
Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11561-11567 11561  
 

www.etasr.com Anwar et al.: Performance Analysis of Deep Transfer Learning Models for the Automated Detection of … 

 

Performance Analysis of Deep Transfer 

Learning Models for the Automated Detection 

of Cotton Plant Diseases 
 

Sohail Anwar 

Electronic Engineering Department, Mehran University of Engineering and Technology, Pakistan 

sohailanwar.es@gmail.com  

 

Shoaib Rehman Soomro 

Electronic Engineering Department, Mehran University of Engineering and Technology, Pakistan 

shoaib.soomro@faculty.muet.edu.pk (corresponding author)  

 

Shadi Khan Baloch 

Mechatronic Engineering Department, Mehran University of Engineering and Technology, Pakistan 

shadi.baloch@faculty.muet.edu.pk 

 

Aamir Ali Patoli 

Electronic Engineering Department, Mehran University of Engineering and Technology, Pakistan 

aamir.patoli@faculty.muet.edu.pk 

 

Abdul Rahim Kolachi 

Mechatronic Engineering Department, Mehran University of Engineering and Technology, Pakistan 

raheemkolachi7@gmail.com  

Received: 10 July 2023 | Revised: 25 July 2023 | Accepted: 4 August 2023 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6187 

ABSTRACT 

Cotton is one of the most important agricultural products and is closely linked to the economic 

development of Pakistan. However, the cotton plant is susceptible to bacterial and viral diseases that can 

quickly spread and damage plants and ultimately affect the cotton yield. The automated and early 

detection of affected plants can significantly reduce the potential spread of the disease. This paper presents 

the implementation and performance analysis of bacterial blight and curl virus disease detection in cotton 

crops through deep learning techniques. The automated disease detection is performed through transfer 

learning of six pre-trained deep learning models, namely DenseNet121, DenseNet169, MobileNetV2, 

ResNet50V2, VGG16, and VGG19. A total of 1362 images of local agricultural fields and 1292 images from 

online resources were used to train and validate the models. Image augmentation techniques were 

performed to increase the dataset diversity and size. Transfer learning was implemented for different 

image resolutions ranging from 32×32 to 256×256 pixels. Performance metrics such as accuracy, precision, 

recall, F1 Score, and prediction time were evaluated for each implemented model. The results indicate 

higher accuracy, up to 96%, for DenseNet169 and ResNet50V2 models when trained on the 256×256 pixels 

image dataset. The lowest accuracy, 52%, was obtained by the MobileNetV2 model when trained on low-

resolution, 32×32, images. The confusion matrix analysis indicates the true-positive prediction rates higher 

than 91% for fresh leaves, 87% for bacterial blight, and 76% for curl virus detection for all implemented 

models when trained and tested on an image dataset of 128×128 pixels or higher resolution. 

Keywords-transfer learning; CNN; pretrained networks; disease detection; classification; cotton plants 

I. INTRODUCTION 

The agriculture sector plays a significant role in generating 
revenue and catering to the food demand [1]. It is the backbone 

of any country and works as a primary source of income for a 
large proportion of the people, particularly in developing 
countries. Cotton is a cash crop and produces natural fiber 
which is essential for the textile manufacturing industry. It is 
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also an important source of vegetable oil and cottonseed cake. 
About 50% of the global population depends on cotton-related 
materials. The cotton plant's protection from diseases is very 
crucial as it significantly impacts the productivity of cotton 
yield. Detection of cotton plant diseases is a challenging task. It 
is difficult to distinguish between different diseases of cotton 
plants due to the harsh outdoor environment and complex 
structure of plant leaves with similarity in appearances. The 
cotton plant is susceptible to various diseases such as bacterial 
light, root knot nematode, fusarium wilt, root rot, and 
verticillium wilt. Traditional methods of disease detection such 
as visual inspection and laboratory analysis are time-
consuming, labor-intensive, and often inaccurate. It is crucial to 
diagnose cotton diseases at an early stage to prevent the spread 
of diseases. Thus, efficient and effective methods for cotton 
crop disease detection are required. Computer vision-based 
system machine learning systems are developed for the 
accurate detection of diseases in cotton crops. 

Deep learning-based Convolutional Neural Network (CNN) 
models are extensively employed in the agriculture field to 
recognize different plant diseases and pests, classify fruits, and 
identify weeds [3-7]. They are powerful tools for solving 
complex problems in various fields. Deep learning is an 
automatic learning method based on a multilayer network. The 
effectiveness of such learning techniques in the agricultural 
field has been proved [8].  

In the current work, deep learning-based models are 
implemented for the automated detection of cotton crop 
diseases with high accuracy. Six different pre-trained CNN 
models awerere trained using the transfer learning approach: 
DenseNet121, DenseNet169, MobileNetV2, ResNet50V2, 
VGG16, and VGG19. The plant image dataset indicating 
bacterial blight, curl virus, and healthy leaves were collected 
from local cotton crop fields to train and validate the transfer 
learning-based CNN model. The performance metrics of all 
trained models are evaluated and compared. The current work 
can be used in the field to recognize the different diseases at an 
early stage and thus to increase cotton productivity.  

II. LITERATURE REVIEW 

There are numerous studies that classify and identify cotton 
crop leaf diseases [9]. Authors in [10] collected cotton leave 
images from the field and prepared a dataset of healthy and 
unhealthy leaves. They employed four different ML 
techniques, i.e. CNN, VGG16, novel meta deep learning, and 
ResNet50 on the augmented data. They developed a 
generalized meta learning-based model to detect different 
diseases such as bacterial blight, leaf spot, powdery mildew, 
and leaf curl with an accuracy of 98.53%. Authors in [11] used 
ResNet50 and VGG16-based transfer learning models to detect 
crop diseases. Authors in [12] developed a CNN-based model 
to detect cotton diseases and pests, such as leaf miner, spider 
mite, and bacterial blight. The K-fold cross-validation approach 
was used to split and augment the dataset. The model had an 
overall accuracy of 96.4%. Authors in [13] used a Deep 
Convolutional Neural Network (D-CNN)-based DCPLD-CNN 
model to classify and detect cotton plant and leaf diseases. 
They found that existing techniques have some limitations to 
detect Malvacearum and leaf roll dwarf viruses. They used pre-

trained architectures and added extra dense layers to fine-tune 
the developed DCNN model, obtaining an identification 
accuracy of 98.60% to. Authors in [14] used a deep-learning 
approach to identify cotton plant diseases. They integrated a 
CNN-based model with the softmax layer and a pre-trained 
ResNet model for image classification. The focal loss function 
was used to improve the model's ability to learn smaller 
features. They recommended implementing the model on 
mobile devices to facilitate the farmers so that they can detect 
cotton crop diseases in real-time. Authors in [15] studied smart 
farming techniques and the parameters essential for increasing 
productivity in modern agriculture. They used a decision tree 
classifier based on the data of different parameters such as 
temperature and soil moisture to predict the diseases of cotton 
crops. Authors in [16] proposed a robust hybrid Automated 
Cotton crop Disease Recognition (ACDR) system. The results 
showed that the model has auratic and visual features and it has 
outperformed the existing models. The model has 89.08% 
sensitivity and 41% specificity which is higher than the SIFT 
(Scale-Invariant Feature Transform) and SASI-based ACDRs.   

Authors in [17] presented an automated image processing-
based system for the diagnosis of cotton leaf diseases. They 
used a dataset of 130 images to train an SVM classifier. The 
dataset consists of 50 bacterial blight images, 50 magnesium 
deficiency images, and 30 images of healthy plants. The 
classification of the images was based on features such as color 
and texture of images, achieving an accuracy of 98.46%. 
Authors in [18-19] employed pre-trained GoogleNet in their 
models to classify diseases of various crops, achieving 
accuracy of 94% and 99.53%. Authors in [20] used a 
quadruped robot to capture images of the cotton field. They 
developed a ConvNeXt-based cotton crop detection system 
with a Multiscale Spatial Pyramid Attention (MSPA) module. 
The ConvNeXt with MSPA achieved accuracy in the range of 
97.2% to 100% on different datasets of cotton. Authors in [21] 
developed a web-based system for cotton crop disease 
detection using CNNs. They trained the model with 141 images 
of each disease and achieved an accuracy of 80%. Authors in 
[22] employed numerous deep-learning approaches to 
recognize different plant leaf diseases. They developed a 
camera-based real-time automated system for collecting images 
of cotton crops. The VGG16 network showed the best 
performance among different Machine Learning (ML) models 
and achieved 99.908% accuracy. Authors in [23, 24] developed 
a hardware-based prototype for plan disease recognition and 
classification. They used Raspberry Pi 4 and Arduino 
microcontrollers in the hardware prototypes. Authors in [25, 
26] developed a robotic system for the detection of plant 
diseases. They used different ML algorithms such as the 
principal component analysis algorithm, Densenet121, 
ResNet34, ResNet50, and VGG-16. The system achieved an 
accuracy of 98.3%. Authors in [27] built an efficient and 
automated robot to remove diseases-infected plants from the 
stem. The robot identifies the leaf diseases in cotton plants and 
removes them. In summary, deep learning-based techniques 
may deliver many opportunities in the agriculture sector by 
monitoring the health of plants in real-time using deep learning 
helps to identify the diseases at early stages.  
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III. METHODOLOGY 

A. Pre-trained CNN Models 

CNNs can automatically learn and extract meaningful 
features from huge data sets by reducing the need for manual 
feature extraction. They facilitate prior learning by training the 
model on the large-scale generalized dataset. Pre-trained 
models can be trained for the new task by using the available 
dataset which modifies the final layers of the pre-trained 
network. In this study, six pre-trained models are used. They 
are trained on new data sets for the detection of bacterial blight, 
curl virus, and fresh leaves in cotton plants. The main features 
and properties of the pre-trained models are discussed below. 

1) DenseNet121 

It is a CNN architecture with 121 weight layers and dense 
connections among layers [28]. The model has 8 million 
parameters and efficiently captures complex input-output 
relationships. It is pre-trained on ImageNet and suitable for 
different computer vision tasks such as object detection, 
semantic segmentation, and image classification. 

2) DenseNet169 

It comprises 169 weight layers and dense connections 
between each layer [29]. The model consists of approximately 
14 million parameters and efficiently captures complex 
relationships. It is trained with ImageNet similar to the 
DenseNet121 model with 1 million images and 100 classes. 
The shallow architecture and dense connections in the model 
provide improved and computationally efficient performance 
on complex data. 

3) MobileNetV2 

MobileNetV2 is a compact CNN architecture offered by 
Google AI for devices having limited computational resources 
[30]. It provides high accuracy and efficient computational 
power and minimum power consumption. The model has 3.5 
million parameters, which makes it lightweight and easy to 
deploy on mobile and embedded devices. The use of depth-
wise separable convolutions and inverted residual blocks in the 
model captures complex relationships. It is suitable for 
deployment on devices with limited computational resources. 

4) ResNet50V2 

ResNet50V2 is a variation of the ResNet50 deep CNN 
architecture with improved learning ability [31]. It uses identity 
shortcuts and batch normalization to capture complex input 
data representations. The model has 50 weight layers and is 
trained on the ImageNet dataset. Compared to other popular 
models, the ResNet50V2 has a deeper architecture but is 
shallower than ResNet50. 

5) VGG16 

It is a well-known CNN architecture introduced in 2014 
[32]. The architecture is characterized by its uniform design, 
where all layers have the same number of filters and filter size, 
which reduces overfitting and enhances the model's ability to 
generalize to new data. The VGG16 architecture consists of 16 
weight layers and comprises 13 convolutional layers, 5 max-
pooling layers, and 3 fully connected layers. 

6) VGG19 

It is primarily designed for image classification tasks [33]. 
In contrast to VGG16, it comprises 19 layers including 6 
convolutional layers and 3 fully connected layers resulting in a 
significant number of parameters (approximately 143 million 
as compared to the 138 million for VGG16). VGG19 remains a 
popular choice for transfer learning due to its strong 
performance across a wide range of image classification tasks 
and its ability to extract useful features from images. The large 
number of parameters in VGG19 allows for the learning of 
complex image representations, making it an ideal starting 
point for fine-tuning new image classification tasks. 

B. Data Collection and Augmentation 

The dataset used in this study consists of images collected 
from the local agriculture fields and online sources. The cotton 
crop images were collected from two distinct locations in 
Pakistan, namely Tando Allahyar and Kotri. The local dataset 
collection allowed the training of model on real-world data 
which increases the models' reliability for local 
implementation. The dataset includes 562 images of fresh 
cotton leaves, 300 images of cotton leaves with curl virus, and 
500 images of bacterial blight. Figure 1(a) shows the class-wise 
distribution of images acquired from both locations. Moreover, 
1,292 images representing the same classes were sourced from 
Kaggle [34]. Thus, a combined dataset of 2,654 unique images 
was utilized for training and testing of the models. 

 

 
Fig. 1.  (a) The quantified distribution images collected from local sites 

and sourced from Kaggle, (b) sample images collected from Tando Allahyar, 

Pakistan, (c) sample images collected from Kotri, Pakistan, and (d) the sample 

images collected from Kaggle. 

To optimize the training of a deep CNN model, a large 
quantity of training images is necessary. We employed the 
image data augmentation technique to increase the number of 
images and to introduce dataset variations. The data 
augmentation increased the diversity of the input, expanded its 
generalization capacity, and reduced the risk of overfitting. The 
data augmentation process included flipping, rotation, shifting, 
scaling, shearing, and scaling of all available images proving a 
total of 13,270 images which were then utilized for the model 
training and validation. Figure 2 shows the distribution of 
training and validation dataset images for each class after the 
augmentation. 
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C. Model Implementation and Transfer Learning 

The training and validation implementation of pre-trained 
models involved 5 main steps as represented in the block 
diagram in Figure 3. The first step included the acquisition and 
organization of the dataset in a local repository. In the second 
step, the image augmentation techniques were applied as 
discussed in the previous section. The dataset annotation for 
three classes, bacterial blight, curl virus, and fresh leaves, was 
performed in the third step which also includes the splitting of 
images into training and validation image sets. 70% of the total 
images were used for training the models while the remaining 
30% were used during validation. In the next step, the training 
validation sets were fed to the pre-trained CNN model for 
transfer learning, where the weights of the models were fine-
tuned based on the supplied dataset. Transfer learning 
leverages the knowledge acquired from a prior task to improve 
generalization performance for the new task. The pre-trained 
network is modified by replacing the final few layers with new 
layers, including a fully connected layer and a softmax 
classification layer, where the number of classes is three in the 
current study representing fresh leaves, curl virus, and bacterial 
blight.  

 

 
Fig. 2.  Distribution of the augmented image dataset representing each 

class and segmented to training and validation sets. 

 
Fig. 3.  Implementation block diagram for the transfer learning of pre-

trained models with augmented and annotated datasets. 

Each model underwent layer unfreezing, accompanied by 
the addition of an activation layer, a batch-normalization layer, 
and a dropout layer. The models were tested using consistent 
values for dropout, learning rate, and batch size, with varying 
input image sizes of 32×32, 64×64, 128×128, and 256×256 
pixels. The training was performed with a learning rate of 

0.0001, a batch size of 32, and 200 epochs, which were chosen 
after the established best practices in the field. Once the 
transfer learning process was complete, the weights of the 
trained models were evaluated for each image size in terms of 
accuracy, precision, recall, F1 score, and confusion matrix. The 
confusion matrix is a graphical representation that summarizes 
the performance of the model by showing the number of 
correct and incorrect predictions for each class. It consists of 
four metrics: True Positive (TP), False Positive (FP), False 
Negative (FN), and True Negative (TN). TP represents the 
number of correctly predicted positive instances, while FP 
represents the number of negative instances incorrectly 
predicted as positive. FN represents the number of positive 
instances incorrectly predicted as negative, while TN represents 
the number of correctly predicted negative instances. The 
models were trained using Google Colab on a Tesla T4 GPU 
running 525.85.12 driver version and 12.0 CUDA version. 
Subsequently, the trained models were tested on a laptop 
computer equipped with 8 GB of RAM, a 2.40GHz Intel Core-
i5 CPU, and an Intel HD Graphics 520. All implementations 
were performed on Jupyter Notebook IDE on a Windows 10 
operating system. 

IV. RESULTS AND DISCUSSION 

The confusion matrix of each implemented model was 
analyzed for the different resolutions of the image dataset and a 
thorough comparison was performed between the different 
models. The primary objective of this analysis was to provide 
insight into the performance of each model and facilitate the 
selection of the most effective one for the proposed task. The 
performance of the implemented models for the detection of 
cotton plant diseases was evaluated by employing commonly 
used performance metrics used for the classification task. The 
classification report provides a succinct summary of essential 
classification metrics such as training accuracy, validation 
accuracy, precision, recall, and F1 score. These metrics are 
derived by comparing the model's predictions to the true values 
present in the data. Training accuracy is a measure of the model 
performance on the training set, while validation accuracy 
indicates the model performance on the validation set. 
Precision quantifies the proportion of TPs among all the 
samples that were predicted as positive, whereas recall 
measures the proportion of TPS among all the genuinely 
positive samples. The F1 score represents the harmonic mean 
of precision and recall, providing a single performance metric 
that can be used to compare the overall effectiveness of the 
model. 

Figure 4 shows the training accuracy vs the number of 
epochs for all the implemented models. The result indicates 
lower model accuracy, as observed in Figure 4(a) when the 
training is performed at an image dataset resolution of 32×32 
pixels. Similarly, it is also noticed that the accuracy does not 
improve after the 50 epochs and mainly remains within the 
limited range of 45-75% for all the implemented models. It is 
also noticed that the training accuracy of MobileNetV2 is lower 
while the best accuracy is observed for DenseNet169. 
Moreover, the analysis of Figure 4 indicates a significant 
improvement in training accuracy as the pixel resolution of the 
image dataset is increased. The DenseNet169 and ResNet50V2 
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show the highest accuracy, up to 96%, when trained on 
256×256 pixel images. The lowest accuracy, 52%, is observed 
for MobileNetV2 implementation when trained on 32×32 
pixels images. DenseNet169 achieved 96% efficiency due to its 
dense connections in its model architecture, which promote 
information flow and feature reuse, providing an advantage for 
cotton crop disease identification on the gathered dataset over 
other models. ResNet50V2's model design overcomes 
vanishing gradients and stabilizes training using identity 
shortcuts and batch normalization. The residual connections in 
its design provide smooth gradient flow, while batch 
normalization minimizes variance, resulting in increased 
performance when compared to competing models. 

The confusion matrix was obtained to evaluate the 
prediction capability for each implemented model. Figure 5 
shows the consolidated representation of the confusion matrix 
for all the implemented models at different resolutions of the 
image dataset. The results indicate a significant number of FPs 
and TNs for most of the classes when the 32×32 image dataset 
is chosen. The higher number of incorrect predictions is 
associated with the low resolution of training and validation 
images. Figure 5 further indicates improved TP predictions 
when the image size increased to 256×256 pixels, which can be 
observed by looking at the diagonal values at the bottom half of 

the figure. The overall results indicate the average TP 
prediction rate greater than 89% for all models when they are 
trained and validated on high resolution (256×256) images. 

 

 
Fig. 4.  Training accuracy of the implemented models vs the number of the 

epochs for image sizes of (a) 32×32, (b) 64×64, (c) 128×128, and (d) 256×256 

pixels. 

TABLE I.  DETAILED PERFORMANCE METRICS OF ALL IMPLEMENTED MODELS  

 

Classification 
Performance metrics 

Precision Recall F1-Score Accuracy 
32×32 64×64 128×128 256×256 32×32 64×64 128×128 256×256 32×32 64×64 128×128 256×256 32×32 64×64 128×128 256×256 

DenseNet 121 

Bacterial Blight 0.64 0.75 0.8 0.91 0.53 0.83 0.84 0.92 0.58 0.79 0.82 0.92 

0.73 0.84 0.92 0.95 Curl Virus 0.64 0.79 0.79 0.89 0.48 0.73 0.82 0.83 0.55 0.76 0.81 0.86 

Healthy Leave 0.63 0.79 0.88 0.88 0.86 0.76 0.82 0.92 0.73 0.77 0.85 0.9 

DenseNet 169 

Bacterial Blight 0.68 0.74 0.83 0.95 0.6 0.79 0.89 0.88 0.64 0.76 0.86 0.92 

0.74 0.85 0.93 0.96 Curl Virus 0.48 0.74 0.95 0.88 0.39 0.66 0.65 0.89 0.43 0.7 0.77 0.89 

Healthy Leave 0.77 0.95 0.83 0.91 0.98 0.97 0.98 0.96 0.86 0.96 0.9 0.93 

MobileNetV2 

Bacterial Blight 0.52 0.7 0.86 0.9 0.46 0.77 0.92 0.93 0.49 0.73 0.89 0.91 

0.52 0.81 0.95 0.95 Curl Virus 0.46 0.69 0.89 0.97 0.44 0.6 0.78 0.77 0.45 0.64 0.83 0.86 

Healthy Leave 0.59 0.87 0.89 0.87 0.68 0.89 0.92 0.98 0.63 0.88 0.91 0.92 

ResNet50V2 

Bacterial Blight 0.57 0.94 0.88 0.95 0.58 0.67 0.9 0.96 0.57 0.79 0.89 0.95 

0.6 0.84 0.93 0.96 Curl Virus 0.59 0.87 0.91 0.94 0.41 0.77 0.87 0.9 0.49 0.81 0.89 0.92 

Healthy Leave 0.63 0.7 0.91 0.94 0.77 0.96 0.92 0.95 0.69 0.81 0.91 0.95 

VGG16 

Bacterial Blight 0.62 0.73 0.73 0.89 0.73 0.82 0.97 0.95 0.67 0.77 0.83 0.92 

0.66 0.76 0.89 0.94 Curl Virus 0.5 0.73 0.89 0.89 0.35 0.6 0.71 0.85 0.41 0.66 0.79 0.87 

Healthy Leave 0.65 0.82 0.92 0.93 0.69 0.85 0.78 0.91 0.67 0.83 0.84 0.92 

VGG19 

Bacterial Blight 0.68 0.71 0.68 0.87 0.76 0.86 0.88 0.87 0.72 0.78 0.77 0.87 

0.65 0.75 0.85 0.93 Curl Virus 0.57 0.71 0.78 0.95 0.56 0.43 0.79 0.82 0.57 0.54 0.78 0.88 

Healthy Leave 0.72 0.74 0.83 0.85 0.69 0.83 0.59 0.94 0.69 0.78 0.69 0.9 

 

 

Fig. 5.  Confusion matrices for lowest and highest image resolutions for all implemented models. 
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V. CONCLUSION  

This work presented the implementation and performance 
analysis of automated disease detection in cotton plants based 
on the transfer learning of six state-of-the-art pre-trained deep 
learning networks that included DenseNet121, DenseNet169, 
MobileNetV2, ResNet50V2, VGG16, and VGG19. The two 
most common diseases of cotton plants, i.e. bacterial blight, 
and curl virus were considered. A significant part of the image 
dataset covering the target diseases was collected from local 
fields in Pakistan. Standard image augmentation techniques 
were applied to increase the size and versatility of the dataset. 
The transfer learning was implemented for four different image 
resolutions representing the multiple levels of image features. 
The performance comparison of the implemented models 
indicated lower accuracy when trained on low-resolution 
images. The inter-model comparison suggested the 
DenseNet169 model as most accurate providing training 
accuracy up to 96%.  

The present work provides practical insight for 
implementing transfer learning models to real-time cotton 
disease detection systems. However, it still has some 
limitations which require further investigation. The current 
study includes a limited local dataset collected from two 
locations only. The reliability and accuracy of the models can 
be further improved by collecting datasets across the country 
with diverse geographical and climate features. Additionally, 
the current implementation is performed on CPU which limits 
its practical use. The future implementation of models on 
mobile platforms such as smartphones and embedded 
controllers will escalate its impact and enable its reach to end 
users. 
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