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Abstract—A number of methods have been used in partial 
discharge (PD) detection and recognition. Among these methods, 
ultra-high frequency (UHF) detection and recognition based on a 
single signal have attracted much attention. In this paper, a UHF 
PD detection system is built, and samples are acquired through 
experiments on a real power transformer. The received signal is 
decomposed into different frequency ranges through wavelet 
packet decomposition (WPD). In each frequency range, a pattern 
recognition neural network is built, and then the relationship 
between the information in that frequency range and PD type is 
described. By comparing the recognition accuracy of these 
networks, frequency range selection is optimized. In this specific 
case (the specific transformer, PD sources, and UHF sensors), 
results show that low frequency (156.25 MHz to 312.5 MHz) and 
high frequency ranges (1093.75 MHz to 1250 MHz) contain the 
most information for recognition. If a PD detection recognition 
system is to be designed, then the performance around these 
frequency ranges should be given attention. 

Keywords- partial discharge; wavelet transform; neural 
network  

I. INTRODUCTION  

A power transformer is one of the most important 
equipment in electric power systems. The use of partial 
discharge (PD) measurement can help in the evaluation of the 
dielectric condition of high-voltage equipment. The electrical 
detection of PD can be regarded as an important tool for both, 
quality tests on HV equipment in the laboratory and diagnosis 
tests on site [1].  Recognition of PD types, as a part of PD 
measurement, contributes to PD source location and early fault 
diagnosis. For power transformers, PD is a symptom of 
insulation defect or degradation. Furthermore, different types 
of defects usually produce different PD waveforms, so it is 
possible to recognize the sources of the PD from its measured 
signal [2]. 

Using ultra-high frequency (UHF) sensor is an effective 
method to detect PD signals [3-7]. After receiving UHF PD 
signals, signal processing and analysis are supposed to reveal 
the type of potential insulation faults or defects, which helps to 
locate the PD source and determine needed follow-up 

maintenance. The traditional UHF PD recognition methods, 
represented by n-q-φ pattern are based on statistical properties 
of PD phase distribution. Several algorithms for UHF PD 
recognition have been introduced. In 1991, neural network was 
introduced into this pattern [8].  

To remove disturbance and improve recognition accuracy, 
many researchers have developed modified and novel methods. 
Among these new ideas, the two most attractive ones are the 
following: one idea is to introduce a filter as pretreatment, and 
the representative method is wavelet analysis. This 
improvement was first adopted in GIS [9], and then in power 
transformers [10-12]. The other idea is to extract information 
not from phase distribution but from a single PD signal. In [13], 
three features (skewness, kurtosis, and energy) were extracted. 
In [14], frequency characteristics of typical PD in GIS are 
studied, and their results serve as substantial criteria for 
optimal band width selection for high frequency detection. 

The aforementioned methods are flexible, but more 
experiments are needed for validation, especially experiments 
in real power transformers rather than in tanks. In addition, in 
the use of wavelets, signals are decomposed into different 
frequency ranges, and a basic issue arises as to which 
frequency range contains more information. In this paper, a real 
power transformer with multiple PD sources is constructed. 
UHF method is employed to receive PD signals. Wavelet 
packet decomposition (WPD), being one of the most flexible 
methods that use wavelets is adopted to decompose PD signals 
into different frequency ranges. In each frequency range, a 
pattern recognition neural network is built, and then the 
relationship between information in a particular frequency 
range and PD type is described. By comparing the recognition 
accuracy of these networks, frequency range selection is 
optimized. Based on experimental results, frequency 
characteristics of UHF PD signals in power transformer are 
studied. 

II. ALGORITHM 

PD signal is a broadband signal, and its frequency range is 
generally between 300 MHz and 1500 MHz or even more. 
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Furthermore, signals received by UHF sensors are usually 
polluted by different types of noise, which include continuous 
noise from communication systems, thermal noise from detection 
systems and periodic pulse-shaped noise from thyristor 
operations, among others. In this section, with the use of WPD, 
the received signal (composed of PD signal and noise) is 
decomposed into different frequency ranges. In each frequency 
range, a pattern recognition neural network is built. Obviously, 
a more accurate recognition means more useful information 
and less noise in that frequency range. Then, quantitative 
comparison is feasible. 

A. Wavelet Packet Decomposition 

Periodic signals are decomposed into different frequency 
ranges by Fourier transform, whereas nonperiodic signals are 
decomposed by WPD. WPD, which comes from discrete 
wavelet transform, is more flexible because it has more filters. 
Previously, discrete wavelet transform has been applied to 
UHF PD denoising [15, 16]. In discrete wavelet transform, 
original signal S is decomposed into A1 and D1. A1 is the 
approximation component and contains a low-frequency 
component, whereas D1 is a detail component containing the 
high-frequency component. Subsequently, A1 is decomposed 
into AA2 and DA2 and is followed by AA2, AAA3 etc. After an n-
level discrete wavelet transform, n+1 signals, containing 
components from different frequency ranges, are obtained. In 
WPD, after S is decomposed into A1 and D1, A1 is decomposed 
into AA2 and DA2, while D1 is also decomposed. High-
frequency components are decomposed in WPD, but not in 
discrete wavelet transform. 

For example, when decomposition level n is set to 3, signal 
S is represented as 

S = D1 + DA2 + DAA3 + AAA3 

in discrete wavelet transform, whereas its expansion is more 
flexible in WPD. For example, we can write 

S = D1 + DDA3 + ADA3 + AA2, 

and we can use other decomposition techniques depending on the 
situation. 

In this paper, the PD signal is detected by a UHF sensor, and 
the sensor is linked to amplifier, and then oscilloscope. The 
sampling frequency of the original signal is 5 GHz, which is 
determined by the oscilloscope. However the working frequency 
range of the amplifier is 0 GHz to 1.5 GHz, and that means the 
high frequency part is meaningless. To answer which frequency 
range contains more information, the original signal is 
decomposed into some different frequency ranges with the same 
width. The structure of the WPD used in this paper is shown in 
Figure 1. D1 and DA2 are high frequency part and are removed. S1 
to S8 are 8 components of different ranges, and consequently, 
signal S is represented as 

S = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8. 
The frequency range of each component is shown in Table I. 

In Figure 2, two signals, a point-to-plate type and a 
suspended-particle type (different PD types will be discussed in 
Section 3), are decomposed. Roughly, the two signals have 
different S6 and S8 components, which suggest that the frequency 

ranges of these two components are more important in PD 
recognition for this specific case. However, to be strict and 
precise, quantitative measures (discussed in Section 2.2) and 
numerous experiments (discussed in Section 3) are needed.  

 

 

Fig. 1.  Structure of WPD used in this paper 

TABLE I.  FREQUENCY RANGE OF EACH COMPONENT 

Component Frequency Range (MHz) 
S1 0 to 156.25 
S2 156.25 to 312.5 
S3 312.5 to 468.75 
S4 468.75 to 625 
S5 625 to 781.25 
S6 781.25 to 937.5 
S7 937.5 to 1093.75 

B. Pattern Recognition Neural Networks 

The earliest neural networks probably date back to 1990 [17]. 
With the developments in computing science, neural networks are 
able to solve complex problems in the field of science. In this 
section, a neural network is used in PD recognition, and then the 
relationship between the information in a particular frequency 
range and PD type is described. Furthermore, to remove the effect 
of starting time (discussed in this section later), a pretreatment 
based on Fast Fourier Transform (FFT) is adopted. These two 
parts, neural networks and pretreatment, make up the special 
pattern recognition neural network in this paper. 

1) Neural Networks 
Essentially, neural networks are special functions designed to 

solve the problem of curve fitting. To neural networks, a PD 
signal is viewed as an input, whereas PD type is the output. Given 
enough samples, proper parameter settings, and training, the 
neural networks attempt to recognize PD type. If no neural 
network obtains high accuracy, then the recognition is an ill-
posed problem, which suggests that the inputs do not have 
sufficient information. In other words, signals in that frequency 
range are less important. 

A typical and basic neural network is shown in Figure 3; this 
is a two-layer feed-forward network with sigmoid hidden and 
softmax output neurons. In Figure 3, w is weight, b is threshold, 
and f and r are activation functions. In this recognition neural 
network case, f is sigmoid and r is softmax. Outputs, namely, 
target vectors, have N elements (N is the number of PD types); for 
each target vector, one element is 1, and the others are 0. In this 
network, inputs are to be classified into N different PD types. The 
number of neurons in the hidden layer is an important parameter, 
as it affects the balance between precision and computational 
complexity. The number of neurons has been tried and 
determined by experience. 
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Fig. 2.  Example of signal decomposition results 

 
Fig. 3.  Structure of a neural network. 

2) Pretreatment 
For neural networks, the input is a PD signal, which is a 

vector, namely, a time series, 

[S(−inf), . . . , S(−1), S(0), S(1), . . . , S(inf)], 

where, S(0) is around the start of PD. However, the input for a 
neural network is supposed to be a vector with a limited length, 

SS = [S(0), S(1), . . . , S(l − 1)], 

where, l is the length. Obviously, l should be large enough to 
contain sufficient information, but a more considerable length 
means a larger amount of calculation in recognition later. The 
length is drawn from experience and is suited to the exact 
conditions of measurement and the study purpose. In [18] and 
[19], some statistics suggest that PD duration may be several 
hundreds of nanoseconds. Furthermore, the precise location of 
S(0) affects recognition accuracy to a great extent. Then, 
pretreatment is needed to remove the effect of starting time. 

The current mature approach is the use of energy criterion 
[20]. The energy criterion is based on the observation that sound 
emission signals, in particular when of middle to bad quality, are 
predominantly characterised by a variation of their energy 

content, rather than a fluctuation of their frequency composition 
[21]. Suppose 

S = [S(−N1), . . . , S(−1), S(0), S(1), . . . , S(N2)] 

is a section of what we generate from the detection equipment. 
The energy curve E(i) of the sampled signal S(i) is defined here as 
the cumulative sum of amplitude values. The separation of the 
signal from the noise part and the realization of the criterion are 
managed with 

     
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i

k N

EE i E i i S k i i N N 


        

where, a negative trend δ is introduced. The trend is dependent 
on the total energy E(N2) of the signal and the signal length. It 

is determined by 
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The calculated partial energy curve EE(i) features a global 
minimum, which is assumed to correspond with the signal arrival 
time or onset. Letting S(0) be between S(−N1) and S(N2) is not 
difficult, given N1 and N2 are large enough. Then, we locate S(0) 
after the minimum EE is found. 

Considering the sampling PD signal is discrete, when PD 
starting point is between two sampling points, an error is 
inevitable. Although the error is small and even smaller than the 
sampling period, it may be amplified in the subsequent steps. In 
the pretreatment, FFT is used to solve such a problem. 
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FFT is widely applied in engineering, science, and 
mathematics [22]. FFT causes no information loss and requires 
only small computational cost. Another characteristic of FFT is 
that a change in amplitude characteristics in the frequency 
domain does not occur when a delay or advance occurs in the 
time domain. This characteristic means that the amplitude 
characteristics of PD signals do not change even when the 
precise location of S(0) fails. Furthermore, experimental results 
(discussed in Section 4) suggest that amplitude characteristics 
contain sufficient information in PD recognition. The FFT is 
defined as 

      
1

1

0

, 1, 2,...,
l

i k

i

F k SS i k l





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  2 /j le     

where, i is the loop variable, j is the imaginary unit, and | | is 
the modulus of the complex number. Thus, F is the amplitude 
characteristics of SS and with the same length. 

From the above neural networks and pretreatment, the 
algorithm, a special pattern recognition neural network is 
proposed, whose structure is shown in Figure 4. S is the PD 
signal received by the UHF detection system. After applying 
the energy criterion, the PD starting time is roughly located. 
When the length l is set, we have SS, a vector with a limited 
length. F is the amplitude characteristics in the frequency 
domain, which are from the FFT of SS and have the same 
length. At last, a neural network is trained. In the neural 
network, F is the input, and PD type is the output. The effect of 
starting time is completely removed. Thus, the highest accuracy 
that the algorithm achieves is closely related to the information 
of the inputs. In addition, when Si takes the place of S, the 
relationship between information in each frequency range and 
PD type is measured. 

 

 
Fig. 4.  Structure of the algorithm. 

III. EXPERIMENTS 

To acquire sufficient examples for the neural network 
training, full-scale experiments are conducted in a real power 
transformer with multiple PD sources. A UHF PD detection 
system is employed to receive PD signals. The system consists 
of the UHF sensor (UHF antenna), amplifier, oscilloscope, and 
computer. The power transformer is shown in Figure 5. Its 
rated power is 6300/6300 kVA, and its rated voltage is 
110/35/10.5 kV. PD sources are placed inside the transformer 
and can be viewed through the windows. There are 9 
measurement points on the transformer. Dismountable antenna 
can be installed on these points. The distance between source 
and antenna is 0.5~1.5 m. 

The PD sources have five types, namely, point to plate (a 
sharp protrusion on an electrode), surface (slender) discharge 
(surface contamination on an insulating support), surface (flat) 
discharge (surface contamination on another insulating 

support), suspended particle (a loose metallic particle in 
transformer oil), and cavity discharge (a cavity within solid 
insulation). When we apply a voltage on these PD sources, PD 
signals are generated, and the signals vary with the voltage. 
The media between PD source and measurement point is oil. 
The transformer and PD sources have been used in similar 
experiments [11, 23].  

In the UHF PD detection system, the UHF sensor is the 
most important part. Three types of UHF sensor, namely, 
Goubau antenna, monopole antenna, and discone antenna 
(Figure 6), have been tested. The design requirements of all 
three types are the same. For each UHF sensor type and each 
PD type, some samples are acquired through experiments under 
different voltages. AC voltage is applied to the PD source. 
With the voltage increasing stepwise, the detection system 
begins to receive PD signals. When the voltage is too high such 
that the noise suddenly increases or the waveform is obviously 
polluted and meaningless, the voltage is removed. The PD 
sources are different. Thus, the numbers of samples across 
groups are not the same. Details are shown in Table II.   

A total of 9970 examples are obtained. Each sample has a 
single PD signal. These samples are divided into three groups 
by UHF sensor type. In each group, the PD signals are 
decomposed by WPD into eight components with different 
frequency ranges. Furthermore, five wavelets, namely, Haar, 
db2, db8, sym2, and sym8, are tested. “Haar” is the most basic 
wavelet. “db” refers to Daubechies wavelets, and “sym” refers 
to symlets. In each component, the special pattern recognition 
neural network is trained. Three sensor types, eight frequency 
ranges, and five wavelet types result in 120 (3×8×5) neural 
networks in all. By comparing the recognition accuracy of 
these networks, sensor type, frequency range, and wavelet type 
selection is optimized.During pretreatment, length l is 1000. As 
the sampling frequency is 5 GHz, the first 200 ns of PD signals 
from the starting point, which is enough for recognition based 
on our experience, are saved. The number of neurons in the 
hidden layer is set to 50 in neural networks. As results show, 
such complexity is enough to solve this problem. These neural 
networks are trained with scaled conjugate gradient back-
propagation. Sample division during training is 70% training, 
15% validation, and 15% testing. 

 

 
Fig. 5.  Power transformer used in the experiments. 
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Fig. 6.  UHF sensors used in experiments. 

TABLE II.  SAMPLE DETAILS 

Sample Number Goubau monopole discone 
point to plate 281 859 1718 

surface (slender) 360 360 720 
surface (flat) 551 551 1102 

suspended particle 566 566 1132 
cavity 301 301 602 

IV. RESULTS 

A. Single Component 

In the case of Haar wavelet and Goubau antenna, for 
example, samples in the Goubau group are decomposed into S1 
to S8. In each Si, a special pattern recognition neural network is 
trained. The recognition accuracies of the different components 
are listed in Table III. The best accuracy is S2 and the worst is 
S5. That means, S2 contains the highest amount of useful 
information, whereas S5 contains the least amount of useful 
information. In addition, recognition accuracy is quite high, 
which suggests that amplitude characteristics contain enough 
information for PD recognition in this specific case, as 
mentioned in the previous section. Results from other wavelets 
and other antenna types are shown in Figure 7. Comparison of 
the results by wavelet shows that in the Goubau and monopole 
groups, wavelet types only slightly influence recognition 
accuracy, which does not hold true in the discone group. A 
comparison between the results by antenna type shows that the 
first two groups are better than the last one. Thus, the use of 
discone antenna is not recommended for this specific case. 

More notably, when the 15 subfigures in Figure 7 are added 
together, we have the distribution characteristic of a single 
component, as shown in Figure 8. A histogram bar is used to 
plot the quantitative distribution. Elements of recognition 
accuracy in all the settings (wavelets and antenna types) are 
sorted into five equally spaced bins along the x-axis between 
the minimum and maximum values. Bins are displayed as 
rectangles such that the height of each rectangle indicates the 
number of elements in the bin. The recognition accuracy of S5 
is clearly located mainly around 0.65, whereas that of S2 is 
located around 0.9. Thus, the S5 frequency component (from 
625 MHz to 781.25 MHz) contains less information for PD 
recognition. It should be noted that the distribution 
characteristic reflects the overall performance of different 
frequency ranges. 

B. Multi-adjacent Components 

In a similar way, recognition accuracies of S1+S2 and 
S1+S2+S3 are compared. Results are shown in Figure 9. Bars in 
warm color are more likely to be in low accuracy ranges. An 
obvious trend is that the low-frequency range contains the most 

information, whereas the mid-frequency range contains the 
least information.  

 

 
Fig. 7.  Results with different wavelets and antenna types. 

 

 
Fig. 8.  Distribution of single component. 

TABLE III.  RECOGNITION ACCURACIES IN HAAR AND GOUBAU CASE 

Component Recognition Accuracy 
S1 0.956289461 
S2 0.972316659 
S3 0.869354055 
S4 0.954346770 
S5 0.796017484 
S6 0.895094706 
S7 0.856726566 
S8 0.907236523 

C. Quantitative Results 

Although a figure is an intuitional representation of results, 
a quantitative study is necessary to generate precise results. 
Mean value and variance are basic statistics. The statistical 
properties of Figures 8 and 9 are listed in Table IV. A high 
mean value means good performance, and a low variance 
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indicates stability. Compared with the single-component group, 
the multi-adjacent-component groups have a better 
performance (higher average and lower deviation). The results 
suggest that even if some components, S5 for example, contain 
the least useful information, they still facilitate recognition. The 
low components contain the most information, especially S2 

(from 156.25 MHz to 312.5 MHz); the mid-components 
contain the least information, especially S5 (from 625 MHz to 
781.25 MHz). In addition, components in the high-frequency 
range, S8 (1093.75 MHz to 1250 MHz) for example, are also 
important in recognition. However, we need to stress that the 
results pertain to a specific case. To verify the universality of 
the results, additional experiments and analysis are required.  

 

 

 
Fig. 9.  Distribution of multi-adjacent components. 

V. DISCUSSION 

One of the most fundamental and important mission for the 
UHF PD detection is to tell the PD type. To improve the 
recognition accuracy, a number of advanced algorithms and 
after-treatments are introduced. However, a basic question is 
whether we obtain enough information by the detection system. 
In this paper, quantitative results for this specific case (the 
specific transformer, PD sources, and UHF sensors) show that 

the low-frequency range (156.25 MHz to 312.5 MHz) and 
high-frequency range (1093.75 MHz to 1250 MHz) contain the 
most information for recognition.  

TABLE IV.  QUANTITATIVE RESULTS 

Component(s) Average Standard Deviation

S1 0.8803 0.0068 
S2 0.9215 0.0060 
S3 0.7929 0.0183 
S4 0.8827 0.0087 
S5 0.6689 0.0035 
S6 0.7531 0.0056 
S7 0.7724 0.0207 
S8 0.7976 0.0073 

 

S1+S2 0.9591 0.0011 
S2+S3 0.9548 0.0018 
S3+S4 0.9439 0.0025 
S4+S5 0.9223 0.0035 
S5+S6 0.8430 0.0025 
S6+S7 0.8511 0.0188 
S7+S8 0.9093 0.0052 

 

S1+S2+S3 0.9702 0.0004 
S2+S3+S4 0.9726 0.0007 
S3+S4+S5 0.9586 0.0014 
S4+S5+S6 0.9504 0.0014 
S5+S6+S7 0.9191 0.0018 
S6+S7+S8 0.9362 0.0029 

 
The basic key conclusions for different frequency ranges 

are listed as follows: 

• Regarding the very low frequency range (lower than 
156.25 MHz), it has to be pointed out that it is not the best 
range for PD recognition. This may be partly because the 
signal pollution by radio broadcasting, whose frequency in 
China is about 100 MHz. 

• Regarding the low frequency range (156.25 MHz to 312.5 
MHz) it has to be pointed out that it is the best range for 
recognition. However, if the sensor involves such range 
only, it may be a severe problem to distinguish between 
PD and corona. The middle low range is effective but not 
practical. 

• Regarding the middle frequency range (312.5 MHz to 
1093.75 MHz) it has to be pointed out that it is shown to 
be the worst range. That suggest the main pollution is in 
this range, especially the mobile phone signal whose range 
is about 1000 MHz in China. This pollution is strong and 
is impossible to be shielded. 

• Regarding the high frequency range (1093.75 MHz to 
1250 MHz) it has to be pointed out that it found to be near 
the best and common UHF system emphasizes it. Also, it 
is the key to distinguish between PD and corona. 

• Regarding the very high frequency range (higher than 
1250 MHz) it has to be pointed out that it almost exceeds 
the effective range of the detecting system. It is really hard 
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to increase the working frequency range of the system, on 
e.g. antenna design and amplifier bandwidth design. 

Furthermore, comparisons of the method proposed in the 
present paper should be made with recent work [24], where 
four classic PD patterns, including floating PD, needle PD, oil 
learance PD and void PD in press-board were studied. 
Moreover, it would be useful if the proposed technique here 
can be tried and studied in PD detection with different 
detection methods [25]. 

VI. CONCLUSIONS AND PROSPECTS 

In this paper, the UHF method is employed to receive PD 
signals. The received signal is decomposed into different 
frequency ranges by using WPD. In each frequency range, a 
pattern recognition neural network is built, and then the 
relationship between the information in a specific frequency 
range and PD type is described. By comparing the recognition 
accuracy of these networks and through experiments, 
information in different frequency ranges is studied. 
Quantitative results for this specific case (the specific 
transformer, PD sources, and UHF sensors) show that the low-
frequency range (156.25 MHz to 312.5 MHz) and high-
frequency range (1093.75 MHz to 1250 MHz) contain the most 
information for recognition. If a PD detection system is to be 
designed, then the performance around these frequency ranges 
should be given special attention. Furthermore, we can 
recognize PD type based on a single signal, and several 
frequency ranges are important. However, we stress again that 
all these results are applicable to a specific case only. 
Additional experiments are necessary. Moreover, a theoretical 
explanation may be provided in future studies. 
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