
Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11773-11778 11773

www.etasr.com Kumar & Ranganathan: Malware Attack Detection in Large Scale Networks using the Ensemble Deep …

Malware Attack Detection in Large Scale
Networks using the Ensemble Deep Restricted
Boltzmann Machine

Janani Kumar

Department of Computer Science, Karpagam Academy of Higher Education, India
jananikumar6@gmail.com (corresponding author)

Gunasundari Ranganathan

Department of Computer Applications, Karpagam Academy of Higher Education, India
gunasoundar04@gmail.com

Received: 16 July 2023 | Revised: 5 August 2023 | Accepted: 22 August 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6204

ABSTRACT

Today, cyber attackers use Artificial Intelligence (AI) to boost the sophistication and scope of their attacks.

On the defense side, AI is used to improve defense plans, robustness, flexibility, and efficiency of defense

systems by adapting to environmental changes. With the developments in information and communication

technologies, various exploits that are changing rapidly constitute a danger sign for cyber security.

Cybercriminals use new and sophisticated tactics to boost their attack speed and size. Consequently, there

is a need for more flexible, adaptable, and strong cyber defense systems that can identify a wide range of

threats in real time. In recent years, the adoption of AI approaches has increased and maintained a vital

role in the detection and prevention of cyber threats. This paper presents an Ensemble Deep Restricted

Boltzmann Machine (EDRBM) to classify cybersecurity threats in large-scale network environments.

EDRBM acts as a classification model that enables the classification of malicious flowsets in a large-scale

network. Simulations were carried out to evaluate the efficacy of the proposed EDRBM model under

various malware attacks. The results showed that the proposed method achieved a promising malware

classification rate in malicious flowsets.

Keywords-malware; restricted Boltzmann machine; cyberthreat; deep learning

I. INTRODUCTION

Nowadays, the Internet has become more complex due to
the increasing number of smart devices [1]. Various studies
have shown that malware exploits newly discovered holes in
network equipment [2]. In terms of technology, there is a fight
between virus developers and network security professionals.
Regarding network data, the amount of information included
limits the number of countermeasures that can be implemented
[3]. Although packet-level data can provide a finer level of
detail, the resources required to collect them in an enterprise
setting make them unfeasible to collect. This problem was
addressed by introducing the concept of network flow, which
provides the ability to develop algorithms that only consider
specific data on network traffic [4-5]. These methods can be
used to detect various security breaches. Malware is a severe
threat, and its existence is one of the most difficult to detect.
Vulnerable devices can be used to launch denial-of-service
attacks, send spam emails, or steal sensitive data as soon as
they are infected [6]. Using social engineering techniques,
attackers can send email messages that entice recipients to
download and install malware software [7]. Unlike other

scenarios, the victim is not required to engage with the virus, as
it is installed and launched without his knowledge [8].

In a download attack, there are three stages in the infection
process. At first, the attacker hopes to execute a small code
(shellcode) on the target computer to gather information about
the victim. To accomplish this, the attacker establishes a
website that allows users to download exploit code using a
drive-by download mechanism. When a victim navigates to a
malicious page, the browser retrieves and executes the drive-by
code [9]. When the exploit is successful, the browser executes
the shellcode on the victim's computer. The shellcode executes
the malware binary after downloading it (installation phase).
Finally, the malware program is run (the control phase).
Malicious software frequently uses a remote command and
control server. Attackers can use this connection to send and
receive commands, drop new executables, and steal data from
the infected host [10].

A significant increase has been observed in the number of
assaults against honey clients using fingerprint and obfuscation
techniques to avoid detection [11]. Control phase research also
focuses on identifying malicious code that has been executed

Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11773-11778 11774

www.etasr.com Kumar & Ranganathan: Malware Attack Detection in Large Scale Networks using the Ensemble Deep …

on the end host. Antivirus software may be the initial layer of
security used by the vast majority of computer users around the
world. Antivirus software relies primarily on signatures to
detect and prevent potentially harmful apps from being
executed on a computer. As malware developers adapt their
code to circumvent detection, the effectiveness of antivirus
software is steadily decreasing. Upon successful infection,
malware distributors send commands to compromised hosts,
while researchers have developed strategies to prevent further
infection using signatures or reputation-based systems [12].

The Ensemble Deep Restricted Boltzmann Machine
(EDRBM) is a malware detection approach for network traffic.
EDRBM can distinguish between adware, ransomware, viruses,
worms, trojans, and botnets in the detection process [13]. At
first, EDRBM collects network flows based on the IP addresses
of both parties involved in a transaction. Flowset is a term used
to describe this form of aggregation. There are 441 statistical
features extracted from network flow fields (for example,
duration or source port) and divided into several categories.
The Relative Mutual Information (RMI) metric is used to
identify the most essential characteristics of software. A feature
vector for a flowset, also known as a fingerprint, is created by
selecting the best among the best. Using fingerprints and the
random forest classifier makes it feasible to determine whether
flowsets contain traffic generated by malware. This study
aimed to develop an effective method for grouping flows in the
network in the form of flowsets. Then statistical fingerprints
are collected to preserve critical information in the flowsets.

Researchers are particularly interested in identifying and
analyzing botnets. In [14], the BotHinter network infection and
coordination dialogue-monitoring tool was presented, which
did not rely on the C&C topology or the communication
protocols of the botnet in question. In [15], a time-based
behavioral analysis was presented that takes into account the
duration of flows, their IP addresses, and their ports. In [16],
BotSuer behavior modeling was presented to detect botnets,
taking advantage of network features and performing analysis
in a behavioral manner. In [17], NetFlow data was proposed to
construct a host dependency model to detect botnets.
According to [18], the clustering of NetFlow data can be used
to detect botnets in network traffic. In [19], an invariant
classification method was developed for malware behavior to
identify known and previously unknown security risks. This
method first bundles flows into bags and then uses statistical
feature representations computed from network traffic to
classify the malware. In [20], malware was detected by
analyzing HTTP traffic. HTTP traffic was also examined in
[21] using a clustering malware method. However, if the packet
content cannot be retrieved and the malware communicates
using bogus instead of standard port numbers, both methods
will fail. In [22], the MalClassifier was presented to
automatically categorize different malware using network
traffic. In [23], Chatter was proposed, which is a similar
technique to MalClassifier but requires a more fine-grained
examination of packets when extracting HTTP traffic [24]. In
real-world situations, both methods are less trustworthy than
other techniques for malware analysis, as they depend on the
order in which the network receives packets.

The proposed EDRBM introduces an effective method for
grouping flows into flowsets. Unlike previous approaches that
relied on time-domain attributes or port-based information,
EDRBM uses statistical features from flowsets, making it more
resistant to contemporary malware techniques such as port
spoofing. This approach allows for the detection and
differentiation of a wide range of malware types, making it a
valuable contribution to cybersecurity. Overall, the EDRBM
approach addresses the increasing sophistication of cyber-
attackers using AI and the need for flexible and strong cyber-
defense systems. Using ensemble methods and statistical
features from flowsets, it provides a promising solution for
real-time detection and prevention of cyber threats in complex
network environments. This method uses the fingerprint as a
statistical feature that depends exclusively on the number of
bytes delivered during transmission [25]. To preserve user
privacy, fingerprinting that is not concerned with IP addresses
or ports was used, making it more resistant to port spoofing,
which is commonly exploited by contemporary malware to
steal identities. As fingerprints do not rely on time-domain
attributes, those obtained during the evaluation are invariant for
network quality and throughput, as well as for the evaluation
process. Combining hundreds of flows into a flowset,
information is retained such that each flow provides
information on its maliciousness and other characteristics.

A good illustration of this is the grouping of flows within a
specific period. Grouping rules can be defined as the IP address
[26] of both the servers that make up a flow [19], which is
different from the IP address of a flow. A similar approach is
categorizing traffic based on source and destination IP
addresses rather than the application or server function or the
port being used. Unlike dividing the time domain into discrete
periods and then collecting all flows within each interval, a
flowset is defined by its timeout value [27]. Several techniques
have been proposed to extract information from aggregated
network flows, but the proposed method is the first to rely
solely on the data features of network flows to detect and
distinguish between a wide range of malware types.
Irregularities were identified by analyzing user actions and
patterns using AI. Deep learning has become the norm in
research directions such as image classification, semantic
segmentation, and natural language processing. In [28], the
commonly used deep learning models in network attack
detection, characterization, and traffic feature extraction were
presented.

The proposed EDRBM model showed promising results in
classifying malware flowsets, but there is not enough evidence
to demonstrate how it significantly outperforms or offers
unique advantages over other established methods in the field
of cyber security. Further comparative analysis and
benchmarks against state-of-the-art approaches are necessary to
establish its novelty and superiority.

II. PROPOSED METHOD

EDRBM is used to classify unsupervised data of a
probability distribution, reduce dimensionality, and extract
more meaningful features. It includes connections only
between visible and hidden nodes. The set of connections in
hidden layers represents the probability of input data during the

Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11773-11778 11775

www.etasr.com Kumar & Ranganathan: Malware Attack Detection in Large Scale Networks using the Ensemble Deep …

training process. In the visible layer, data patterns are observed
by each neuron, while the hidden layer is used to explain the
patterns observed by the visible neurons. The learning rate is
adjusted during the learning phase so that the model is not
under or overfit. To gradually improve accuracy, the process is
repeated over multiple iterations.

Every network flow between two hosts is collected during a
specified amount of time, identified by their IP addresses. The
timeout parameter determines the length of a flowset timeout
interval and is used to determine whether an attempt to include
a flow into the flowset has been successful. A flowset is
generated as long as the source and destination IP addresses do
not change. EDRBM extracts 441 features from each flowset,
which are combined. Time, port, and data are three kinds of
feature groups that can be logically organized based on the
flow fields these characteristics are derived. The time group
includes the inter-arrival time (the time elapsed between the
timestamps of consecutive flows) and the duration of the flow.
The port group contains flow fields for the source and
destination ports and the protocol. This information is provided
by the data group if there are many flows in a flowset, where
each has a defined number of packets. When using the backing
flow field-based feature, it is possible to extract several
statistical characteristics for each feature group.

The underlying flow fields are represented as numeric
values and then used to calculate characteristics for different
time and data groups. Each collection is eventually subjected to
statistical analysis to derive a variety of statistical
characteristics. The group of features from the port is
calculated by encoding the frequency of each flow's respective
field values in one-hot form and then dividing the result by the
number of flows. Statistical features are generated for each
collection based on the flowset field. All statistical variables, as
well as the number of different frequency values, are included
in the protocol-based collection.

Collections from source or destination ports can be added
as an additional statistical feature. In this collection of
statistical features, the most frequent ports and the aggregated
frequency of less frequently used ports were included. For each
of the three feature groups, a flow subset that belongs to a
flowset with the IP address it was produced, is retrieved and
stored in a separate file. The only two directions that can exist
simultaneously are the outgoing and arriving directions.

Step 1: Model a large-scale network

Step 2: Cluster the domains

Step 3: Group the flow into flowsets

Step 4: Find the co-location of the domain,

 top-level unique domain names, matching

 URI path, matching files

Step 5: Estimate the fitness function

Step 6: Use EDRBM to classify the flowsets in the

 network

Step 7: Find if the classified flowsets are of

 malicious one

Step 8: Discard the malicious flowsets from the

 entire network

Step 9: End the process

Fig. 1. Algorithm of the proposed model.

Two clusters are connected when a single file is found to be
hosted by at least one element (domain) in each cluster. All
clusters that contain two or more elements are considered
CDNs. In the second step, malicious and benign CDNs are
distinguished using a classifier trained on a small dataset of
manually labeled malicious and benign clusters.

III. ENSEMBLE DEEP RESTRICTED BOLTZMANN
MACHINE

It is possible to optimize the parameters of a generative
model such as the RBM by utilizing stochastic gradient ascent
on training data and log-likelihood. The chance of assigning a
training instance (visible vector) to each hidden vector is
calculated by adding up all potential hidden vectors.

���� = ��� ∑
��−���, ℎ��ℎ (1)

The log probability derivative of a training vector about
weight can be represented as follows:

� ��� ����
����

= ���ℎ��� ! − ���ℎ��model (2)

The ⟨ ⟩ data and ⟨ ⟩ model are expected to follow their
respective expected distributions, denoted by P(h|v). This
results in a straightforward learning strategy for stochastic
gradients with the steepest ascent in a log probability:

�ℎ� = 1|�� = +,� + ∑ ��.��
/
�0� � (3)

where the user is required to submit an initial learning rate of ε.
As the hidden units in an RBM are not directly related to one
another, it is possible to collect an unbiased sample of the data
���ℎ��data. Assume a training vector in random v, where the
state hj of a hidden unit j is set to 1.

���� = 1|ℎ� = +1� + ∑ ℎ�.��
/
�02 �, 3 = 1,2, … ,6 (4)

where r(x) is the logistic sigmoid function.

The same is true if there is a hidden vector h that allows to
collect an unbiased data sample from the visible state. Since
there are no direct connections between the visible neural units,
���ℎ��model fails to acquire an unbiased sample. To begin, the
method assigns the visible unit states to a vector (training set).
Equation (4) is used to compute the binary states in parallel. It
is possible to construct a reconstruction of the hidden units by
setting vi to 1. This results in the weight adjustments being
provided by:

7.�� = 8 9���ℎ��� ! − ���ℎ��:;<�/= (5)

where ���ℎ��:;<�/ is the Gibbs sampling distribution.

With only one step, alternate Gibbs sampling with an
initialization of the data produces a distribution of the
variables. Biases ai and bj should be addressed using a similar
learning process involving individual states. To approximate
⟨⋅⟩model, the study developed an alternate sampling method that
included alternating Gibbs sampling cycles. This has been
demonstrated to perform well enough in many significant
scenarios despite approximating the log probability gradient in
most cases.

Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11773-11778 11776

www.etasr.com Kumar & Ranganathan: Malware Attack Detection in Large Scale Networks using the Ensemble Deep …

A. Ensemble Classifier

This section provides a number of ways to provide
ensemble RBM classifiers, motivated by their powerful
representation capacity when combined with feature extraction
methods. This study focused on the various ways of bagging
that can be used in conjunction with RBMs because it is simple
and easy to install and delivers good performance. To start, a
training collection of independent instances is suggested, each
represented by an input feature (X) vector and a class label with
a label space value. Because of this, consider having an N-
dimensional vector that includes training output as an N-
dimensional matrix as input to the algorithm. For example,
training instances can be considered a horizontal concatenation
of two variables such as X and Y. As part of an ensemble
classifier, majority voting is used to combine the output of
many basic classifiers into a single result. Base classifiers can
be created by combining bagging and RBMs in various ways to
achieve high accuracy and diversity.

B. RMI Estimation

To avoid the curse of dimensionality, a selection process
was used to identify the most informative characteristics. RMI
was used to determine the relevance of these relationships.
Using feature selection, it is possible to reduce computational
cost and memory for storing the flowset vectors by removing
the characteristics that are not useful for classification.
Information exchanged between parties ?@�A, B� =
?��B�C��B|A� , where CE is conditional entropy, ME is
marginal entropy, X is the 2D flowset array, and Y is the
flowset labels array. This results in D?@�A, B� = ?@�A, B� .
Because of the amount of memory they take up compared to all
the other alternatives, these RMI scores are used to determine
which features are most significant to the user.

IV. RESULTS AND DISCUSSIONS

The proposed method was trained and evaluated on
malware-generated network traffic from the CTU-13 and
MalRec datasets. Then, it was compared to Ensemble CNN-
RNN (ECR), Ensemble CNN-DBN (ECD), Deep Neural
Network (DNN), and Deep Belief Network (DBN). The
performance metrics used were accuracy, precision, recall, and
F-score. The scikit-learn package, Python, and C# were used
on a 512 GB RAM server with 32 CPU cores.

TABLE I. DATASET SPECIFICATIONS

Dataset Parameter Value

Malrec
Malware recorded 66,301

Hashing MD5
Network activity PCAP form

CTU-13 Total recordings 13 captures or scenarios

The initial tests used MalRec [8], CTU-13 [22], and other

publicly available datasets. The AV Class [16] malware
labeling tool was used to categorize samples depending on the
malware families to which they belong. To determine the top
25 families based on the highest number of samples, all
samples from each family were added up and then ranked. The
"other" category had a total of 24,197 malware samples, which
included samples from other malware families to eliminate the
need for further categorization. To identify the five most

frequent malware types, each member of the top malware
families was examined to determine which kind of malware it
represents. Botnet traffic from the CTU-13 dataset was also
used to generate this list.

The proposed classifier was trained with 50 estimators and
balanced weights to account for differences in sample sizes
between different classes. RMI rates the usefulness of each
feature in each feature group and assigns a score. A series of
experiments were conducted, in which the number of features
varied to identify the minimum characteristics required to
maximize classification performance. Based on the findings,
the study focused on the top five data characteristics. Port and
protocol spoofing and differences in network quality were
almost unaffected by the chosen feature set. After identifying
these characteristics, the classification performance was
analyzed for each malware species. Botnets received an F1
score of up to 94%, which was significantly higher than the
random estimate for all other types of malware except
ransomware. It was discovered that particular adware and
ransomware samples from other categories were mislabeled.
As a result, some kinds of malware might share network
properties while performing malicious behavior, which is why
they were classified as such. When it comes to a specific type
of malware, there is nothing particularly noteworthy about
these samples. The concept of a classification confidence level
was used to remove samples that cannot be discriminated in
different malware categories. The classification accuracy
improved, but only at the expense of fewer samples being
labeled as distinctive. The performance of the proposed
classifier can be improved by adjusting the confidence
threshold level for classifications. Certain malware requires an
additional number of samples to be identified correctly.

Each type of malware has a different confidence threshold,
which can be adjusted to achieve the appropriate F1 score. To
avoid false positives, malware with an F1 score greater than 0.6
must be detected using thresholds such as 0.4 for adware and
0.7 for ransomware. Figure 5 shows the classification
performance in terms of F1 score with a constant confidence
interval between 0.5 and 0.90 for three different confidence
levels. It is possible to achieve a specific level of classification
confidence for a given flowset classification percentage listed
in the samples column.

Fig. 2. Accuracy.

Training Testing
0

10

20

30

40

50

60

70

80

90

Training/Testing

A
c
c
u
ra

c
y
 (

%
)

Adware

Trojan

Ransomware

Virus

Worm

Botnet

Others

Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11773-11778 11777

www.etasr.com Kumar & Ranganathan: Malware Attack Detection in Large Scale Networks using the Ensemble Deep …

Fig. 3. Precision.

Fig. 4. Recall.

Fig. 5. F1 score.

Following the training on malware datasets, a classifier was
further trained in a real-world dataset. When presented with a
malware traffic sample, there was a high degree of confidence
in its detection. An F1 score of 0.9 effectively reduced the total
false positive rates. According to the data, there were
approximately 100 adware flowsets per hour and less than 20
ransomware flowsets 20 per hour on average. It was found that
worms and viruses containing similar confidence threshold

(0.7) can be found after each month, but not more than once.
When the confidence level was set to 0.95, fewer than 10
instances of malicious flowsets were estimated to exist.
Boltzmann machine algorithms face some limitations, such as:

 There is a problem with the adjustment of weights in the
algorithm.

 For probability calculation, more time is needed for
collecting statistics.

 Adjustment during simulation is a problem.

 It is significantly slower than the backpropagation method.

Adjusting the confidence threshold level for classifications
can lead to better performance for certain types of malware.
Different malware categories require different confidence
thresholds to achieve the desired F1 score. Using appropriate
confidence thresholds, the proposed classifier achieved high
classification confidence for specific types of malware
flowsets. The results also indicated that the proposed EDRBM
model effectively reduced false-positive rates and exhibited
high confidence in detecting malware traffic. This study
provides insights into the performance of the classifier and the
practicality of the approach in real-world scenarios. Overall,
this study includes experimental findings and analyses that
demonstrate the effectiveness and practicality of the EDRBM
model for malware detection in network traffic. The discussion
of results provides valuable insights into the performance of the
classifier, the impact of confidence thresholds, and its ability to
distinguish between different types of malware flowsets.

V. CONCLUSIONS

This study presented the EDRBM method for classifying
large-scale network cybersecurity threats. The proposed
strategy exhibited remarkable performance in botnet detection
and malware classifier techniques. Malicious traffic sets with
rates in the 106 per-hour range were discovered on a large-
scale network. This is a reasonable response given the
incredibly low incidence of malware outbreaks. In contrast
with several false positive alerts acknowledged by security
operations centers, EDRBM accurately found minimal
malicious flowsets. The simulation was carried out on two
independent datasets, MalRec and CTU-13, to ensure the
consistency of the model. The results showed that EDRBM
detects malware with high reliability.

REFERENCES

[1] I. H. Sarker, "Deep Cybersecurity: A Comprehensive Overview from
Neural Network and Deep Learning Perspective," SN Computer Science,
vol. 2, no. 3, Mar. 2021, Art. no. 154, https://doi.org/10.1007/s42979-
021-00535-6.

[2] D. Chen, P. Wawrzynski, and Z. Lv, "Cyber security in smart cities: A
review of deep learning-based applications and case studies,"
Sustainable Cities and Society, vol. 66, Mar. 2021, Art. no. 102655,
https://doi.org/10.1016/j.scs.2020.102655.

[3] Z. Liu, R. Wang, N. Japkowicz, D. Tang, W. Zhang, and J. Zhao,
"Research on unsupervised feature learning for Android malware
detection based on Restricted Boltzmann Machines," Future Generation
Computer Systems, vol. 120, pp. 91–108, Jul. 2021,
https://doi.org/10.1016/j.future.2021.02.015.

[4] K. Demertzis, L. Iliadis, E. Pimenidis, and P. Kikiras, "Variational
restricted Boltzmann machines to automated anomaly detection," Neural

Training Testing
0

10

20

30

40

50

60

70

80

90

100

Training/Testing

P
re

c
is

io
n
 (

%
)

Adware

Trojan

Ransomware

Virus

Worm

Botnet

Others

Training Testing
0

10

20

30

40

50

60

70

80

90

Training/Testing

R
e
c
a
ll

(%
)

Adware

Trojan

Ransomware

Virus

Worm

Botnet

Others

Training Testing
0

10

20

30

40

50

60

70

80

90

Training/Testing

F
-m

e
a
s
u
re

 (
%

)

Adware

Trojan

Ransomware

Virus

Worm

Botnet

Others

Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11773-11778 11778

www.etasr.com Kumar & Ranganathan: Malware Attack Detection in Large Scale Networks using the Ensemble Deep …

Computing and Applications, vol. 34, no. 18, pp. 15207–15220, Sep.
2022, https://doi.org/10.1007/s00521-022-07060-4.

[5] Z. E. Huma et al., "A Hybrid Deep Random Neural Network for
Cyberattack Detection in the Industrial Internet of Things," IEEE
Access, vol. 9, pp. 55595–55605, 2021, https://doi.org/10.1109/
ACCESS.2021.3071766.

[6] A. Thakkar and R. Lohiya, "A Review on Machine Learning and Deep
Learning Perspectives of IDS for IoT: Recent Updates, Security Issues,
and Challenges," Archives of Computational Methods in Engineering,
vol. 28, no. 4, pp. 3211–3243, Jun. 2021,
https://doi.org/10.1007/s11831-020-09496-0.

[7] I. Bello et al., "Detecting ransomware attacks using intelligent
algorithms: recent development and next direction from deep learning
and big data perspectives," Journal of Ambient Intelligence and
Humanized Computing, vol. 12, no. 9, pp. 8699–8717, Sep. 2021,
https://doi.org/10.1007/s12652-020-02630-7.

[8] C. Gupta, I. Johri, K. Srinivasan, Y. C. Hu, S. M. Qaisar, and K. Y.
Huang, "A Systematic Review on Machine Learning and Deep Learning
Models for Electronic Information Security in Mobile Networks,"
Sensors, vol. 22, no. 5, Jan. 2022, Art. no. 2017, https://doi.org/10.3390/
s22052017.

[9] A. Basit, M. Zafar, X. Liu, A. R. Javed, Z. Jalil, and K. Kifayat, "A
comprehensive survey of AI-enabled phishing attacks detection
techniques," Telecommunication Systems, vol. 76, no. 1, pp. 139–154,
Jan. 2021, https://doi.org/10.1007/s11235-020-00733-2.

[10] S. Tsimenidis, T. Lagkas, and K. Rantos, "Deep Learning in IoT
Intrusion Detection," Journal of Network and Systems Management, vol.
30, no. 1, Oct. 2021, Art. no. 8, https://doi.org/10.1007/s10922-021-
09621-9.

[11] M. Veena et al., "A Detection of Malware Embedded into Web Pages
Using Client Honeypot," in Computer Security Threats, London, UK:
IntechOpen, 2020.

[12] Q. Zhuang, Y. Liu, L. Chen, and Z. Ai, "Proof of Reputation: A
Reputation-based Consensus Protocol for Blockchain Based Systems,"
in Proceedings of the 1st International Electronics Communication
Conference, Okinawa, Japan, Apr. 2019, pp. 131–138,
https://doi.org/10.1145/3343147.3343169.

[13] C. X. Zhang, J. S. Zhang, N.-N. Ji, and G. Guo, "Learning ensemble
classifiers via restricted Boltzmann machines," Pattern Recognition
Letters, vol. 36, pp. 161–170, Jan. 2014, https://doi.org/10.1016/
j.patrec.2013.10.009.

[14] G. Gu, V. Yegneswaran, M. Fong, and W. Lee, "BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation," in
Proceedings of the 16th USENIX Security Symposium, Boston, MA,
USA, Aug. 2007, pp. 167–182.

[15] V. Oujezsky, T. Horvath, and V. Skorpil, "Modeling botnet C&C traffic
lifespans from NetFlow using survival analysis," in 2016 39th
International Conference on Telecommunications and Signal Processing
(TSP), Vienna, Austria, Jun. 2016, pp. 50–55,
https://doi.org/10.1109/TSP.2016.7760827.

[16] N. Kheir and C. Wolley, "BotSuer: Suing Stealthy P2P Bots in Network
Traffic through Netflow Analysis," in Cryptology and Network Security,
Paraty, Brazil, 2013, pp. 162–178, https://doi.org/10.1007/978-3-319-
02937-5_9.

[17] J. François, S. Wang, R. State, and T. Engel, "BotTrack: Tracking
Botnets Using NetFlow and PageRank," in Networking 2011, Valencia,
Spain, 2011, pp. 1–14, https://doi.org/10.1007/978-3-642-20757-0_1.

[18] P. Amini, R. Azmi, and M. Araghizadeh, "Botnet Detection using
NetFlow and Clustering," Advances in Computer Science: an
International Journal, vol. 3, no. 2, pp. 139–149, Mar. 2014.

[19] K. Bartos, M. Sofka, and V. Franc, "Optimized Invariant Representation
of Network Traffic for Detecting Unseen Malware Variants," in
Proceedings of the 25th USENIX Security Symposium (USENIX Security
16), 2016, pp. 807–822.

[20] R. Perdisci, W. Lee, and N. Feamster, "Behavioral clustering of HTTP-
based malware and signature generation using malicious network
traces," in Proceedings of the 7th USENIX conference on Networked
systems design and implementation, San Jose, CA, USA, Dec. 2010.

[21] M. Z. Rafique and J. Caballero, "FIRMA: Malware Clustering and
Network Signature Generation with Mixed Network Behaviors," in
Research in Attacks, Intrusions, and Defenses, Rodney Bay, St. Lucia,
Oct. 2013, pp. 144–163, https://doi.org/10.1007/978-3-642-41284-4_8.

[22] B. A. AlAhmadi and I. Martinovic, "MalClassifier: Malware family
classification using network flow sequence behaviour," in 2018 APWG
Symposium on Electronic Crime Research (eCrime), San Diego, CA,
USA, Feb. 2018, pp. 1–13, https://doi.org/10.1109/ECRIME.
2018.8376209.

[23] A. Mohaisen, A. G. West, A. Mankin, and O. Alrawi, "Chatter:
Classifying malware families using system event ordering," in 2014
IEEE Conference on Communications and Network Security, San
Francisco, CA, USA, Jul. 2014, pp. 283–291, https://doi.org/10.1109/
CNS.2014.6997496.

[24] W. G. Alheadary, "Controlling Employability Issues of Computing
Graduates through Machine Learning-Based Detection and
Identification," Engineering, Technology & Applied Science Research,
vol. 13, no. 3, pp. 10888–10894, Jun. 2023, https://doi.org/10.48084/
etasr.5892.

[25] A. Alshutayri, "Fraud Prediction in Movie Theater Credit Card
Transactions using Machine Learning," Engineering, Technology &
Applied Science Research, vol. 13, no. 3, pp. 10941–10945, Jun. 2023,
https://doi.org/10.48084/etasr.5950.

[26] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
"Disclosure: detecting botnet command and control servers through
large-scale NetFlow analysis," in Proceedings of the 28th Annual
Computer Security Applications Conference, Orlando, FL, USA, Sep.
2012, pp. 129–138, https://doi.org/10.1145/2420950.2420969.

[27] W. Ali, G. Wang, K. Ullah, M. Salman, and S. Ali, "Substation Danger
Sign Detection and Recognition using Convolutional Neural Networks,"
Engineering, Technology & Applied Science Research, vol. 13, no. 1,
pp. 10051–10059, Feb. 2023, https://doi.org/10.48084/etasr.5476.

[28] T. Yi, X. Chen, Y. Zhu, W. Ge, and Z. Han, "Review on the application
of deep learning in network attack detection," Journal of Network and
Computer Applications, vol. 212, Art. no. 103580, Mar. 2023,
https://doi.org/10.1016/j.jnca.2022.103580.

