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ABSTRACT 

This study presents a combination of Type-2 fuzzy logic and nonsingular fast sliding mode technique to 

design a robust controller for a robotic system. The control law is composed of two signals. The first one 

called equivalent control law is dedicated to maintaining the system on the sliding surface and then 

converges to zero. Since the system is uncertain, a Type-2 fuzzy nominal model was constructed, deduced 

from linear local models, which allows a good approximation of the real robotic system. The second signal, 

whose objective is to force the system to attain the sliding surface, is deduced from stability analysis using 

Lyapunov theory. Several simulations were conducted to evaluate the efficiency of the proposed approach, 

showing good tracking performance for different reference signals despite the presence of uncertainties 

and external disturbances. 

Keywords-robotic system; nonsingular fast terminal sliding mode control 

I. INTRODUCTION  

Sliding mode control is a very popular approach to ensure 
good tracking performance against external disturbances [1-5]. 
Despite its simple design procedure and good tracking 
performance, it has two major disadvantages. The first one is 
the chattering phenomenon introduced by using the signum 
function in the control signal. The second disadvantage lies in 
its time convergence, which cannot be imposed. Several 
improvements have been proposed to reduce chattering 
phenomena [1, 6-8]. However, these methods need a trade-off 
between the smoothness of the switching signal and tracking 
performance. Second-order sliding mode control has presented 
a good solution to chattering, but the design procedure is 
complex and requires a good knowledge of the studied system 
[9]. Recently, terminal sliding mode control was proposed, 
where a nonlinear surface is used to guarantee a finite time 
convergence to the origin of the phase plan. However, these 
types of controllers suffer from the singularity problem due to 
the presence of terms with negative fractional powers [10-12]. 
This problem can be resolved by using a nonsingular terminal 
sliding mode controller [13]. Nevertheless, this improvement 
was obtained at the expense of the convergence time, which 
became slower. A nonsingular fast terminal sliding mode 
controller was developed to overcome singularity and obtain a 
fast convergence time [14]. This paper proposes a Type-2 fuzzy 
nonsingular fast terminal sliding mode controller for a robotic 
system, guaranteeing finite-time convergence, fast speed when 
the states are far from the origin, avoidance of singularity, and 
no chattering. The design procedure consists of two major 
steps. In the first step, a nominal model was designed using a 

Type-2 fuzzy system, exploiting linear local models, which 
allows the construction of a nominal model too close to the real 
system. This model was used to design the equivalent control 
law, whose mission is to maintain the system on the sliding 
surface and slide on to zero. The second step aimed to establish 
the switching signal on the sliding surface despite the presence 
of external disturbances and uncertainties. 

II. INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS 

Fuzzy logic systems are known as universal approximators 
and have several applications in control design and 
identification. A Type-1 Fuzzy Logic System (T1FLS) consists 
of four major parts: fuzzifier, rule base, inference engine, and 
defuzzifier. A Type-2 Fuzzy Logic System (T2FLS) is very 
similar to a T1FLS [15-16], and the major structure difference 
is that the defuzzifier block of a T1FLS is replaced by the 
output processing block, which consists of type-reduction 
followed by defuzzification. In an interval T2FLS, a triangular 
fuzzy set is defined by a lower and upper set, as shown in 
Figure 2. 

 

 

Fig. 1.  Structure of a T2FLS. 
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Fig. 2.  Interval T2FLS sets. 

It is clear that the interval Type-2 fuzzy set is in a region 
bounded by an upper and a lower membership function, 

denoted as �̅����� and ��� , respectively, and is named as Foot of 

Uncertainty (FOU). Assuming that there are M rules in a Type-
2 fuzzy rule base, each of them has the following form: 	
: � �� �� ��
  ��� … ��� ��  �� ��
 ���� � �� ���
 ��
  
where xj, j = 1, 2, …, n, and y are the input and output variables 

of the T2FLS, respectively, �!
  is the Type 2 fuzzy sets of 

antecedent part, and "��
 ��
# is the weighting interval set in the 
consequent part. The operation of type-reduction is to give a 
Type-1 set from a Type-2 set. In the meantime, the firing 
strength Fi

 for the i-th rule can be an interval Type-2 set 
expressed as:  


 ≡ %&
 , &
(  

where: 

)&
 * �+�,- ���� ∗ … ∗ �+�/- ���� 
 &
 * �̅+�,-���� ∗ … ∗ �̅+�,- ����  

This study used the center of the set type-reduction method 
to simplify the notation. Therefore, the output can be expressed 
as: �012��� * "��  ; ��#  
where ycos(x) is also an interval Type-1 set determined by the 
left and right-most points (yl and yr �, which can be derived 

from the consequent centroid set "��
 ��
# (either � 
 or �4 
) and 

the firing strength &
 ∈ 
 ≡ "&
  , &
#. The interval set "��
  ��
# 
(i = 1, …, M) should be computed or set before the 
computation of ycos(x). Therefore, the left-most point yl and the 
right-most point yr can be expressed as [17]: 

⎩⎪⎨
⎪⎧�� * ∑ ;<-=, ->?-∑ ;<-=, -  

 �� * ∑ ;->@-<-=,∑ ;-<-=,
    (1) 

Using the center of set type reduction method to compute yl 
and yr the defuzzified crisp output from an interval T2FLS can 
be obtained according to: 

���� * A?BA@C       (2) 

which can be rewritten in the following vectorial form: ���� * DE���. �    (3) 

where Ψ
Τ
(x) represents the regressive vector and w the 

consequent vector containing the conclusion values of the 
fuzzy rules. 

III. PROBLEM STATEMENT 

Let's consider the dynamic equation of n Degree-of-
Freedom (DoF) robotic manipulators as follows: G�H�HI J K�H, HL �HL J M�H, HL � * N�O� J NP�Q�O� (4) 

where H , HL  and HI ∈ ℝ�  are the vector of joint position, joint 
velocity, and joint acceleration, respectively, G�H� ∈ ℝ�S� is a 
symmetric and positive definite inertia matrix, K�H, HL � ∈ ℝ�S� 
is the matrix of centrifugal and Coriolis forces, M�H� ∈ ℝ� is 
the vector of gravitational forces, N�O� ∈ ℝ�  is the vector of 
input joint torque, and NP�Q�O� ∈ ℝ� is the vector of unknown 
external disturbances. 

 

 

Fig. 3.  Two link robot manipulators (2 DoFs). 

For practical applications, it is impossible to know the exact 
dynamic model of the robotic manipulators. Therefore, the 
above dynamic quantities can be expressed as:  G�H� * GT�H� J ∆G�H�K�H, HL � * KT�H, HL � J ∆K�H, HL �M�H� * MT�H� J ∆M�H�     (5) 

where GT�H�, KT�H, HL �, and MT�H� are the nominal values and ∆G�H� , ∆K�H, HL � , ∆M�H�  are the uncertain parts of G�H� , K�H, HL �, and M�H�, respectively. Using (5), the dynamic model 
of the robotic manipulators can be expressed as: GT�H�HI J KT�H, HL �HL J MT�H, HL � * N�O� J V�H, HL , HI  � (6) 

where: V�H, HL , HI  � * NP�Q�O� W ∆G�H�HI W ∆K�H, HL �HL W ∆M�H�  

Let's define the tracking error X * H W HY  and its time 
derivative XL * HL W HLY  where HY  is the desired trajectory. The 
error dynamic of the robotic manipulators with the 
uncertainties and disturbances can be written as: XI * &�X, XL� J Z�X, XL�N�O� J [�X, XL�   (7) 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11667-11671 11669  
 

www.etasr.com Alnufaie: Nonsingular Fast Terminal Sliding Mode Controller for a Robotic System: A Fuzzy Approach 

 

where: &�e, XL� * WGT]��H�"KT�H, HL �HL J MT�H, HL �# W HIY  Z�e, XL� * GT]��H� and [�e, XL� * GT]��H� δ�H, HL , HI  � 

As given in [13], the upper bound of lumped uncertainty 
can be expressed as: |[�X, XL�| ≤ �T J ��|H| J �C|HL |C   (8) 

where �T , ��  and �C  are positive scalars. The next task is to 
develop a robust controller based on Nonsingular Fast Terminal 
Sliding Mode Control (NFTSMC) allowing tracking objectives. 

IV. CONTROLLER DESIGN 

To design the controller, let's consider the following 
nonsingular terminal sliding surface: a�O� * X J b�|X|csign�X� J bC|XL|h sign�XL� (9) 

where b� and bC are positive constants, and: 1 < β < 2 and m > o 

The structure of this surface allows to attain fast 
convergence of the tracking error to zero. If the position's initial 
value is far from the desired one, then the term b�|X|csign�X� 
will be dominant, leading to fast convergence. In the case 
where the system is near the desired trajectory, the term bC|XL|h ��Z��XL�  must ensure a finite time convergence. The 
time derivative of the sliding surface can be written as: aL�O� * XL J m. b�|X|c]� XL + o. bC|XL|h]�. XI   (10) 

The control law is composed of two terms. The first one, 
named equivalent control NP(O), is dedicated to maintaining the 
system on the sliding surface. The second term N2(O), called the 
switching signal, must force the system to converge to the 
sliding surface. Then, to design the equivalent control law NP(O), it is considered that the system is on the surface (a(O) =0 ) and remains on (aL(O) = 0 ). In this case, the system is 
considered insensitive to uncertainties and external 
disturbances [1]. Using (7), (10) can be rewritten as: 

aL(O) = XL + m. b�|X|c]� XL +   
    o. bC|XL|h]�. [&(X, XL) + Z(X, XL)NP(O)]  (11) 

The equivalent control law can be expressed as: 

NP(O) = −Z]�(X, XL). �&(X, XL) + [o. bC]]� |XL|C]h (1 +
   m. b�|X|c]�) sign(XL)     (12) 

Note that, XL = |XL|. sign(XL)  was used to write (9) in a 
compact form. The next task is to determine the expression of 
the switching signal N2(O) allowing to force the system to reach 
the sliding surface in the presence of uncertainties and external 
disturbances. In this case, (10) becomes: 

aL(O) = XL + m. b�|X|c]� XL + o. bC|XL|h]�. [&(X, XL) +   Z(X, XL)N(O) + [(X, XL)]     (13) 

Using (12), (10) can be rewritten as: 

aL (O) =  XL + m. b�|X|c]� XLo. bC|XL|h]�. [&(X, XL) + Z(X, XL)NP(O)]    +o. bC|XL|h]�. [Z(X, XL)N2(O) + [(X, XL)]    (14) 

According to the definition of the equivalent control, (14) 
can be simplified to: 

aL(O) = o. bC|XL|h]�. [Z(X, XL)N2(O) + [(X, XL)]  (15) 

To deduce the expression of N2(O) allowing the switching 
condition, the following Lyapunov function was considered: 

q(O) = �
C aC(O)     (16) 

Differentiating q(O) for time and using (15) lead to: 

qL (O) = a(O). o. bC|XL|h]�. [Z(X, XL)N2(O) + [(X, XL)]  (17) 

Choosing Nr(O) as: 

N2(O) = −Z]�(X, XL)[bT�. a(O) + (bTC + �T + ��|H| +�C|HL |C). sign(a(O))]     (18) 

where bT� and bTC are two positive scalars. 

The time derivative of the Lyapunov function becomes: 

qL  (O) = a(O) o. bC|XL|h]�. [Z(X, XL)N2(O) + [(X, XL)]  

= o. bC|XL|h]�. [−bT�. aC(O) − (bTC + �T + ��|H| +                                        �C|HL |C). |a(O)| + [(X, XL)]  (19) 

Using the assumption (8), the following inequality is 
obtained: 

qL (O) ≤ o. bC|XL|h]�. [−bT�. aC(O) − bTC. |a(O)|] ≤ 0 (20) 

Based on the Lyapunov theorem, the system converges 
asymptotically to the sliding surface and remains on. To prove 
convergence in finite time, let's take up inequality (20): 

qL (O) ≤ −o. bT�. bC|XL|h]�. aC(O) − o. bTC . bC|XL|h]�. |a(O)| (21) 

qL (O) ≤ − 2obT�. bC|XL|h]�sttttuttttv
h,

. q(O) − √2obTC. bC|XL|h]�sttttuttttv
hx

. q,
x(O) (22) 

and then: 

�O ≤ ]Yy(Q)
h,.y(Q)Bhx.y,x(Q)

= −2. Yy,x(Q)
h,.y,x(Q)Bhx

  (23) 

Integrating inequality (23) and after some mathematical 
manipulation, the following can be obtained: 

O0 ≤ C
h, z� {h,.y,x(T)Bhx

hx |   

It can be concluded that the time convergence to zero is 
finite. 

V. SIMULATION AND RESULTS 

To evaluate the performance of the proposed approach, a 
two-link robot was considered, as shown in Figure 3, whose 
dynamics equation is given by [14]: 

}G��(H) G�C(H)
GC�(H) GCC(H)~ }HI�HIC~ + }K��(H, HL) K�C(H, HL )

KC�(H, HL) KCC(H, HL )~ }HL�HLC~ +
}M�(H)
MC(H)~ = }N�(O)

NC(O)~ + }NP�Q�(O)
NP�QC(O)~  

where: 
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G��(H) = (�� + �C)z�C    
G�C(H) = GC�(H) = �Cz�zC(sin(H�) sin(HC) + cos(H�) cos(HC))    
GCC(H) = �CzCC   
K��(H, HL ) =−�Cz�zC(cos(q�) sin(HC) − sin(H�) cos(HC))HLC  

KC�(H, HL ) =−�Cz�zC(cos(q�) sin(HC) − sin(H�) cos(HC))HL�  

K��(H, HL ) = KCC(H, HL ) = 0  

M�(H) = −(�� + �C)z�Z. sin (H�)  

MC(H) = −�CzCZ. sin (HC)   

�� = �C = 1�Z; z� = zC = 1�; Z = 9.8��]C  

To construct the Type 2 fuzzy nominal model, the positions 

H�  and HC  were considered to be constrained within %− �
C , �

C(, 

which leads to nine fuzzy rules. Each of them gives the relation 
between the equilibrium point and the corresponding local 
model. Then, each rule uses a Type-2 fuzzy set in the 
antecedent part to describe the equilibrium point and the 
consequent part of the corresponding local model. Using the 
product as an interference engine, the center set for the 
reduction type, and the center of gravity for defuzzification, the 
output fuzzy system will give the Type-2 fuzzy nominal model. 
Figures 4 to 6 show the results obtained for sinusoidal 
reference trajectories (q1d(t)=sin(t), q2d(t)=cos(t)) and the 
system subjected to both uncertainties (10% of nominal values 
of the system) and external disturbances in the form:  

NP�Q(O) = 0.2 sin(O) + 0.1sin (2O)  

 
Figure 7 shows another reference trajectory considered to 

demonstrate the performance of the proposed approach. This 
case also demonstrates the convergence of the system outputs 
towards the reference trajectories, confirming the previous 
conclusion. 

 

 

Fig. 4.  Angular position tracking. 

 

Fig. 5.  Angular position tracking error. 

 

Fig. 6.  Applied control signals. 

 
Fig. 7.  Angular position tracking. 

To further demonstrate the performance of the proposed 
approach, a comparative study was conducted with a Fuzzy 
Sliding Mode Control (FSMC) [2] and a Terminal Sliding 
Mode Controller (TSMC) [18] in terms of the Mean Square 
value of the Tracking Error (MSTE) defined as: 
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X
 = ��
� ∑ ‖X
(b)‖C����   , � = 1,2  

Table I shows the obtained MSTE values after using each 
method. As can be seen, the proposed approach obtained a 
smaller MSTE, demonstrating its better performance than the 
two other control methods. 

TABLE I.  MSTE VALUES 

 Joint 1 (rad) Joint 2 (rad) 

FSMC 0.045 0.06 

TSMC 0.04 0.055 

Proposed method 0.025 0.035 

 
Thus, it can be concluded that the proposed approach 

ensures high tracking precision, fast response, singularity 
avoidance, and strong robustness to external disturbances and 
modeling uncertainties. 

VI. CONCLUSION 

This study proposed a Type-2 fuzzy nonsingular fast 
terminal sliding mode controller for a robotic system. In the 
first step, the equivalent control law was elaborated based on a 
Type-2 fuzzy nominal model, which allows a good 
approximation of the real robotic system. This made it possible 
to effectively exploit human expertise in the behavior of the 
system, the flexibility of Type-2 fuzzy logic, and its ability to 
better consider uncertainties compared to other classical 
modeling methods. In the second step, Lyapunov theory was 
used to study the stability of the closed-loop system and deduce 
the expression of the switching signal. The designed control 
law, composed of two terms, was mathematically proven to 
lead to robustness against uncertainties and external 
disturbances, in addition to its convergence to the reference 
trajectories in a finite time. To demonstrate the performance of 
the proposed approach in terms of robustness and tracking, a 
simulation was conducted for sinusoidal trajectories with 
different initial positions and square reference signals. The 
results and the comparative study with other approaches 
demonstrated the superiority of the proposed approach in terms 
of MSTE. In the future, the implementation of this approach 
will be simplified by reducing the number of parameters and 
simplifying the expression of the switching signal. 
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