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ABSTRACT 

Solar irradiation prediction including Global Horizontal Irradiation (GHI) and Direct Normal Irradiation 

(DNI) is a useful technique for assessing the solar energy potential at specific locations. This study used five 

Artificial Neural Network (ANN) models and Multiple Linear Regression (MLR) to predict GHI and DNI 

in Africa. Additionally, a hybrid model combining MLR and ANNs was proposed to predict both GHI and 

DNI and improve the accuracy of individual ANN models. Solar radiation (GHI and DNI) and global 

meteorological data from 85 cities with different climatic conditions over Africa during 2001-2020 were 

used to train and test the models developed. The Pearson correlation coefficient was used to identify the 

most influential input variables to predict GHI and DNI. Two scenarios were proposed to achieve the goal, 

each with different input variables. The first scenario used influential input parameters, while the second 

incorporated geographical coordinates to assess their impact on solar radiation prediction accuracy. The 

results revealed that the suggested linear-nonlinear hybrid models outperformed all other models in terms 

of prediction accuracy. Moreover, the investigation revealed that geographical coordinates have a minimal 

impact on the prediction of solar radiation. 

Keywords-global horizontal irradiation; direct normal irradiation; multiple linear regression; artificial neural 

networks; hybrid model 

I. INTRODUCTION  

The exploitation of fossil fuels faces increasing political 
and environmental challenges [1]. The use of renewable energy 
is one solution to address these issues and meet the growing 
global demand for electricity. Renewable energy offers a 
solution to the pollution and environmental damage caused by 
fossil and nuclear energy [2]. The potential of renewable 

energy has inspired numerous researchers to explore clean 
technologies, intending to generate clean energy and minimize 
the effects of climate change [3-5]. Among the various 
renewable resources, solar energy is particularly promising, 
with applications in electricity generation, as well as air and 
water heating/cooling [6]. Solar photovoltaic (PV) energy 
generation uses solar modules that consist of multiple solar 
cells containing a PV material. 
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In general, assessing the energy generation potential for 
various solar technologies is based on two crucial parameters: 
Global Horizontal Irradiation (GHI) and Direct Normal 
Irradiation (DNI) [7]. Accurate measurement and prediction of 
GHI and DNI are crucial in assessing the energy generation 
potential of various solar technologies. These parameters are 
key inputs for designing, operating, and optimizing the 
performance of solar power plants. According to [8], GHI is the 
total amount of solar radiation received on a horizontal surface, 
including both direct and diffuse radiation. On the other hand, 
DNI is the amount of solar radiation received directly from the 
sun's rays, perpendicular to a surface. This type of radiation is 
particularly important for Concentrated Solar Power (CSP) 
plants that use mirrors or lenses to concentrate sunlight onto a 
receiver to produce high-temperature heat, which is then used 
to generate electricity [8]. Therefore, accurate and reliable 
measurements of GHI and DNI are essential for the effective 
operation and management of solar power plants in the future. 

Recently, soft-computing approaches have emerged as 
particularly effective techniques for modeling global solar 
radiation in many regions around the world. Soft-computing 
techniques enable efficient identification of relationships 
between dependent and independent variables, even for non-
linear natural processes. Recently, various models have been 
developed, such as Multilayer Feed-Forward Neural Networks, 
Support Vector Machines, Autoregressive Integrated Moving 
Averages, etc., that use different meteorological and 
geographical elements to estimate the total amount of solar 
radiation in terms of GHI and DNI [9-37]. Based on previous 
scientific studies [9-37], the most relevant input parameters 
used to predict solar radiation are average temperature, 
pressure, relative humidity, wind speed, wind direction, 
sunshine hours, minimum and maximum temperatures, wet-
bulb temperature, atmospheric temperature, cloudiness, and 
evaporation. 

Based on the above, various empirical models are used to 
estimate the annual amount of GHI and DNI in Africa, which is 
currently experiencing a major electricity crisis, with 
approximately 600 million people without access to electricity. 
Rural areas are particularly affected, with electrification rates 
as low as 10%. This energy poverty has significant negative 
impacts on the economy, society, and health, as communities 
rely on unsafe and inefficient energy sources. However, the 
abundant sunshine in Africa provides a unique opportunity for 
the development of solar energy systems, which have the 
potential to meet the energy needs of millions of people in the 
region. In this study, five ANN models (feed-forward neural 
network, cascade forward neural network, Elman neural 
network, Layer Recurrent Neural Network, and NARX Neural 
Network) and Multiple Linear Regression (MLR) were used to 
predict solar radiation data. Moreover, this study proposed 
linear-nonlinear hybrid models that integrate ANNs and MLR 
for GHI and DNI prediction. GHI, DNI, and global 
meteorological data from 85 cities in Africa with various 
climatic conditions were used to train and test the developed 
models. The Pearson correlation coefficient was used to 
identify the most influential input variables for predicting GHI 
and DNI. Two scenarios were used for this purpose: the first 
one was created using the most influential input parameters, 

while the second incorporated geographical coordinates 
(latitude, longitude, and altitude) along with the influential 
input data to assess the impact of geographical coordinates on 
the accuracy of solar radiation prediction. Data were obtained 
from the NASA POWER dataset for the period 2000-2021. 

II. MATERIAL AND METHODS 

A. Study Area 

Africa is a vast continent that spans the equator, and its 
climate varies greatly depending on the region. The continent 
includes several climatic zones, including tropical rainforest, 
savanna, and desert regions. The latitude and longitude of a 
region greatly influence its climate, which in turn affects 
weather patterns. The equator runs through the center of the 
continent, passing through countries. The weather in Africa can 
also be affected by various natural phenomena, such as the El 
Nino Southern Oscillation (ENSO), which is a climate cycle in 
the Pacific Ocean that affects global weather patterns. During 
El Nino, the Pacific Ocean warms, leading to changes in 
atmospheric pressure and wind patterns that affect rainfall 
patterns in Africa.  

B. Data Used 

The NASA POWER (Prediction Of Worldwide Energy 
Resource) dataset is a comprehensive collection of solar and 
meteorological data that provides information on various 
crucial parameters crucial for studying and analyzing 
renewable energy resources and their potential. The dataset 
covers locations around the world, allowing researchers and 
analysts to access solar and meteorological data for virtually 
any location on Earth. The NASA POWER dataset includes a 
wide range of parameters related to solar radiation and 
meteorological conditions. These data include solar radiation 
including GHI, DNI, Diffuse Horizontal Irradiance (DHI), and 
Clear Sky GHI, as well as meteorological data including 
temperature, relative humidity, wind speed, wind direction, 
precipitation, cloud cover, atmospheric pressure, and more. The 
dataset offers both hourly and daily temporal resolutions. 
Hourly data are available for certain parameters, allowing for a 
more detailed analysis of solar and meteorological conditions 
throughout the day. Daily data provide aggregated values for 
each parameter. The spatial resolution of the NASA POWER 
dataset varies depending on the specific parameter and the data 
source used. In general, the dataset provides information at a 
spatial resolution of approximately 1 km. The dataset integrates 
data from various sources, including satellite observations, 
ground measurements, and atmospheric models. NASA 
incorporates data from multiple sensors and instruments to 
provide accurate and reliable information. The NASA POWER 
dataset is freely accessible to the public through the NASA 
POWER web portal. Therefore, data including GHI, DNI, 
surface pressure, average, maximum, and minimum 
temperature, relative humidity, wind speed at 2 m height, 
average, maximum, and minimum wind speed at 10 m height, 
wind direction at 10 m height, frost point temperature, wet bulb 
temperature, cloud amount, and precipitation were collected for 
all the selected cities in Africa shown in Table I. 



Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11472-11483 11474  
 

www.etasr.com Kassem et al.: Prediction of Solar Irradiation in Africa using Linear-Nonlinear Hybrid Models 

 

TABLE I.  INFORMATION REGARDING THE SELECTED LOCATIONS 

Location Latitude [N°] Longitude [E°] Altitude [m] Location Latitude [N°] Longitude [E°] Altitude [m] 

Cairo   30.0 31.6 350.0 Cabinda  -5.1 12.3 103.0 
Kinshasa  -4.3 15.3 277.0 Fez  33.8 -4.9 971.0 

Vereeniging -26.6 27.9 1526.0 Uyo   5.0 7.9 71.0 
Giza   30.0 31.2 19.0 Mwanza    -2.5 32.7 1134.0 

Luanda   -9.5 13.5 201.0 Lilongwe    -14.0 33.7 1071.0 
Dar es Salaam    -6.8 39.3 15.0 Kigali -1.9 30.1 1575.0 

Khartoum  15.6 32.5 387.0 Bukavu -2.5 28.9 1533.0 
Johannesburg  -26.2 28.1 1746.0 Abomey 6.4 2.3 30.0 

Abidjan   5.4 -4.0 105.0 Nnewi  6.0 7.0 163.0 
Alexandria  30.9 29.8 18.0 Tripoli 32.8 13.3 31.0 

Addis Ababa      9.0 38.8 2315.0 Kaduna  10.4 7.9 661.0 
Nairobi   -1.3 36.8 1657.0 Aba  5.1 7.4 64.0 

Cape Town    -33.3 18.4 35.0 Bujumbura  -3.3 29.4 798.0 
Yaoundé    3.9 11.5 715.0 Maputo -26.0 32.6 14.0 

Kano  12.0 8.5 454.0 Hargeisa  9.6 44.1 1267.0 
East Rand   -26.4 27.4 1590.0 BoboDioulass 11.2 -4.3 420.0 
Umuahia  5.5 7.5 154.0 Shubra el-Kheima  30.1 31.2 28.0 
Douala   36.6 4.1 614.0 Ikorodu  6.6 3.5 36.0 

Casablanca  33.3 -8.0 189.0 Asmara  15.3 38.9 2342.0 
Ibadan    7.4 3.9 223.0 Marrakesh 31.6 -8.0 468.0 

Antananarivo   19.0 46.7 1205.0 Tshikapa   -3.0 23.8 505.0 
Abuja  9.1 7.5 473.0 Ilorin  8.5 4.5 318.0 

Kampala   0.3 32.6 1237.0 Blantyre     -15.8 35.0 698.0 
Kumasi     6.7 -1.6 260.0 Agadir   30.7 -9.6 454.0 
Dakar     14.7 -17.3 6.0 Misratah   32.4 15.1 9.0 

Port Harcourt    4.8 7.0 18.0 Lubumbashi    -11.7 27.5 1262.0 
Durban   -29.9 31.0 13.0 Accra     5.8 0.1 39.0 

Ouagadougou     12.4 -1.5 299.0 Brazzaville  -3.0 23.8 505.0 
Lusaka    -15.4 29.2 1149.0 Monrovia 6.3 -10.8 6.0 
Algiers    36.8 3.1 31.0 Tunis 33.8 9.4 43.0 
Bamako    12.6 -8.0 335.0 Rabat 34.0 -6.8 87.0 

Omdurman   15.6 32.5 391.0 Lomé 6.1 1.2 14.0 
Mbuji-Mayi   -6.1 23.6 678.0 Benin City 6.3 5.6 90.0 

Pretoria  -25.7 28.2 1338.0 Owerri  5.5 7.0 74.0 
Kananga -5.9 22.4 636.0 Warri  5.5 5.8 5.0 
Harare  -17.9 31.1 1483.0 Jos   9.9 8.9 1182.0 
Onitsha 6.1 6.8 51.0 Bangui  4.4 18.6 355.0 

N'Djamena    12.1 15.1 297.0 Nampula -15.1 39.3 430.0 
Nouakchott   18.1 -16.0 8.0 Oran    Algeria 35.6 -0.7 162.0 
Mombasa  -4.0 39.7 10.0 West Rand  -26.2 27.5 1589.0 
Niamey  13.5 2.1 207.0 Lubango -14.9 13.5 1774.0 

Pointe-Noire -4.8 11.9 16.0 Gqeberha -34.0 25.6 52.0 
 

C. Artificial Neural Networks (ANNs) 

ANNs are a class of machine learning algorithms inspired 
by the structure and functioning of biological neural networks, 
such as the human brain [38]. An ANN consists of 
interconnected nodes, called artificial neurons or "nodes," 
organized into layers. The three main types in an ANN are the 
input, hidden, and output. The connections between neurons in 
an ANN are represented by weights. During the training 
process, the weights are adjusted based on a mathematical 
optimization algorithm, such as gradient descent, to minimize 
the difference between the predicted and desired outputs. This 
adjustment is performed through a process called 
backpropagation, in which the error is propagated backward 
through the network to update the weights. 

Activation functions play a crucial role in determining the 
output of a neuron based on the weighted inputs. The most 
common activation functions are logistic-sigmoid (logsig) and 

tangent-sigmoid (tansig) whose outputs lie between 0 and 1 
and are defined as [38]: 

������ = �
��	
�    (1) 

�
���� = 	��	
�
	��	
�    (2) 

In addition, a trial-and-error approach is typically employed 
to determine the optimal number of nodes in the hidden layer. 
This study used the TRAINLM training function, which 
updates the weights and biases of neuron connections based on 
the Levenberg-Marquardt (LM) optimization algorithm. The 
backpropagation algorithm, a type of gradient descent 
algorithm, serves as the learning algorithm for this purpose. 
The training process of an ANN is crucial, involving the 
adjustment of weights and biases to minimize the disparity 
between the ANN's output and the desired values. The Mean 
Squared Error (MSE) is used to optimize the performance of 
the trained ANN model, which quantifies the average squared 
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difference between the predicted and actual values, serving as a 
measure to guide the training procedure toward better accuracy. 
Figure 1 illustrates the schematic representation of the ANN 
model developed to predict the GHI and DNI. 

 

 
Fig. 1.  Schematic representation of the ANN  model used. 

1) Feed-Forward Neural Network (FFNN) 

FFNN is widely used in various domains to analyze 
different types of problems in different scenarios [38-40]. The 
Levenberg-Marquardt algorithm and the backpropagation 
method are commonly used techniques [40]. The trial and error 
method is used to determine the appropriate number of hidden 
layers and neurons, and MSE is used to assess the performance 
of the training algorithm. It is important to note that the data 
were normalized within the range of 0-1. This study used the 
backpropagation algorithm for the training process. 

2) Cascade Feed-Forward Neural Network (CFNN) 

CFNN is conceptually similar to the FFNN [40-42] and 
consists of three types of layers: an input layer, one or more 
hidden layers, and an output layer. The input layer receives 
weights from the input data [38-40]. Each subsequent layer 
receives weights from the input layer and all preceding layers 
[38-40]. Biases are present in all layers, contributing to the 
network's functionality. The final layer corresponds to the 
output layer. The configuration of weights and biases is 
necessary for each layer. During the training phase, MSE is 
computed to assess the model's performance. 

3) Elman Neural Network (ENN) 

ENN is a feedback neural network known for its 
exceptional computational capabilities [39-40], and consists of 
four layers, namely, the input, hidden, context, and output 
layers [39-40]. The input layer functions as the signal 
transmission component, while the output layer has a linear 
weight effect. The distinguishing feature of ENN compared to 
backpropagation neural networks is the inclusion of the context 
layer [39-40]. 

4) Layer Recurrent Neural Network (LRNN) 

LRNN incorporates recurrent connections at the layer level 
[41]. In traditional RNNs, such as the Elman or Jordan 
architectures, the recurrent connections are typically at the 
neuron level. However, in LRNN, recurrent connections are 
established between entire layers of neurons, and each layer is 
associated with a recurrent connection that allows information 
to flow from the previous to the current time step within the 
same layer [41]. This enables the network to capture and utilize 
temporal dependencies in sequential data. Recurrent 
connections in LRNN can improve the model's ability to 
process and analyze time series or sequential data, making it 
particularly suitable for tasks such as speech recognition, 
language modeling, and music generation, where capturing 
long-term dependencies is crucial. By incorporating layer-level 
recurrent connections, LRNN provides an alternative approach 
to modeling sequential data compared to traditional recurrent 
architectures. Its unique structure allows the efficient 
processing of temporal information and can lead to improved 
performance in tasks that involve sequential data analysis. 

5) Nonlinear Autoregressive Retwork with Exogenous Input 
(NARX) 

NARX combines autoregressive elements with exogenous 
input to predict future values of a time series [42]. It is 
designed to capture nonlinear dependencies and patterns in 
time series data, incorporating both the past values of the target 
series (autoregressive component) and external factors or 
inputs that may influence the target series (exogenous 
component). NARX typically consists of an input layer, one or 
more hidden layers, and an output layer. The input layer 
receives both the past values of the target series (autoregressive 
inputs) and any exogenous inputs that may be available. The 
hidden layers process the input information and learn to capture 
the nonlinear relationships and dynamics of the data. Finally, 
the output layer generates the predicted values of the target 
series. An important aspect of the NARX model is the use of 
time-delayed inputs, where past values of the target series and 
exogenous inputs are fed as input features with a time delay. 
The model can consider historical information and 
dependencies between past and future observations by 
including these time-delayed inputs. Training the NARX model 
typically involves using optimization algorithms, such as 
gradient descent, to adjust its weights and biases to minimize 
prediction errors. The performance of the NARX model can be 
evaluated using MSE or Root Mean Squared Error (RMSE). 
NARX has been used in various domains, including finance, 
economics, weather forecasting, and time series prediction 
tasks in general. Its ability to capture nonlinear relationships 
and incorporate exogenous factors makes it a powerful tool for 
modeling and predicting complex time-series data.  

D. Multiple Linear Regression (MLR) 

MLR is a statistical method to analyze the relationship 
between a dependent variable and multiple independent 
variables. It extends the concept of simple linear regression by 
considering multiple predictors simultaneously. In MLR, the 
goal is to create a linear equation that best fits the relationship 
between the dependent and independent variables.  
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E. Hybrid Modeling (HM)  

HM is a valuable technique for capturing different parts of 
the underlying patterns by combining several models [43]. In 
this study, an HM was developed by combining the predicted 
values of MLR and estimated residuals (error) by a nonlinear 
model (computational models). Three steps were taken in the 
development of HM: 

 Step 1: Estimate the properties using the mathematical 
models and determine the residuals. 

 Step 2: Pass the residual through computational models to 
capture the nonlinearity of the data. 

 Step 3: Combine the obtained output from the mathematical 
and computational models to predict fuel properties. 

F. Statistical Indices 

The performance evaluation of the developed models 
involves the utilization of several statistical metrics. This study 
used the Coefficient of Determination (R2), RMSE, and Mean 
Absolute Error (MAE). Equations (3)-(5) present the 
mathematical expressions for these metrics. 

�� = 1 − ∑ ���,����,�������
∑ ���,����,� !������     (3) 

�#$% = &�
' ∑ �
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),(��'(*�    (4) 

#+% = �
' ∑ ,
�,( − 
),(,'(*�    (5) 

TABLE II.  DESCRIPTIVE STATISTICS OF THE USED DATA 

City  
DNI 

(kWh/m2) 
Class 

GHI 

(kWh/m2) 
Class City  

DNI 

(kWh/m2) 
Class 

GHI 

(kWh/m2) 
Class 

Aba 929 1 (poor) 1650 4 (good) Kigali 1142 2 (marginal) 1804 4 (good) 
Abdijan 1004 2 (marginal) 1707 4 (good) Kinshasa 1002 2 (marginal) 1640 4 (good) 

Abomey Calavi 1013 2 (marginal) 1692 4 (good) Kumasi 1023 2 (marginal) 1713 4 (good) 
Abuja 1321 3 (fair) 1918 5 (excellent) Libreville 847 1 (poor) 1568 4 (good) 
Accra 1254 2 (marginal) 1849 5 (excellent) Lilongwe 1718 4 (good) 2010 5 (excellent) 

Addis Ababa 2111 5 (excellent) 2128 5 (excellent) Lokoja 1080 2 (marginal) 1762 4 (good) 
Agadir 2196 6 (outstanding) 2072 5 (excellent) Lome 1091 2 (marginal) 1764 4 (good) 

Alexandria 2111 5 (excellent) 2128 5 (excellent) Luanda 1215 2 (marginal) 1752 4 (good) 
Algiers 1756 4 (good) 1749 4 (good) Lubango 2206 6 (outstanding) 2206 6 (outstanding) 

Antananarivo 2086 5 (excellent) 2146 5 (Excellent)) Lubumbashi 1842 5 (excellent) 2082 5 (excellent) 
Asmara 2027 5 (excellent) 2236 6 (outstanding) Lusaka 2401 6 (outstanding) 2223 6 (outstanding) 
Bamako 1754 4 (good) 2131 5 (excellent) Maiduguri 1707 4 (good) 2153 6 (outstanding) 
Bangui 1261 3 (fair) 1860 5 (excellent) Maputo 1806 4 (good) 1833 4 (good) 

Benguela 1866 5 (excellent) 2051 5 (excellent) Marrakesh 2367 6 (outstanding) 2062 5 (excellent) 
Benin City 914 1 (poor) 1625 4 (good) Mbuji-Mayi 1330 3 (fair) 1865 5 (excellent) 
Blantyre 1716 4 (good) 1994 5 (Excellent)) Misratah 1777 4 (good) 1863 5 (excellent) 

Bobo Dioulasso 1658 4 (good) 2156 6 (outstanding) Mombasa 1717 4 (good) 2067 5 (excellent) 
Brazzaville 1023 2 (marginal) 1710 4 (good) Monrovia 992 2 (marginal) 1665 4 (good) 
Bujumbura 1184 2 (marginal) 1802 4 (good) Mwanza 1577 4 (good) 1999 5 (excellent) 

Bukavu 1075 2 (marginal) 1740 4 (good) Nairobi 1761 4 (good) 2116 5 (excellent) 
Cabinda 841 1 (poor) 1507 3 (fair) Nampula 1745 4 (good) 2053 5 (excellent) 

Cairo 2084 5 (excellent) 2083 5 (excellent) Ndjamena 1849 5 (excellent) 2227 6 (outstanding) 
Cape Town 2516 6 (outstanding) 2025 5 (excellent) Niamey 1806 4 (good) 2204 6 (outstanding) 
Casablanca 1897 5 (excellent) 1891 5 (excellent) Nnewi 899 1 (poor) 1613 4 (good) 

Dakar 1589 4 (good) 2099 5 (excellent) Nouakchott 1917 5 (excellent) 2289 6 (outstanding) 
Dar es Salam 1750 4 (good) 2062 5 (excellent) Omdurman 2423 6 (outstanding) 2405 6 (outstanding) 

Doula 852 1 (poor) 1554 4 (good) Onitsha 955 2 (marginal) 1665 4 (good) 
Durban 1679 4 (good) 1706 4 (good) Oran 1813 4 (good) 1807 4 (good) 

East rand 992 2 (marginal) 1016 1 (poor) Ouagadougou 1690 4 (good) 2119 5 (excellent) 
Enugu 1019 2 (marginal) 1722 4 (good) Owerri 929 1 (poor) 1650 4 (good) 

Fez 2094 5 (excellent) 1956 5 (excellent) Point-Noire 902 1 (poor) 1555 4 (good) 
Giza 1005 2 (marginal) 1676 4 (good) Port Harcourt 834 1 (poor) 1504 3 (fair) 

Gqeberha 2124 5 (excellent) 1827 4 (good) Pretoria 2323 6 (outstanding) 2070 5 (excellent) 
Harare 2029 5 (excellent) 2117 5 (excellent) Rabat 2197 6 (outstanding) 1965 5 (excellent) 

Hargeisa 2460 6 (outstanding) 2442 6 (outstanding) Shubra el-Kheima 2084 5 (excellent) 2083 5 (excellent) 
Ibadan 982 2 (marginal) 1676 4 (good) Tangier 1935 5 (excellent) 1801 4 (good) 
Ikorodu 1005 2 (marginal) 1676 4 (good) Tripoli 1856 5 (excellent) 1970 5 (excellent) 
Ilorin 1182 2 (marginal) 1824 4 (good) Tshikapa 1022 2 (marginal) 1681 4 (good) 

Johannesburg 2224 6 (outstanding) 2030 5 (excellent) Tunis 2174 5 (excellent) 2038 5 (excellent) 
Jos 1335 3 (fair) 1930 5 (excellent) Umuahia 929 1 (poor) 1650 4 (good) 

Kaduna 1510 3 (fair) 2038 5 (excellent) Uyo 929 1 (poor) 1650 4 (good) 
Kampala 1309 3 (fair) 1932 5 (excellent) Vereeniging 2303 6 (outstanding) 2057 5 (excellent) 
Kananga 1164 2 (marginal) 1779 4 (good) Warri 809 1 (poor) 1555 4 (good) 

Kano 1615 4 (good) 2126 5 (Excellent)) West rand 2303 6 (outstanding) 2057 5 (excellent) 
Khartoum 2423 6 (outstanding) 2405 6 (outstanding) Yaounde 856 1 (poor) 1633 4 (good) 
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III. RESULTS AND DISCUSSION 

A. Solar Energy Characteristics 

The classification of the solar energy potential was 
determined considering the annual GHI and DNI values. The 
classification of solar resources can be found in [44]. Table II 
presents the classification of solar resources in a specific city 
based on GHI and DNI values. Based on the annual value of 
GHI, it is observed that most of the selected regions exhibit 
abundant solar resources and are classified into good, excellent, 
and outstanding categories. Furthermore, solar resources in the 
East are classified as poor (class 1). Moreover, it is noticed that 
the solar resources in Cabinda and Port Harcourt are 
categorized as fair (class 3). Consequently, these regions 
emerge as the most favorable locations for the future 
installation of PV systems, primarily due to their significantly 
high GSR values. 

Based on the annual value of the DNI, solar resources in 
14% of the selected regions were classified as outstanding 
(Class 6). These regions are Agadir, Rabat, Lubango, 
Johannesburg, Vereeniging, West Rand, Pretoria, Marrakesh, 
Lusaka, Khartoum, Omdurman, Hargeisa, and Cape Town. 
Furthermore, solar resources in 14% of the selected regions 

(Warri, Port Harcourt, Cabinda, Libreville, Doula, Yaounde, 
Nnewi, Point-Noire, Benin City, Aba, Owerri, Umuahia, and 
Uyo) were classified as poor (Class 1). Consequently, based on 
the high values of GHI and DNI, it can be concluded that most 
of the selected locations are well-suited for the installation of 
both large- and small-scale PV systems. Moreover, these 
regions are also highly suitable for implementing flat-plate PV 
systems and CSP systems. 

B. Selecting Relevant Parameters 

The evaluation of the solar potential of a specific location is 
a crucial initial step in the effective planning of solar energy 
systems. Additionally, the prediction of solar radiation is 
influenced by various meteorological and geographical 
variables, making the identification of appropriate factors for 
accurate solar radiation prediction a significant area of 
research. According to [45], accurate information about the 
specific amount of solar energy available at a particular 
geographical location during a given period is essential and 
plays a vital role in the design process of PV systems. 
Moreover, meteorological parameters play a pivotal role in 
influencing the amount of solar radiation [46-47]. Furthermore, 
the orientation angles of a PV system have a significant impact 
on its performance [48-49].  

TABLE III.  PEARSON CORRELATION MATRIX FOR INPUT AND OUTPUT PARAMETERS 

GHI 

 
Sl Az SP Tav RH WS-2 WD WS FPT WPT Tmax Tmin CA WSmax WSmin PC GHI 

Sl 1                 
Az -0.1 1                
SP -0.13 0.49 1               
Tav -0.26 0.457 0.364 1 

             
RH -0.27 0.076 0.315 -0.01 1 

            
WS-2 0.161 -0.15 0.219 -0.29 -0.26 1            
WD 0.023 0.24 0.312 -0.12 0.091 0.116 1           
WS 0.185 -0.19 0.171 -0.33 -0.33 0.988 0.084 1          
FPT -0.36 0.283 0.451 0.514 0.845 -0.36 0.018 -0.44 1         
WPT -0.37 0.398 0.476 0.797 0.589 -0.38 -0.04 -0.45 0.928 1 

       
Tmax 0.225 0.244 0.062 0.218 -0.76 0.034 0.032 0.09 -0.53 -0.28 1 

      
Tmin -0.38 0.277 0.396 0.732 0.557 -0.23 -0.1 -0.32 0.869 0.93 -0.38 1      
CA -0.24 0.089 0.014 0.278 0.677 -0.63 -0.19 -0.67 0.701 0.614 -0.56 0.587 1     

WSmax 0.287 -0.22 0.038 -0.57 -0.37 0.822 0.079 0.852 -0.6 -0.67 0.178 -0.6 -0.67 1    
WSmin -0.03 -0.09 0.158 0.011 -0.02 0.377 0.043 0.374 0 0.005 -0.04 0.069 -0.19 0.173 1   

PC -0.27 0.104 0.03 0.266 0.642 -0.58 -0.15 -0.61 0.661 0.581 -0.48 0.502 0.732 -0.601 -0.159 1 
 

GHI 0.162 -0.11 -0.36 0.013 -0.79 0.402 -0.08 0.444 -0.64 -0.45 0.557 -0.38 -0.76 0.385 0.123 -0.56 1 
DNI 

 
Sl Az SP Tav RH WS-2 WD WS FPT WPT Tmax Tmin CA WSmax WSmin PC DNI 

Sl 1                 
Az -0.1 1                
SP -0.13 0.49 1 

              
Tav -0.26 0.457 0.364 1 

             
RH -0.27 0.076 0.315 -0.01 1             

WS-2 0.161 -0.15 0.219 -0.29 -0.26 1            
WD 0.023 0.24 0.312 -0.12 0.091 0.116 1           
WS 0.185 -0.19 0.171 -0.33 -0.33 0.988 0.084 1 

         
FPT -0.36 0.283 0.451 0.514 0.845 -0.36 0.018 -0.44 1 

        
WPT -0.37 0.398 0.476 0.797 0.589 -0.38 -0.04 -0.45 0.928 1        
Tmax 0.225 0.244 0.062 0.218 -0.76 0.034 0.032 0.09 -0.53 -0.28 1       
Tmin -0.38 0.277 0.396 0.732 0.557 -0.23 -0.1 -0.32 0.869 0.93 -0.38 1      
CA -0.24 0.089 0.014 0.278 0.677 -0.63 -0.19 -0.67 0.701 0.614 -0.56 0.587 1     

WSmax 0.287 -0.22 0.038 -0.57 -0.37 0.822 0.079 0.852 -0.6 -0.67 0.178 -0.6 -0.67 1 
   

WSmin -0.03 -0.09 0.158 0.011 -0.02 0.377 0.043 0.374 0 0.005 -0.04 0.069 -0.19 0.173 1   
PC -0.27 0.104 0.03 0.266 0.642 -0.58 -0.15 -0.61 0.661 0.581 -0.48 0.502 0.732 -0.601 -0.159 1  

DNI 0.289 -0.29 -0.27 -0.42 -0.72 0.586 0.083 0.637 -0.81 -0.76 0.477 -0.69 -0.92 0.7 0.129 -0.69 1 
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This study used Pearson’s correlation to identify the most 
influential input among potential variables. Based on the 
Pearson coefficient, the strength of the relationships can be 
categorized as follows [50]: 0.00–0.25 indicates a very weak 
relationship, 0.26–0.49 represents a weak relationship, 0.50–
0.69 corresponds to a moderate relationship, 0.70–0.89 
signifies a strong relationship and 0.90–1.0 denotes a very 
strong relationship. Table III lists the Pearson correlation 
matrix depicting the relationships between the potential input 
parameters and the failure modes. The matrix provides an 
overview of the correlation coefficients between these 
variables. This study investigated the influence of geographical 
coordinates on the accuracy of the prediction of GHI and DNI. 
To achieve this objective, the proposed models were 
implemented and evaluated in two different scenarios, as 
shown in Figure 2. Different empirical models were used to 
predict the annual value of GHI and DNI. In general, data 
partitioning can influence model performance [51]. Moreover, 
in [51], it was concluded that empirical models achieve optimal 
performance when approximately 70-80% of the data are 
allocated for training and the remaining 20-30% are set aside 
for testing purposes. Consequently, the data were divided into 
training and testing sets using an arbitrary approach, with 80% 
of the total data assigned to the training set and the remaining 
20% designated for the testing set. Table IV displays the 
descriptive statistics for the selected data. 

C. Results of ANN models  

An iterative algorithm was used to find the best neural 
network model and determine the optimal combination of input 
variables and hidden layer neurons. The study considered a 
range of 1-10 hidden layers and 10000-1000000 trial iterations. 
The Levenberg-Marquardt training algorithm was selected for 
its speed and reliability. Each network was trained multiple 
times to prevent inaccurate estimates. The model with the 
lowest MSE was chosen as the best-trained model. Table V 
presents the optimal network structure and activation function. 
The performance evaluation of the developed models was 
performed using R2, RMSE, and MAE. Table VI presents the 
values of these statistical indexes for all proposed ANN 
models, and the following can be concluded: 

 For GHI prediction, it is noticed that the FFNN model had 
the highest R2 value compared to other models. On the 
other hand, the LRNN model had the lowest RMSE and 
MAE values, indicating superior performance compared to 
the other models. As shown in Table VI, the accuracy of 
GHI prediction was reduced when the geographical 
coordinates Lat, Long, and Alt were used as input variables 
for the models. 

 For DNI prediction, it was found that the FFNN model 
exhibited the highest R2 value among all models, indicating 
its superiority. Besides, the ENN model demonstrated the 
lowest RMSE and MAE values, suggesting superior 
performance compared to the others. The results showed 
that the accuracy of the DNI prediction increased when 
geographic coordinates were used as input variables. 

TABLE IV.  DESCRIPTIVE STATISTICS OF THE USED DATA 

Data Variable Unit Mean SD Min. Max. 

Training 

Lat. ° 3.6 17.0 -34.0 36.8 
Long ° 16.4 15.8 -17.3 46.7 
Alt. m 555.7 597.6 6.0 2342.0 
Sl. ° 17.7 15.7 -1.0 90.0 
Az. ° -54.4 81.8 -180.0 47.0 
SP kPa 96.1 5.6 81.4 101.7 

Tav ℃ 23.6 3.6 8.4 30.1 
RH % 68.8 15.2 23.8 89.2 

WS-2m m/s 2.4 1.1 0.5 6.1 
WD ° 195.2 94.2 0.4 359.5 
WS m/s 3.4 1.2 1.0 7.2 
FPT ℃ 16.0 5.6 4.1 24.3 
WBT ℃ 19.8 3.9 7.2 25.7 
Tmax ℃ 36.5 4.9 25.3 46.9 
Tmin ℃ 11.9 5.9 -8.7 23.5 
CA % 54.4 15.9 11.4 86.9 

WSmax m/s 10.1 3.6 2.8 22.9 
WSmin m/s 0.1 0.1 0.0 1.4 

PC mm/day 2.8 1.9 0.0 20.3 
DNI kWh/m2/day 4.3 1.4 2.0 7.7 
GHI kWh/m2/day 5.3 0.7 2.6 6.8 

Testing 

Lat. ° 8.8 20.9 -26.6 35.6 
Long ° 11.4 11.6 -6.8 31.2 
Alt. m 403.9 528.1 5.0 1589.0 
Sl. ° 19.8 11.4 0.0 34.0 
Az. ° -27.2 67.2 -179.0 18.0 
SP kPa 97.2 5.2 84.7 101.6 

Tav ℃ 22.4 3.4 15.8 28.6 
RH % 70.8 15.6 39.3 90.3 

WS-2m m/s 2.0 1.0 0.1 4.4 
WD ° 228.7 101.0 0.9 360.0 

Wsav m/s 3.0 1.1 0.7 5.3 
FPT ℃ 15.6 6.8 4.5 24.1 
WPT ℃ 19.0 4.9 10.8 25.0 
Tmax ℃ 37.0 4.8 29.1 47.8 
Tmin ℃ 8.9 7.8 -6.2 21.2 
CA % 54.3 18.9 22.8 84.6 

Wsmax m/s 9.9 4.4 1.7 20.9 
Wsmin m/s 0.1 0.1 0.0 0.5 

PC mm/day 3.0 2.3 0.0 11.0 
DNI kWh/m2/day 4.2 1.7 1.8 7.1 
GHI kWh/m2/day 5.0 0.6 4.0 6.0 

SD: Standard deviation; Min. Minimum; Max.: Maximum 

TABLE V.  BEST NETWORK STRUCTURE BASED ON THE 
TRAINING SET FOR HORIZONTAL SOLAR RADIATION 

Model Scenario 
Number of 

hidden layers 

Number of 

neurons 

Transfer 

function 

FFNN 
1 2 5 tansig 
2 1 15 tansig 

ENN 
1 2 10 logsig 
2 2 10 tansig 

CFNN 
1 1 15 logsig 
2 1 5 tansig 

LRNN 
1 2 5 tansig 
2 2 15 tansig 

NARX 
1 2 15 logsig 
2 1 5 tansig 
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Fig. 2.  Model development for predicting GHI and DNI considering the two scenarios.

TABLE VI.  STATISTICAL INDEXES AND SCENARIO USED 
FOR ALL PROPOSED ANN MODELS IN TESTING  

Output Scenario Variable FFNN LRNN CFNN ENN NARX 

GHI 

SGHI#1 

R2 0.8287 0.5404 0.8278 0.7986 0.7858 
RMSE 0.4386 0.3976 0.4125 0.4144 0.3537 
MAE 0.3826 0.3073 0.3438 0.3276 0.2472 

SGHI#2 

R2 0.8154 0.7657 0.5637 0.8263 0.6443 
RMSE 0.3226 0.4102 0.3920 0.6104 0.4080 
MAE 0.2711 0.3414 0.3283 0.5434 0.3029 

DNI 

SDNI#1 

R2 0.9232 0.4533 0.9095 0.9047 0.9105 
RMSE 0.5975 1.5089 0.6266 0.5340 0.6725 
MAE 0.4354 1.0055 0.4458 0.3837 0.4945 

SDNI#2 

R2 0.8862 0.4739 0.9249 0.8987 0.8650 
RMSE 0.6694 1.4296 0.7061 0.5902 0.6720 
MAE 0.5243 0.9555 0.5563 0.4505 0.5075 

RMSE and MAE are in kWh/m2 

 

D. Results of MLR 

MLR was used to predict the GHI and DNI in Africa. The 
training data were used to derive mathematical equations, 
represented by the following equations for the two scenarios:  

/01 = 8.562 − 0.035 ∙ �0 : 0.021 ∙ ;<=   
      −0.018 ∙ =>
? − 0.014 ∙ A+ : 0.012 ∙ <A  (6) 

/01 = 9.172 − 0.049 ∙ �0 : 0.074 ∙ ;<=   
      −0.034 ∙ =>
? − 0.017 ∙ A+ : 0.018 ∙ <A  
      :0.011 ∙ D
� : 0.001 ∙ D���   (7) 

EF1 = 8.911 − 0.015 ∙ �0 : 1.533 ∙ G$�H − 1.46 ∙ G$   
      −0.188 ∙ ;<= − 0.016 ∙ =>�� : 0.061 ∙ G$IJK  
      :0.034 ∙ <A      (8) 

EF1 = 11.092 − 0.008 ∙ �0 : 2.113 ∙ G$�H − 2.078 ∙ G$   
      −0.268 ∙ ;<= − 0.022 ∙ =>�� : 0.038 ∙ G$IJK  
      :0.06 ∙ <A − 0.011 ∙ �
� − 0.014 ∙ D���  
      −0.001 ∙ +��   (9) 

Figures 3 and 4 present the time series plots of the observed 
and predicted GHI and DNI values for the two scenarios in the 
testing phase, using ANNs and MLR, respectively. 

 
Fig. 3.  Time series and the scatter of observed and predicted GHI (a), (b) 
and DNI (c), (d) for best scenario using ANN models. 
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Fig. 4.  Time series and the scatter of observed and predicted GHI (a), (b) 
and DNI (c), (d) using MLR. 

The results demonstrate that incorporating Latitude, 
Longitude, and Altitude as input variables in the models 
improved the predictive accuracy of GHI and DNI by 1.67% 
and 0.78%, respectively. 

E. Results of the Hybrid Models 

An HM refers to combining multiple types of techniques to 
improve the prediction accuracy of a single model (FFNN, 
ENN, CFNN, LRNN, NARX, and MLR). Figures 5 and 6 
show that the HMs outperformed the others in terms of data fit. 
This implies that the HMs provide a better fit to the observed 
data compared to the single ANN models. Figure 5 shows that 
the ENN-MLR (SGHI#2) model achieved a notably higher R2 
value compared to other models. Figure 6 shows that the 
CFNN-MLR (SDNI#2) produced a high R2 value compared to 
the other models. Figure 7 shows time series plots of the 
observed and predicted GHI and DNI values for the testing 
phase. The ENN-MLR (SGHI#2) and CFNN-MLR (SDNI#2) 
models demonstrated a stronger correlation and better overall 
fit to the data. 

 
Fig. 5.  RMSE and MAE for HM and single ANN models for predicting 
GHI. 

 
Fig. 6.  RMSE and MAE for HM and single ANN models for predicting 
DNI. 

IV. DISCUSSION AND CONCLUSION 

Accurate predictions of solar radiation, including GHI and 
DNI, are vital for sizing, estimating energy production, 
monitoring performance, selecting optimal sites, and 
facilitating grid integration of solar systems. These predictions 
enable efficient planning, optimal utilization of solar resources, 
and the successful implementation of solar energy projects. 
According to [52], accurate solar radiation predictions help to 
determine the appropriate size and capacity of solar systems. 
Furthermore, considering the GHI and DNI values along with 
other factors such as panel efficiency and system losses, it is 
possible to forecast the expected energy output [9, 53]. 
Furthermore, solar radiation measurements and predictions 
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allow for the continuous monitoring of the performance of a 
solar system [54]. Additionally, accurate solar radiation 
predictions are essential for effectively integrating solar energy 
into the grid [55].  

 

 
Fig. 7.  Time series and the scatter of observed and predicted GHI and DNI 
values using HMs. 

The performance of 11 empirical models was evaluated for 
the prediction of GHI and DNI. Solar radiation data, including 
GHI and DNI, from 85 cities having different climatic 
conditions all over Africa during 2001-2020 were used for 
training and testing. Based on the performance indexes, the 
proposed linear-nonlinear hybrid models exhibited superior 
performance in terms of predicting accuracy compared to all 
the other models considered. Furthermore, the results showed 
that geographical coordinates have a minimal impact on the 
prediction of solar radiation, as also supported in other studies. 
In [46], it was found that latitude and longitude have minimal 
impact on the prediction of solar radiation. Moreover, latitude 
and longitude are mainly used to determine the location of a 
specific site rather than directly influencing solar radiation 
levels [56-57]. 

Future research should focus on employing advanced 
techniques such as KNN, regression trees, boosting, and 
random forest models to improve the precision of predicting 
global solar radiation and the power output of PV systems. By 
exploring these models, researchers can contribute to more 
reliable and efficient solar energy utilization. 
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