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ABSTRACT 

This study presents a correction approach that can capture the discontinuities in the bending moment and 

shear force in the dynamic analysis of beam-like structures traveled by a moving vehicle. The proposed 

approach was based on the Dynamic Modal Acceleration Method (DyMAM) to correct the dynamic 

response of the supporting structure with a reduced number of vibration modes. The use of a two-axle 

vehicle model was adopted to consider the pitching effect in the presence of surface irregularity and 

damping. The interacting forces between the beam and vehicle were filtered to avoid undesirable high-

frequency contributions. Subsequently, a new formulation for the entire vehicle-beam system was 

obtained. The corresponding equation was solved using the Newmark numerical scheme to obtain the 

system responses in each time step. A numerical example was illustrated, showing that the proposed 

method was in close agreement with previous correction solutions in the vehicle-beam interaction analysis. 

Keywords-moving vehicle; vehicle-bridge interaction; dynamic modal acceleration method; modal equations of 

motion 

I. INTRODUCTION  

Vibration analysis of beam-like structures is an interesting 
aspect of structural design [1-2]. The study of the dynamic 
response of a beam induced by a moving load has long been an 
attractive topic [3-5]. The traditional Modal Displacement 
Method (MDM) is a widespread approach to determine the 
dynamic response of a beam and analyze Vehicle Beam 
Interaction (VBI) systems [6-10]. In MDM, the solution is 
obtained as a series expansion in terms of the eigenfunctions of 
the distributed system without damping and loading, having the 
advantage that the response quantities can be determined by the 
superposition of only a few first modes possessing low 
frequencies. Unfortunately, the exclusion of high-frequency 
modes leads to significant errors in the calculation of strains 
and stresses [11]. Once considering the bending moment and 
the shear force distribution of the beam, the MDM-based 
approach does not show the effectiveness of capturing the 

discontinuity and the jump of internal forces diagrams at the 
points where the vehicle axles are applied. 

Several Modal Correction Methods (MCMs) have been 
proposed to involve the contribution of truncated higher-order 
modes to the structural response, such as the Mode 
Acceleration Method (MAM) [11-12], the Dynamic Correction 
Method (DCM) [13-14], and the Force Derivative Method 
(FDM) [15-16]. To the best of our knowledge, a limited 
amount of research has applied MCMs to VBI analysis. In [17-
18], computational procedures were developed to analyze the 
dynamic response of a beam to single or multiple moving 
oscillators. The solution was the sum of modal series 
representation and quasistatic response. In [19-20], an approach 
based on DCM was introduced, aiming to consider the inertial, 
damping, and gravitational effects of moving masses and 
oscillators. In [21], a correction procedure was presented, in 
which the system response was separated into response 
components of low- and high-frequency contribution. These 
MCMs significantly improved the accuracy of structural 
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dynamic response computations for the MDM when using a 
reduced set of eigenvectors. However, the effectiveness of 
MAM decreases in the case of high-frequency content loading. 
The solution provided in [20] seems to be quite mathematically 
cumbersome. In the procedure exploited in [21], the described 
correction method could fail when the loading function cannot 
be expressed in analytical form. Such problems have resulted in 
inconvenience in the computational process. 

To overcome the limits of the above-mentioned MCMs, a 
MAM variant called the Dynamic Modal Acceleration Method 
(DyMAM) was presented, which can be used for both discrete 
and continuous structural systems [22]. The main idea of this 
approach was to introduce an additional dummy oscillator to 
filter each dynamic load on the structure to avoid undesirable 
high-frequency contributions. The output of this filter was used 
to correct the responses of the structure given by MDM. Due to 
the simple implementation and the fewer requirements in the 
excessive application, DyMAM can be operated in both 
deterministic and random dynamic loading cases [22]. As 
observed, no extension of this technique to predict the dynamic 
response of continuous structures traveled by a moving system 
has been carried out.  

In this study, the DyMAM procedure was extended for 
dynamic response analysis of a beam-like structure subjected to 
a moving vehicle. It is possible to estimate the response of the 
supporting structure by using fewer eigenfunctions, avoiding a 
more cumbersome solving procedure. The vehicle was 
idealized as a rigid bar with two degrees of freedom and linked 
to the beam through two independent suspension units and tires 
set by linear mass-spring-damper systems. The interacting 
force caused by the vehicle axle on the beam was filtered 
through an elementary dynamic system. The equation of 
motion of the coupled VBI system based on a semi-analytical 
approach was established. Then, the dynamic response of the 
VBI system was obtained using the Newmark numerical 
scheme, which makes it easier to speed up the analysis. The 
advantage of the suggested method was shown by considering 
the quasistatic effect and capturing the stress discontinuities 
caused by the moving vehicle. Therefore, DyMAM provides a 
convenient procedure to improve accuracy in VBI analysis. 

II. THEORETICAL MODELING OF THE VBI 

SYSTEM 

A. Vehicle's Equations of Motion 

Figure 1 shows the considered two-axle vehicle model. The 
vehicle body is simplified as a rigid bar and can move 
vertically by vc and rotate φc around its center of mass. The 
terms mc and Jc stand for mass and moment of inertia, 
respectively. Each wheel is represented by one vertical motion 
vw,i, the corresponding mass mw,i, and the tire characteristics 
including kw,i and cw,i. The suspension unit is described by a 
linear spring dashpot with a stiffness coefficient ks,I and a 
damping coefficient cs,i. The vehicle is assumed to run 
horizontally along the beam at a constant speed V, and Li is the 
horizontal distance of the i-th axle to the center of the vehicle 
body. 

 

Fig. 1.  The vehicle model moving along a beam. 

Using D'Alembert's principle, the vehicle's equations of 
motion body are written as follows: ����� + ��,	(��� − ��
,	 + ����	) + ��,	(�� − �
,	 + ���	)  +��,����� − ��
,� − ������ + ��,���� − �
,� − ����� = 0 (1) ����� + ��,	�	(��� − ��
,	 + ����	) + ��,	�	��� − �
,	 + ���	�  −��,���(��� − ��
,� − �����) − ��,���(�� − �
,� − ����) = 0  (2) 

The equations of motion of the wheels: �
,	��
,	 + ��,	(��
,	 − ��� − �� ��	) + ��,	(�
,	 − �� − ���	) +�
,	(��
,	 − ���,	) + �
,	(�
,	 − ��,	) = 0  (3) �
,���
,� + ��,�(��
,� − ��� + �� ���) + ��,�(�
,� − �� + ����) +�
,�(��
,� − ���,�) + �
,�(�
,� − ��,�) = 0   (4) 

where the over-dot denotes the derivative quantities for time t, 
vb,i is the vertical displacement at the contact point between the 
i-th axle and the surface of the bridge. The interaction force fc,I 
caused by the i-th axle to the beam is given by: ��,� = �
,����
,� − ���,�� + �
,���
,� − ��,��   +�
,�� + �����    (5) 

where ri is the weight distribution coefficient of the vehicle 
body on the i-th wheel under a static load of vehicle self-weight �	 = ��(� !��)and �� = � (� !��), and g denotes the acceleration of 

gravity. The vertical displacement at the contact point vb,I is 
given by: ��,� = "#($, %) + &($)'|)*)+(,) = -�#($�(%), %) + &($�(%)) (6) 

���,� = ./��,�($, %)0.% 1)*)+(,) = -� 2#($�(%), %)2% + -� 2#($�(%), %)2$ $��(%) 
+ 34�)+(,)�3) $��(%)   =-�#� ($�(%), %) + -�#′($�(%), %)$��(%) + &′($�(%))$��(%) (7) 

where the over prime means space derivative, w(xi(t),t) and 
λ(xi(t)) are the vertical displacement and the surface roughness 
of the bridge corresponding to xi(t), that represents the location 
of the i-th axle in the structural coordinate system over time. χi 
is called the window function that describes the appearance of 
the axle of the vehicle on the bridge, which can be conveniently 
adopted by [20]:  

-� = 5 1  for  0 ≤ $�(%) ≤ �,0   for  $�(%) < 0 or  $�(%) > �  (8) 
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B. The Equations of Motion of the Bridge using the Dynamic 
Modal Acceleration Method (DyMAM) 

The partial differential equation of an elastic Euler-
Bernoulli uniform beam subjected to a moving load can be 
expressed as: = >�
(),,)>,� + ?($, %) + @A >B
(),,)>)B =  ∑ -���,�D"$ − $�(%)'��*	     (9) 

where EI, μ and D(x, t) are flexural rigidity mass per unit of 
length and damping force per unit length of beam, respectively, 
and δ[] denotes the Dirac's delta function. Using the modal 
displacement method, the approximate solution of (9) can be 
represented as the superposition of the first Nm modal shapes of 
the beam: #($, %) =  ∑ EF($)GF(%)HIF*	 =    EJ($)G(%) = #KLK($, %) (10) E($) = ⟨E	($) . . . EF($) . . . EHI($)⟩J (11) G(%) = ⟨G	(%) . . . GF(%) . . . GHI(%)⟩J  (12) 

where Tn(t) is the generalized modal coordinates, Wn(x) is the 
normal vibration mode which is determined simultaneously 
with the n-th modal circular frequency ωn as the solution of the 
eigenvalue problem: =PF�EF($) = @A 3B3)B EF($)   (13) 

Wn(x) satisfies the boundary conditions and the 
orthogonality property: Q =EF($)ER($).$�S = DFR   (14) 

where δnm is the Kronecker delta. Substituting (10) into (9), 
then multiplying both parts of (9) by Wm(x), and integrating 
into the range [0, L], results in: G�F(%) + 2UFPFG�F(%) + PF�GF(%)  = ∑ -���,�EF($�(%))��*	     (15) 

where ξn is the damping ratio in the n-th mode of vibration, and 
Wn(xi(t)) stands for the n-th normal vibration mode at xi(t). 
Equation (15) can be expressed in matrix form: G� + VG� + W� G = E�($(%))X��   (16) 

where: V = .YZ�"2UFPF'    (17) W = .YZ�"PF'    (18) X = .YZ�"-�'     (19) 

E��$(%)� =
⎣⎢⎢
⎢⎡ E	�$	(%)� E	�$�(%)�… …EF�$	(%)� EF�$�(%)�… …EHI�$	(%)� EHI�$�(%)�⎦⎥⎥

⎥⎤   (20) 

 f� = 5��,	��,�b     (21) 

where diag[] defines the diagonal matrix. According to the 
DyMAM, the displacement of the beam can be expressed as 
[22]: #($, %) = #KLK($, %) + c#LdKeK($, %)  = EJ($)G(%) + fJ($)g(%) = #LdKeK($, %) (22) 

where H(t) is the filter dynamic loading vector, and Z(x) is the 
time-dependent vector collecting the residual flexibility matrix. f($) = hf�$, $	(%)� f�$, $�(%)�iJ

  (23) g(%) = ⟨g	(%) g�(%)⟩J   (24) 

where: f j$, $k(%)l =  

m($, $k(%))-k − ∑ 	no�HIF*	 EF($)EF($k(%))-k (25) 

where G(x, xj(t)) presents the static Green's function of the 
beam that is the solution of (26) with appropriate boundary 
conditions. @A 3B3)B m($, $k(%)) = D/$ − $k(%)0  (26) 

H(t) is determined as the solution of the following equation: g� + V̄g� + Wq � g = Wq � X��   (27) 

where: V̄ = .YZ�"2Uq	P̄	 2Uq�P̄�'   (28) 

Ωq = .YZ�"P̄	 P̄�'    (29) 

where P̄�is the circular frequency of the filter associated with 

the dynamic load of the i-th axle, while Uq� is the viscous 
damping ratio for the t-th filter, which is computed according 
to Rayleigh's damping. P̄k =  

⎩⎪⎨
⎪⎧v@A Q w 3�3)� m j$, $k(%)lx� .$ − ykJW�yk�S= Q m� j$, $k(%)l .$ − ykJyk�S     for  0 ≤ $k(%) ≤ �,

0                                                              for  $k(%) < 0 or $k(%) > �
 

(30) Uqk = 	�n̄z {K + n̄z� {|    (31) 

yk = = Q }($)m($, $k(%)).$�S    (32) {K = �n~I� �n � P	PHI�PHIU	 − P	UHI�  (33) 

{| = ��n~I�~I�n � �n~I� �n �     (34) 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11540-11546 11543  
 

www.etasr.com Nguyen et al.: An Improved Correction Technique for the Prediction of the Dynamic Response of a … 

 

C. The Equations of Motion of the VBI System 

Based on DyMAM, the vertical displacement of the bridge 
corresponding to xi(t) is expressed as follows: #($�(%), %) ≈  ∑ EF�$�(%)�GF(%) + ∑ f�$�(%), $k(%)�gk(%)�k*	HIF*	  (35) 

The partial derivative of the displacement can be written as: #� ($�(%), %) ≈  ∑ EF�$�(%)�G�F(%) + ∑ fk j$�(%), $k(%)l g�k(%)�k*	HIF*	  (36) # ′($�(%), %) ≈  ∑ EF′�$�(%)�GF(%)HIF*	 + ∑ fk′ j$�(%), $k(%)l gk(%)�k*	  (37) 

$��(%) = 3)+(,)3, = �    (38) 

Substituting (36)-(38) into (6)-(7) results in: ��,� = -� ∑ EF�$�(%)�GF(%)HIF*	   +-� ∑ f�$�(%), $k(%)�gk(%)�k*	 + &($�(%))   (39) 

���,� = -� � EF�$�(%)�G�F(%) +  -�$�� (%)HI
F*	  � EF′�$�(%)�GF(%)HI

F*	
�

 

+$��(%)&��$�(%)�+-� ∑ f j$�(%), $k(%)l g�k(%)�k*	   +-�$��(%) ∑ f′�$�(%), $k(%)�gk(%)�k*	    (40) 

Substituting (39)-(40) into (1)-(4) and aftere combining 
with (5) leads to the following equations of motion of the 
coupled VBI system in modal space, written symbolically as: ��� + ��� + �� = �    (41) 

where M, C, and K are the mass matrix, damping matrix, and 
stiffness matrix of the coupled vehicle-bridge system, 
respectively, �, ��  and ��  denote the displacement, velocity, and 
acceleration vectors, respectively, and P denotes the force 
vector. To make the presentation clear in (41), the submatrices, 
subcolumn, and sub-row vectors will be denoted by quantities 
enclosed by [ ], { }, and 〈 〉, respectively. 

The matrices are defined as follows: 

� =
⎣⎢⎢
⎢⎢⎡
"A'HI×HI "0' �0� �0� "�
'HI×�"0' "A'�×� �0� �0� "�q 
'�×�⟨0⟩ ⟨0⟩ �� 0 ⟨0⟩⟨0⟩ ⟨0⟩ 0 �� ⟨0⟩"0'�×HI "0'�×� �0� �0� .YZ�/�
,�0�×�⎦⎥⎥

⎥⎥⎤    

u =
⎩⎪⎨
⎪⎧ G(%)g(%)������
,��⎭⎪⎬

⎪⎫
     (42) 

where [I] is the identity matrix. 

"�
' =
⎣⎢⎢
⎢⎡ �	,	 �	,�. . . . . .�F,	 �F,�. . . . . .�HI,	 �HI,�⎦⎥⎥

⎥⎤      (43) 

with mn,i=mw.iWn(xi(t))χi. "�q 
' =  .YZ�"�̄�',   with  �̄� = �
,�P̄��-�  (44) � =  

⎣⎢⎢
⎢⎢⎢
⎡ VHI×HI "0' ���� ���� "��'HI×�"0' V̄�×� ��q�� ��q�� "�q�'�×�⟨0⟩ ⟨0⟩ ∑ ��,���*	 ��,	�	 − ��,��� ⟨���⟩⟨0⟩ ⟨0⟩ ��,	�	 − ��,��� ∑ ��,������*	 h���i"�
'�×HI "�q
'�×� ⟨���⟩J h���iJ .YZ�/��,� + �
,�0�×�⎦⎥⎥

⎥⎥⎥
⎤
  (45) 

���� = ⟨�	� … �F� … �HI� ⟩J    (46) 

with �F� = − ∑ ��,���*	 EF($�(%))-� . ���� = h�	� … �F� … �HI� iJ     (47)  
with   �F� = −��,	�	EF($	(%))-	 + ��,���EF($�(%))-�. 

"��' =
⎣⎢⎢
⎢⎡ �	,	� �	,��. . . . . .�F,	� �F,��. . . . . .�HI ,	� �HI,�� ⎦⎥⎥

⎥⎤       (48) 

with   �F,�� = ��,�EF($�(%))-� . ��q�� = ⟨�̄	� �̄��⟩J   with �̄�� = −��,�P̄��-�  (49) ��q�� = h−�̄	� �̄��iJ  with   �̄�� = ���̄���,�   (50) "�q�' =  .YZ�"�̄��' with   �̄�� = ��,�P̄��-�  (51) ⟨���⟩ = ⟨−��,	 −��,�⟩    (52) h���i = ⟨−��,	�	 ��,���⟩   (53) 

"�
' =  ��	,	
 . . . �	,F
 . . . �	,HI
��,	
 . . . ��,F
 . . . ��,HI
 �  (54) 

with   ��,F
 = −�
,�EF($�(%))-� . 
"�q
' = ��̄	,	
 �̄	,�
�̄�,	
 �̄�,�
         (55) 

with ��,k
 = −�
,�f�$�(%), $k(%)�-� . � =  

⎣⎢⎢
⎢⎢⎢
⎡ WHI×HI� "0' ���� ���� "��'HI×�"0' Wq �×�� ��q�� ��q�� "�q�'�×�⟨0⟩ ⟨0⟩ ∑ ��,���*	 ��,	�	 − ��,��� ⟨���⟩⟨0⟩ ⟨0⟩ ��,	�	 − ��,��� ∑ ��,������*	 h���i"�
'�×HI "�q
'�×� ⟨���⟩J h���iJ .YZ�/��,� + �
,�0�×�⎦⎥⎥

⎥⎥⎥
⎤
  (56) 

"�
' = ��	,	
 … �	,F
 … �	,HI
��,	
 … ��,F
 … ��,HI
 �   (57) 

with  ��,F
 = −�
,�EF($�(%))-� − �
,�$��(%)EF′($�(%))-� . 
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"�q
' = ��q 	,	
 �q 	,�
�q �,	
 �q �,�
 �     (58) 

with: �q �,k
 = −�
,�f�$�(%), $k(%)�-� − �
,�$��(%)f′�$�(%), $k(%)�-�  
The submatrices [K] have a similar form as the submatrices 

[C] and can be obtained by replacing the damping coefficient 
with the stiffness coefficient. 

� =
⎩⎪⎨
⎪⎧ �¡��¡q¢�00�¡q
�⎭⎪⎬

⎪⎫
 , �¡� =

⎩⎪⎨
⎪⎧ �	…�F…�HI⎭⎪⎬

⎪⎫     (59) 

with �F = ∑ ��
,� + ������EF�$�(%)�-���*	  (60) 

�¡q¢� = £�q¢,	�q¢,�¤   with �q¢,� = ��
,� + ������P̄��-�  (61) 

�¡q
� = £�q
,	�q
,�¤      (62) 

with  �q
,� = �
,�$��(%)&′�$�(%)� + �
,�&�$�(%)�. 
Since the positions of excitation caused by the wheels 

depend on the vehicle velocity and the time increment, (41) 
must be modified and updated after each time step. It can be 
solved by direct time integration to obtain the dynamic 
responses of the system simultaneously. 

III. EVALUATION OF BENDING MOMENT AND 

SHEAR FORCE 

Once (41) is solved, the problem of calculating the bending 
moment and shear force of the beam can be evaluated by 
differentiating (10) or (22) for the spatial coordinate x. In the 
case of homogeneous and uniform Euler-Bernoulli beam, the 
bending moment and shear force are given by: �($, %) = −@A#�″($, %)   (63) ¥($, %) = −@A#�‴($, %)    (64) 

Using (10), the bending moment and shear force based on 
MDM are given by: �KLK($, %) = −@AE″($)JG(%)   (65) ¥KLK($, %) = −@AE‴($)JG(%)   (66) 

Using (22) and (25), the bending moment and shear force 
are given by: �LdKeK($, %) = −@AE″($)JG(%)  −@A"m″($, $(%))J  − E″($)JW��E�($(%))'Xg(%) (67) ¥LdKeK($, %) = −@AE‴($)JG(%)  −@A"m‴($, $(%))J − E‴($)JW��E�($(%))'Xg(%) (68) 

where m″�$, $(%)� and m‴�$, $(%)� are the vector of order 2 

listing the partial derivative of the static Green’s function 

m�$, $�(%)� , and E″($), E‴($)  are the vectors of order Nm 

listing the normal vibration modes Wn(x) with respect to x.  

IV. NUMERICAL EXAMPLE 

The applicability of DyMAM in the VBI analysis validation 
was conducted based on numerical examples. The proposed 
algorithms were implemented in the MATLAB environment 
[23]. Without loss of generality, let us consider a single span 
simply supported beam. The natural circular frequencies of the 
beam are calculated by the solution of the eigenvalue for free 
vibration is: 

PF = jF¦� l� §¨©ª    

and the modal shape [24]: 

E�,F($) = § �ª� «Y¬ jF¦)� l.  

According to (5.8) in [24], the static Green’s function of the 
simply supported beam is given by: m($, $�(%)) =
­ 	®¨©� "−(� − $�(%))$� + (2�� − 3�$�(%) + $��(%))$�(%)'$  for  $ ≤ $�(%)	®¨©� "−(� − $)$��(%) + (2�� − 3�$ + $�)$'$�(%)            for  $ ≥ $�(%)  (69) 

The following mechanical parameters were chosen for the 
beam and the vehicle: span length L=40 m, mass per unit 
length μ=12×10

3
 kg/m, flexural rigidity EI=12.75×10

10
 Nm

2
, 

and the damping ratios of the beam were set to be ξ=0.02, 
vehicle body mass mc=36000 kg, mass moment of inertia 
Jc=1.44×10

5
 kgm

2
, axle mass mw,1=mw,2=2000 kg, suspension 

stiffness ks,1=ks,2=9×10
6
 N/m, suspension damping 

cs,1=cs,2=72×10
3
 Ns/m, tire stiffness kw,1=kw,2=36×10

6
 N/m, 

cw,1=cw,2=72×10
3
 Ns/m, axle distance L1=L2=1 m, and velocity 

V=10 m/s. It was assumed that the front axle of the vehicle 
enters the beam at the instant t=0 s. 

The surface irregularity was assumed in the form of a 
harmonic function represented by: &($) = j3±� l w1 − �²« j�¦)³± lx   (70) 

where dr and lr are the surface irregularity depth and length, 
respectively. The value of two ratios was adopted as: ´µ¨©3±(R¶!∑ R+)·�¸ = 0.05,   

�³±*	S. 

Equation (41) was solved using the Newmark-β method, 
with the coefficients β=1/6 and γ=1/2. The time step was 
chosen as Δt=0.0001 s. For comparison, the numerical 
analytical result of the DyMAM procedure was compared with 
the results evaluated by MDM and MAM [20]. The first five 
modes of vibration were retained in the analysis and the 
Newmark-β integral method was used to find dynamic 
responses in all approaches. Figures 2 and 3 show the time 
histories of the vertical displacement of the vehicle body and 
the displacement at the mid-span of the beam based on the 
considered approaches. Furthermore, Figures 4 and 5 show the 
bending moment and the shear force distribution at t=2 s,. 
Overall, a good agreement was obtained from the results. 
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Fig. 2.  Vertical displacement of vehicle body versus time. 

 

Fig. 3.  Vertical displacement at mid-span of the beam versus time. 

 

Fig. 4.  Bending moment distributions along the beam at the instant t=2 s.  

 

Fig. 5.  Shear force distribution along the beam at the instant t=2 s.  

Figure 2 illustrates that the solid line coincides with the 
dotted line, which means that the vertical displacement of the 
vehicle body determined by the DyMAM approach was the 
same as the one given by the MDM solution. Figure 3 shows 
the displacement in the mid-span of the beam. The solid line 
was very close to the dashed line, but there was a slight 

deviation between them. The cause of this was that the 
response of the beam in MAM was evaluated as the sum of the 
MDM and the quasi-static response, which considers the quasi-
static displacements of the beam under the quasi-static 
interaction forces transmitted by the moving vehicle associated 
with the truncated higher-order eigenfunctions [20]. DyMAM 
agrees with both MDM and MAM in calculating the dynamic 
response of the beam. The shortcoming of the two methods is 
that MDM does not consider the influence of the quasistatic 
effect and MAM neglects the inertial and damping effects of 
the vehicle. 

Figure 4 shows the bending moment distribution along the 
beam calculated at t=2 s. It can be seen that the DyMAM 
approach converged with the MAM. Figure 5 shows the shear 
force distributions of the beam at t=2 s. It can be easily seen 
that the difference in the convergence of the two correction 
methods is quite considerable. In particular, the differences at 
the two jump locations and the segment between them are the 
most pronounced. With a speed of 10 m/s, at t=2 s, the axles 
move 20 m, which means that the front axle of the vehicle is in 
the middle of the beam while the rear axle is 2m to the left. 

As shown in Figures 4 and 5, at positions x1=20 m and 
x2=18 m, MDM was unable to capture any discontinuities in 
the bending moment and shear force. Meanwhile, there were 
two points of discontinuity captured by the MAM and the 
DyMAM approaches with different levels of accuracy. Two 
points of discontinuity appear since the two-axle vehicle model 
was employed and the whole vehicle stood on the beam at that 
time. On the other hand, the jumps in the shear force can be 
clearly observed when applying MAM and DyMAM. As 
shown in Figure 4, the jumps occur at two points and divide the 
shear force distribution into three segments. In the case of 
MAM, there was no change in each of these segments. 
However, in the case of DyMAM, each segment showed a 
change in the nonlinear form. This phenomenon can be 
explained by the dynamic effect of the vehicle: MAM only 
considers gravitational effects and excludes damping and 
inertial effects induced by the motion of the moving vehicle. 
Meanwhile, the inertial, damping, and gravitational effects 
resulting from the moving vehicle are included in DyMAM. 
Furthermore, the pitching effect also contributes to the dynamic 
response of the beam, further complicating things. 

V. CONCLUSIONS 

This study formulated the motion equations of a beam 
subjected to a moving vehicle in matrix form, based on the 
dynamic modal acceleration method, and validated them 
through a numerical example. The quasistatic effect of the 
beam transmitted by the moving vehicle associated with the 
contribution of high modes was considered. The DyMAM 
correction was used for the first time in VBI analysis. This 
approach has some advantageous features compared to the 
previous modal correction methods, as follows: 

 The dynamic response of the beam and vehicle can be 
calculated directly by using a step-by-step integration 
procedure, as it supplies an adequate approximation in 
calculating the response of the beam in VBI analysis. 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11540-11546 11546  
 

www.etasr.com Nguyen et al.: An Improved Correction Technique for the Prediction of the Dynamic Response of a … 

 

 The method can consider both actions of gravitational, 
damping, and inertial effects due to the moving vehicle. 

 The performances of DyMAM can capture the 
discontinuities in the bending moment and shear force and 
the jump in the shear force. 
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