily decreasing. Upon successful infection, 
malware distributors send commands to compromised hosts, 
while researchers have developed strategies to prevent further 
infection using signatures or reputation-based systems [12]. 

The Ensemble Deep Restricted Boltzmann Machine 
(EDRBM) is a malware detection approach for network traffic. 
EDRBM can distinguish between adware, ransomware, viruses, 
worms, trojans, and botnets in the detection process [13]. At 
first, EDRBM collects network flows based on the IP addresses 
of both parties involved in a transaction. Flowset is a term used 
to describe this form of aggregation. There are 441 statistical 
features extracted from network flow fields (for example, 
duration or source port) and divided into several categories. 
The Relative Mutual Information (RMI) metric is used to 
identify the most essential characteristics of software. A feature 
vector for a flowset, also known as a fingerprint, is created by 
selecting the best among the best. Using fingerprints and the 
random forest classifier makes it feasible to determine whether 
flowsets contain traffic generated by malware. This study 
aimed to develop an effective method for grouping flows in the 
network in the form of flowsets. Then statistical fingerprints 
are collected to preserve critical information in the flowsets.  

Researchers are particularly interested in identifying and 
analyzing botnets. In [14], the BotHinter network infection and 
coordination dialogue-monitoring tool was presented, which 
did not rely on the C&C topology or the communication 
protocols of the botnet in question. In [15], a time-based 
behavioral analysis was presented that takes into account the 
duration of flows, their IP addresses, and their ports. In [16], 
BotSuer behavior modeling was presented to detect botnets, 
taking advantage of network features and performing analysis 
in a behavioral manner. In [17], NetFlow data was proposed to 
construct a host dependency model to detect botnets. 
According to [18], the clustering of NetFlow data can be used 
to detect botnets in network traffic. In [19], an invariant 
classification method was developed for malware behavior to 
identify known and previously unknown security risks. This 
method first bundles flows into bags and then uses statistical 
feature representations computed from network traffic to 
classify the malware. In [20], malware was detected by 
analyzing HTTP traffic. HTTP traffic was also examined in 
[21] using a clustering malware method. However, if the packet 
content cannot be retrieved and the malware communicates 
using bogus instead of standard port numbers, both methods 
will fail. In [22], the MalClassifier was presented to 
automatically categorize different malware using network 
traffic. In [23], Chatter was proposed, which is a similar 
technique to MalClassifier but requires a more fine-grained 
examination of packets when extracting HTTP traffic [24]. In 
real-world situations, both methods are less trustworthy than 
other techniques for malware analysis, as they depend on the 
order in which the network receives packets.  

The proposed EDRBM introduces an effective method for 
grouping flows into flowsets. Unlike previous approaches that 
relied on time-domain attributes or port-based information, 
EDRBM uses statistical features from flowsets, making it more 
resistant to contemporary malware techniques such as port 
spoofing. This approach allows for the detection and 
differentiation of a wide range of malware types, making it a 
valuable contribution to cybersecurity. Overall, the EDRBM 
approach addresses the increasing sophistication of cyber-
attackers using AI and the need for flexible and strong cyber-
defense systems. Using ensemble methods and statistical 
features from flowsets, it provides a promising solution for 
real-time detection and prevention of cyber threats in complex 
network environments. This method uses the fingerprint as a 
statistical feature that depends exclusively on the number of 
bytes delivered during transmission [25]. To preserve user 
privacy, fingerprinting that is not concerned with IP addresses 
or ports was used, making it more resistant to port spoofing, 
which is commonly exploited by contemporary malware to 
steal identities. As fingerprints do not rely on time-domain 
attributes, those obtained during the evaluation are invariant for 
network quality and throughput, as well as for the evaluation 
process. Combining hundreds of flows into a flowset, 
information is retained such that each flow provides 
information on its maliciousness and other characteristics. 

A good illustration of this is the grouping of flows within a 
specific period. Grouping rules can be defined as the IP address 
[26] of both the servers that make up a flow [19], which is 
different from the IP address of a flow. A similar approach is 
categorizing traffic based on source and destination IP 
addresses rather than the application or server function or the 
port being used. Unlike dividing the time domain into discrete 
periods and then collecting all flows within each interval, a 
flowset is defined by its timeout value [27]. Several techniques 
have been proposed to extract information from aggregated 
network flows, but the proposed method is the first to rely 
solely on the data features of network flows to detect and 
distinguish between a wide range of malware types. 
Irregularities were identified by analyzing user actions and 
patterns using AI. Deep learning has become the norm in 
research directions such as image classification, semantic 
segmentation, and natural language processing. In [28], the 
commonly used deep learning models in network attack 
detection, characterization, and traffic feature extraction were 
presented. 

The proposed EDRBM model showed promising results in 
classifying malware flowsets, but there is not enough evidence 
to demonstrate how it significantly outperforms or offers 
unique advantages over other established methods in the field 
of cyber security. Further comparative analysis and 
benchmarks against state-of-the-art approaches are necessary to 
establish its novelty and superiority. 

II. PROPOSED METHOD 

EDRBM is used to classify unsupervised data of a 
probability distribution, reduce dimensionality, and extract 
more meaningful features. It includes connections only 
between visible and hidden nodes. The set of connections in 
hidden layers represents the probability of input data during the 
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training process. In the visible layer, data patterns are observed 
by each neuron, while the hidden layer is used to explain the 
patterns observed by the visible neurons. The learning rate is 
adjusted during the learning phase so that the model is not 
under or overfit. To gradually improve accuracy, the process is 
repeated over multiple iterations. 

Every network flow between two hosts is collected during a 
specified amount of time, identified by their IP addresses. The 
timeout parameter determines the length of a flowset timeout 
interval and is used to determine whether an attempt to include 
a flow into the flowset has been successful. A flowset is 
generated as long as the source and destination IP addresses do 
not change. EDRBM extracts 441 features from each flowset, 
which are combined. Time, port, and data are three kinds of 
feature groups that can be logically organized based on the 
flow fields these characteristics are derived. The time group 
includes the inter-arrival time (the time elapsed between the 
timestamps of consecutive flows) and the duration of the flow. 
The port group contains flow fields for the source and 
destination ports and the protocol. This information is provided 
by the data group if there are many flows in a flowset, where 
each has a defined number of packets. When using the backing 
flow field-based feature, it is possible to extract several 
statistical characteristics for each feature group. 

The underlying flow fields are represented as numeric 
values and then used to calculate characteristics for different 
time and data groups. Each collection is eventually subjected to 
statistical analysis to derive a variety of statistical 
characteristics. The group of features from the port is 
calculated by encoding the frequency of each flow's respective 
field values in one-hot form and then dividing the result by the 
number of flows. Statistical features are generated for each 
collection based on the flowset field. All statistical variables, as 
well as the number of different frequency values, are included 
in the protocol-based collection. 

Collections from source or destination ports can be added 
as an additional statistical feature. In this collection of 
statistical features, the most frequent ports and the aggregated 
frequency of less frequently used ports were included. For each 
of the three feature groups, a flow subset that belongs to a 
flowset with the IP address it was produced, is retrieved and 
stored in a separate file. The only two directions that can exist 
simultaneously are the outgoing and arriving directions. 

 
Step 1: Model a large-scale network 

Step 2: Cluster the domains 

Step 3: Group the flow into flowsets 

Step 4: Find the co-location of the domain, 

        top-level unique domain names, matching 

        URI path, matching files 

Step 5: Estimate the fitness function 

Step 6: Use EDRBM to classify the flowsets in the 

         network  

Step 7: Find if the classified flowsets are of 

        malicious one 

Step 8: Discard the malicious flowsets from the 

        entire network 

Step 9: End the process 

Fig. 1.  Algorithm of the proposed model. 

Two clusters are connected when a single file is found to be 
hosted by at least one element (domain) in each cluster. All 
clusters that contain two or more elements are considered 
CDNs. In the second step, malicious and benign CDNs are 
distinguished using a classifier trained on a small dataset of 
manually labeled malicious and benign clusters. 

III. ENSEMBLE DEEP RESTRICTED BOLTZMANN 
MACHINE 

It is possible to optimize the parameters of a generative 
model such as the RBM by utilizing stochastic gradient ascent 
on training data and log-likelihood. The chance of assigning a 
training instance (visible vector) to each hidden vector is 
calculated by adding up all potential hidden vectors. 

���� = ��� ∑ 
��−���, ℎ��ℎ    (1) 

The log probability derivative of a training vector about 
weight can be represented as follows: 

� ��� ����
����

= ���ℎ��� ! − ���ℎ��model  (2) 

The ⟨ ⟩ data and ⟨ ⟩ model are expected to follow their 
respective expected distributions, denoted by P(h|v). This 
results in a straightforward learning strategy for stochastic 
gradients with the steepest ascent in a log probability: 

�ℎ� = 1|�� = +,� + ∑ ��.��
/
�0� �  (3) 

where the user is required to submit an initial learning rate of ε. 
As the hidden units in an RBM are not directly related to one 
another, it is possible to collect an unbiased sample of the data 
���ℎ��data. Assume a training vector in random v, where the 
state hj of a hidden unit j is set to 1. 

���� = 1|ℎ� = +1� + ∑ ℎ�.��
/
�02 �, 3 = 1,2, … ,6  (4) 

where r(x) is the logistic sigmoid function. 

The same is true if there is a hidden vector h that allows to 
collect an unbiased data sample from the visible state. Since 
there are no direct connections between the visible neural units, 
���ℎ��model fails to acquire an unbiased sample. To begin, the 
method assigns the visible unit states to a vector (training set). 
Equation (4) is used to compute the binary states in parallel. It 
is possible to construct a reconstruction of the hidden units by 
setting vi to 1. This results in the weight adjustments being 
provided by: 

7.�� = 8 9���ℎ��� ! − ���ℎ��:;<�/=  (5) 

where ���ℎ��:;<�/ is the Gibbs sampling distribution. 

With only one step, alternate Gibbs sampling with an 
initialization of the data produces a distribution of the 
variables. Biases ai and bj should be addressed using a similar 
learning process involving individual states. To approximate 
⟨⋅⟩model, the study developed an alternate sampling method that 
included alternating Gibbs sampling cycles. This has been 
demonstrated to perform well enough in many significant 
scenarios despite approximating the log probability gradient in 
most cases. 
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A. Ensemble Classifier 

This section provides a number of ways to provide 
ensemble RBM classifiers, motivated by their powerful 
representation capacity when combined with feature extraction 
methods. This study focused on the various ways of bagging 
that can be used in conjunction with RBMs because it is simple 
and easy to install and delivers good performance. To start, a 
training collection of independent instances is suggested, each 
represented by an input feature (X) vector and a class label with 
a label space value. Because of this, consider having an N-
dimensional vector that includes training output as an N-
dimensional matrix as input to the algorithm. For example, 
training instances can be considered a horizontal concatenation 
of two variables such as X and Y. As part of an ensemble 
classifier, majority voting is used to combine the output of 
many basic classifiers into a single result. Base classifiers can 
be created by combining bagging and RBMs in various ways to 
achieve high accuracy and diversity. 

B. RMI Estimation 

To avoid the curse of dimensionality, a selection process 
was used to identify the most informative characteristics. RMI 
was used to determine the relevance of these relationships. 
Using feature selection, it is possible to reduce computational 
cost and memory for storing the flowset vectors by removing 
the characteristics that are not useful for classification. 
Information exchanged between parties ?@�A, B� =
?��B�C��B|A� , where CE is conditional entropy, ME is 
marginal entropy, X is the 2D flowset array, and Y is the 
flowset labels array. This results in D?@�A, B� = ?@�A, B� . 
Because of the amount of memory they take up compared to all 
the other alternatives, these RMI scores are used to determine 
which features are most significant to the user. 

IV. RESULTS AND DISCUSSIONS 

The proposed method was trained and evaluated on 
malware-generated network traffic from the CTU-13 and 
MalRec datasets. Then, it was compared to Ensemble CNN-
RNN (ECR), Ensemble CNN-DBN (ECD), Deep Neural 
Network (DNN), and Deep Belief Network (DBN). The 
performance metrics used were accuracy, precision, recall, and 
F-score. The scikit-learn package, Python, and C# were used 
on a 512 GB RAM server with 32 CPU cores. 

TABLE I.  DATASET SPECIFICATIONS 

Dataset Parameter Value 

Malrec 
Malware recorded 66,301 

Hashing MD5 
Network activity PCAP form 

CTU-13 Total recordings 13 captures or scenarios 

 
The initial tests used MalRec [8], CTU-13 [22], and other 

publicly available datasets. The AV Class [16] malware 
labeling tool was used to categorize samples depending on the 
malware families to which they belong. To determine the top 
25 families based on the highest number of samples, all 
samples from each family were added up and then ranked. The 
"other" category had a total of 24,197 malware samples, which 
included samples from other malware families to eliminate the 
need for further categorization. To identify the five most 

frequent malware types, each member of the top malware 
families was examined to determine which kind of malware it 
represents. Botnet traffic from the CTU-13 dataset was also 
used to generate this list.  

The proposed classifier was trained with 50 estimators and 
balanced weights to account for differences in sample sizes 
between different classes. RMI rates the usefulness of each 
feature in each feature group and assigns a score. A series of 
experiments were conducted, in which the number of features 
varied to identify the minimum characteristics required to 
maximize classification performance. Based on the findings, 
the study focused on the top five data characteristics. Port and 
protocol spoofing and differences in network quality were 
almost unaffected by the chosen feature set. After identifying 
these characteristics, the classification performance was 
analyzed for each malware species. Botnets received an F1 
score of up to 94%, which was significantly higher than the 
random estimate for all other types of malware except 
ransomware. It was discovered that particular adware and 
ransomware samples from other categories were mislabeled. 
As a result, some kinds of malware might share network 
properties while performing malicious behavior, which is why 
they were classified as such. When it comes to a specific type 
of malware, there is nothing particularly noteworthy about 
these samples. The concept of a classification confidence level 
was used to remove samples that cannot be discriminated in 
different malware categories. The classification accuracy 
improved, but only at the expense of fewer samples being 
labeled as distinctive. The performance of the proposed 
classifier can be improved by adjusting the confidence 
threshold level for classifications. Certain malware requires an 
additional number of samples to be identified correctly.  

Each type of malware has a different confidence threshold, 
which can be adjusted to achieve the appropriate F1 score. To 
avoid false positives, malware with an F1 score greater than 0.6 
must be detected using thresholds such as 0.4 for adware and 
0.7 for ransomware. Figure 5 shows the classification 
performance in terms of F1 score with a constant confidence 
interval between 0.5 and 0.90 for three different confidence 
levels. It is possible to achieve a specific level of classification 
confidence for a given flowset classification percentage listed 
in the samples column. 

 

 
Fig. 2.  Accuracy. 
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Fig. 3.  Precision. 

 
Fig. 4.  Recall. 

 
Fig. 5.  F1 score. 

Following the training on malware datasets, a classifier was 
further trained in a real-world dataset. When presented with a 
malware traffic sample, there was a high degree of confidence 
in its detection. An F1 score of 0.9 effectively reduced the total 
false positive rates. According to the data, there were 
approximately 100 adware flowsets per hour and less than 20 
ransomware flowsets 20 per hour on average. It was found that 
worms and viruses containing similar confidence threshold 

(0.7) can be found after each month, but not more than once. 
When the confidence level was set to 0.95, fewer than 10 
instances of malicious flowsets were estimated to exist. 
Boltzmann machine algorithms face some limitations, such as:  

 There is a problem with the adjustment of weights in the 
algorithm. 

 For probability calculation, more time is needed for 
collecting statistics. 

 Adjustment during simulation is a problem. 

 It is significantly slower than the backpropagation method. 

Adjusting the confidence threshold level for classifications 
can lead to better performance for certain types of malware. 
Different malware categories require different confidence 
thresholds to achieve the desired F1 score. Using appropriate 
confidence thresholds, the proposed classifier achieved high 
classification confidence for specific types of malware 
flowsets. The results also indicated that the proposed EDRBM 
model effectively reduced false-positive rates and exhibited 
high confidence in detecting malware traffic. This study 
provides insights into the performance of the classifier and the 
practicality of the approach in real-world scenarios. Overall, 
this study includes experimental findings and analyses that 
demonstrate the effectiveness and practicality of the EDRBM 
model for malware detection in network traffic. The discussion 
of results provides valuable insights into the performance of the 
classifier, the impact of confidence thresholds, and its ability to 
distinguish between different types of malware flowsets. 

V. CONCLUSIONS 

This study presented the EDRBM method for classifying 
large-scale network cybersecurity threats. The proposed 
strategy exhibited remarkable performance in botnet detection 
and malware classifier techniques. Malicious traffic sets with 
rates in the 106 per-hour range were discovered on a large-
scale network. This is a reasonable response given the 
incredibly low incidence of malware outbreaks. In contrast 
with several false positive alerts acknowledged by security 
operations centers, EDRBM accurately found minimal 
malicious flowsets. The simulation was carried out on two 
independent datasets, MalRec and CTU-13, to ensure the 
consistency of the model. The results showed that EDRBM 
detects malware with high reliability. 
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