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ABSTRACT 

The study of 2-D discrete systems has always been a preferred choice amongst researchers and academics, 

due to its diversified applications in most practical applications. For more than two decades, research 

based on H
∞

 control techniques has been the focus of attention, as it plays a key role in the design and 

development of various applications based on signal processing and control theory. In many practical 

applications, the accessibility of the state vectors is not possible, and, in such cases, output feedback 

techniques are most appropriate. This paper presents a detailed survey based on H
∞

 control-based output 

feedback techniques for 2-D discrete systems. 

Keywords-robust stability; asymptotic stability control; 2-D discrete system; static output feedback controller; 

dynamic output feedback controller; observer based output feedback controller; bounded real lemma 

I. INTRODUCTION  

2-D state space models got attention with the introduction 
of the Roesser model [1], and, since then, several studies 
proposed other 2-D state space models. The most popular and 
investigated linear state space models are Roesser's [1], 
Fornasini and Marchesini's (FM) first model [2], the second 
FM model [3], and Kurek's model [4]. The output feedback 
technique for 2-D discrete models can also be extended to 
nonlinear systems for designing robust and efficient control 
systems that can achieve desired performance objectives. 
However, the design process can be complex and requires 
careful consideration of the nonlinear dynamics of the system, 
as well as the stability and performance requirements of the 
applications [5-7]. 

The state space equation of the 2-D discrete FM first model 
[3] is: 

��� � 1, � � 1� 	 
����, � � 1� � 
���� � 1, ��  �   
           
����, �� � ����, ��    (1) 

���, �� 	 ����, ��     (2) 

� � 0,   � � 0     (3) 

where x(i, j) is a state vector of n×1 dimension, A1 ∈ Rn×n, A2 ∈ 
Rn×n, A3 ∈ Rn×n , B ∈ Rn×m, u(i, j) is an input vector of m×1 
dimension, z(i, j) is a scalar out 1×n dimension, and C ∈ R1×n. 
Figure 1 shows a matrix block diagram representation for the 
system of (1) and (2).  

 
Fig. 1.  Matrix block diagram representation for the system of (1) and (2). 

The system has a finite set of initial conditions as defined 
based on the existence of two positive integers r1 and r2 such 
that: 

���, 0� 	 0, � � ��    (4) 

��0, �� 	 0, � � ��    (5) 

The second FM model is also a state space model 
representation of 2-D discrete systems [4]. The state space 
equation of this model is given by: 
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            �����, � � 1� � ����� � 1, ��  (6) 

���, �� 	 ����, �� � ����, ��   (7) 

� � 0, � � 0      (8) 

where x(i, j) is a state vector of n×1 dimension, A1 ∈ Rn×n, A2 ∈ 
Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×m, u(i, j) is an input vector of m×1 
dimension, z(i, j) is a scalar out 1×n dimension, and C ∈ R1×n. 
Figure 2 shows a matrix block diagram representation for the 
system in (6),(7). The system has a finite set of initial 
conditions as defined based on the existence of two positive 
integers r1 and r2 such that: 

���, 0� 	 0, � � ��     (9) 

��0, �� 	 0, � � ��     (10) 

 

 
Fig. 2.  Matrix block diagram representation for the system of (6)-(8). 

The state space form of a 2-D discrete system can also be 
described by the Roesser model [1] as: 

����� � 1, ������, � � 1�� 	 �
�� 
��
�� 
��� �����, ������, ��� � ������ ���, �� (11) 

���, �� 	 ��� �� �����, ������, ��� � ����, ��  (12) 

� � 0, � � 0      (13) 

In a condensed way, it can be represented as: 

�����, �� 	 
���, �� � ����, ��   (14) 

���, �� 	 ����, �� � ����, ��   (15) 

� � 0, � � 0     (16) 

where xh(i, j) ∈ Rm is the horizontal state vector, xv(i, j) ∈ Rn is 
the vertical state vector, A11 ∈ Rm×m, A12 ∈ Rm×n, A21 ∈ Rn×m, A22 ∈ Rn×n, B1 ∈ Rm×q, B2 ∈ Rn×q, u(i, j) ∈ Rq, z(i, j) is a scalar 
output, C1 ∈ R1×m, C2 ∈ R1×n, and D ∈ R1×q. Figure 3 shows a 
matrix block diagram representation for the system (11). The 
system has a finite set of initial conditions, as defined based on 
the existence of two positive integers r1 and r2 such that: 

���, 0� 	 0, � � ��    (17) 

!�0, �� 	 0, � � ��     (18) 

 

 
Fig. 3.  Matrix block diagram representation for the system (11) and (12). 

The state space representation of a 2-D discrete linear shift-
invariant can also be represented by the general model [5]: 

��� � 1, � � 1� 	 
����, � � 1� � 
���� � 1, �� � 
����, �� � 

  �����, � � 1� � ����� � 1, �� � �����, �� (19) 

���, �� 	 ����, �� � ����, ��    (20) 

� � 0, � � 0     (21) 

where x(i, j) is an is an n×1 state vector, A1 ∈ Rn×n, A2 ∈ Rn×n, 
A3 ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×m, B3 ∈ Rn×m, u(i, j) is an input 
vector of dimension m×1, z(i, j) is a scalar output of dimension 
1×n, C ∈ R1×n, and D ∈ R1×m. Figure 4 shows a matrix block 
diagram representation for the system (19)-(20).  

 

 
Fig. 4.  Matrix block diagram representation for the system (19) and (20). 

In addition, this system has a finite set of initial conditions, 
as defined based on the existence of two positive integers r1 
and r2 such that: 

���, 0� 	 0, � � ��    (22) 

��0, �� 	 0, � � ��     (23) 
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II. BACKGROUND 

A. H∞ Performance 

The initiation of the H∞ control theory began when in [8] 
the problem of sensitivity reduction was observed by the 
feedback mechanism in the basic input-output setting of the 
system, as shown in Figure 5. 

 

 
Fig. 5.  Block diagram of a typical closed-loop performance objective. 

The main objective is to keep the value of K to maintain the 
tracking errors and control input value as low as possible for all 
sensor noises, reference commands, and external force 
disturbances. From the outside influences to the regulated 
variables, let the closed-loop mapping denoted by T, then,  

�"�#$%�&' (��)�$)&"�)* �&+�" �
�('�*#"(, -#��#.*(/ 	 0 1 �(2(�(&$((�"(�&#* 2)�$(&)�/( 3

)�"/�,( �&2*�(&$(/
 

The performance can be assessed in terms of measurement 
of gain from outside influences to regulated variables. If the 
value of T is small, it means that the performance is good. As 
the closed-loop system is a Multi-Input, Multi-Output (MIMO) 
dynamic system, there are two different aspects on which the 
gain of T depends: 

 Spatial (vector disturbances/vector errors) 

 Temporal (dynamic relationship between input/output 
signals). Therefore, the performance criterion should 
take into consideration: 

o The relative magnitude of outside influences 

o The frequency dependence of signals 

o The relative importance of the magnitudes of 
regulated variables 

The performance objective in the form of a matrix norm is 
expressed as a weighted matrix norm given by: 

‖56057‖     (24) 

where WL and WR are frequency-dependent weighting functions 
responsible for the bandwidth constraints and the spectral 
content of exogenous signals. The H∞ norm is a natural 
(mathematical) way to characterize acceptable performance in 
terms of MIMO ||· ||∞. In optimal control theory, there are two 
popular performance measures: H2 and H∞ norms. The H2 norm 
is useful when exogenous signals are fixed or have a fixed 
power spectrum. There are two assumptions on which the H2 
filtering approach (also called Kalman) is based [9-10]. The 

first is that the system under consideration is exactly known 
and, secondly, there is a priori information on the external 
noises. The H∞ norm is useful when the disturbance is not a 
fixed signal but can be represented as weighted balls of 
exogenous signals, meaning that when all the outside 
influences such as reference commands, sensor noise, and 
external force disturbances are mapped into regulated variables, 
then a weighting function W is used that acts as a design 
parameter. This weighting function matrix W is frequency 
dependent and accounts for bandwidth constraints and spectral 
content of exogenous signals. The value of W should be small 
for good performance [11]. The signal l2 norm is given by: 

‖!‖� 	 8∑ ‖!�%�‖�:;<=    (25) 

Bounding the l2-induced norm from input to output leads to 
H∞ optimization. 

B. Output Feedback H∞ Control 

The motivation behind using output feedback techniques is 
that the state vector is frequently not fully accessible in 
practice. However, in many practical applications, accessibility 
of the state vectors is not always possible and sometimes the 
state vector measurement is too expensive. Controlling through 
the output feedback technique is most appropriate in such 
situations. This has led many studies [12-27] to investigate and 
analyze output feedback techniques for 2-D discrete systems. 

In an optimal H∞ controller, all admissible K controllers 
should be found to minimize ||Tzw||∞ [28]. However, it is 
difficult to find such an optimal H∞ controller [29]. This is not 
the case with the H2 theory, where the optimal controller can be 
found by solving two Riccati equations without iterations. The 
optimal H∞ controller can be found through the chain of 
successive solutions of H∞ suboptimal problems [30] with γ 
approaching the γmin value. Theoretically, it is not necessary to 
design an optimal H∞ controller [31], despite the importance of 
the optimal H∞ norm. Furthermore, it is always cheaper to 
design suboptimal controllers in the norm sense, as they are 
quite close to the optimal. The bandwidth requirement is also 
less in designing a suboptimal controller. Given a scalar 
number γ>0, the effort is to discover all the admissible 
controllers Κ such that ||Tzw||∞ < γ. In this way, a suboptimal 
controller can be designed. In an H∞ control, the following 
conditions are needed to design an asymptotically stable output 
feedback controller: 

For the continuous-time case: 

 The closed-loop system is asymptotically stable when 
w(t)=0.  

 The closed-loop system has a prescribed level γ of H∞ noise 
attenuation, i.e., under the zero initial condition: 

> �?�"���"�," @ A� > B?�"�B�"�:=:= ," (26) 

is satisfied for any nonzero w(t) ∈ L2[0, ∞). 

For the discrete-time case: 

 The closed-loop system is asymptotically stable when 
w(k)=0. 
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 The closed-loop system has a prescribed level γ of Η∞ noise 
attenuation, i.e. under the zero initial condition: 

∑ �?�%���%� <:;<= A� ∑ B?�%�B�%�:;<=  (27) 

is satisfied for any nonzero w(k) ∈ L2[0, ∞). 

where z(t)z(k) and w(t)w(k) denote the system-controlled output 
variable and noise signal, respectively. 

1) Finite Horizon H∞ Control Problem 

The H∞ control problem aims to minimize the H∞ norm. 
The H∞ norm value is the maximum of all disturbances w of the 
portion of the amount of energy entering and leaving the 
system. This energy is measured over an infinite time interval 
[0, ∞] in the standard H∞ control problem. However, in 
practical applications, this might not always be realistic. In the 
case of a finite horizon H∞ control problem, the same norm is 
to be minimized except that the energy is measured over a 
finite time interval [0, T] for some given T > 0. 

2) A Brief Survey Report 

In [27], using a Dynamic Output Feedback (DOF) 
controller, asymptotic stability achieved a desired value of the 
H∞ norm from disturbance input to controlled output for an 
uncertain 2-D discrete second FM model. A different version 
of the 2-D bounded lemma was derived, which was an 
extension of the bounded real lemma used in [32], to satisfy the 
solvability criteria for H∞ control of discrete 2-D systems. 
When building a DOF controller, the non-convexity form was 
mitigated using the modification of variables as in [33]. In [28], 
a dynamic output feedback controller was designed for an 
uncertain 2-D discrete Roesser model, so that the closed-loop 
system not only achieves asymptotic stability but also the 
specified H∞ performance. This solution was reorganized into a 
convex optimization problem that was efficiently solved using 
the Matlab LMI control toolbox. In [27], in order to address the 
H∞ control problem for an uncertain 2-D discrete general 
model, a DOF was constructed so that the closed-loop system 
was asymptotically stable to achieve the specified H∞ 
performance level. The H∞ control issue was modified to be 
LMI solvable, and so the desired controller parameters can be 
found by solving certain LMIs. In [25], the delay-independent 
and delay-dependent H∞ control problems were considered for 
the second FM model. A delay-dependent bounded real lemma 
was proposed for 2-D state delayed systems, developed based 
on the definition of the H∞ disturbance attenuation level. A 
delay-dependent DOF controller was developed, as the induced 
results were not in a strict LMI form, therefore, some limitation 
was put on certain matrices to make it LMI solvable. The 
experimental results showed that a smaller H∞ performance 
level can be obtained using a delay-dependent approach 
compared to the delay-independent. 

In [28], design methods for the control of H2 and mixed 
H2/H∞ 2-D discrete systems described by the Roesser model 
were developed, extending the definition of the H2 performance 
specification earlier developed for 1-D systems to 2-D. All 
design methods were LMI-solvable. The full-order DOF 
controller was devised and used to transform nonlinear matrix 
inequalities into linear ones using the change of variable 
method [34]. The Static Output Feedback (SOF) H∞ control 

problem was explored in [12] for the 2-D Roesser and the 
second FM model. Using the 2-D bounded real lemma, as 
described in [17] and [12], and combined with a slack variable 
approach, sufficient conditions based on linear matrix 
inequalities were established for SOF controllers. In [19], the 
issue of sufficient SOF control conditions was considered for 
the 2-D discrete Roesser model. While the design criteria for a 
2-D H∞ SOF controller were explicitly defined in the form of 
linear matrix inequalities, an iterative algorithm based on Cone 
Complementary Linearization (CCL) [35] was proposed to 
solve linear matrix inequalities. In [36], the robust H∞ control 
issue was investigated for an uncertain 2-D singular Roesser 
model. The uncertainties considered were a parametric time-
invariant norm bounded in the state matrix. A 2-D bounded real 
lemma was established for the 2-D singular Roesser model, 
which was an extent of the result of the bounded real lemma for 
1-D [37]. A necessary condition for the creation of SOF 
controllers was established in terms of matrix inequalities. In 
[37], an observer-based DOF controller was presented for an 
uncertain 2-D discrete Roesser model with time-varying state 
delay, external disturbances, and actuator saturation. To 
address this issue, using H∞ control synthesis, a state feedback 
method was used to design an observer-based controller to 
stabilize the system by mitigating the saturation nonlinearity 
using a convex hull approach. In [13], the issue of filtering and 
dissipative control was addressed for a 2-D discrete Roesser 
model. Using an LMI insertion approach, sufficient necessary 
computational complexity criteria were satisfied while 
rendering it in a two-dimensional (Q, S, R) - α dissipative. 
Furthermore, a less conservative two-dimensional (Q, S, R) - α 
dissipative output feedback approach was suggested by 
employing a slack variable approach. 

In [14], DOF controller stabilization, based on H∞, was 
carried out for a 2-D discrete switched system, described by the 
FM LSS model. Exponential stability was ensured with a 
specified weighted H∞ disturbance attenuation level by 
employing the average dwell time approach. In [18], an H2 
control problem was investigated for a 2-D discrete switched 
system of the Roesser model form. Based on the multiple 
Lyapunov function method, an LMI framework-based 
sufficient condition was established to guarantee asymptotic 
stability and H2 performance analysis. An H2 DOF controller 
was developed for the system under consideration. In [20], 
using the bounded real lemma, the H∞ control SOF problem of 
2-D discrete systems was investigated as represented by the 
second FM model. Using the 2-D bounded real lemma, the 2-D 
control-based SOF problem was formulated as a BMI problem. 
Combining the slack variable technique with two existing LMI 
methods, based on the choices of coordinate transformation 
matrices, fewer conservative sufficient LMI conditions were 
proposed for the BMI formulation. In [38], the slack variables 
were of block diagonal structure, however, the matrix structure 
of the used slack variable had a block-triangular structure, 
providing more freedom in the choice of decision variables 
when solving the LMI condition, reducing the conservatism. 

The study of optimal H2 control theory has gained 
importance for both continuous and discrete-time systems in 
system theory. The aim was to reduce the energy of the system 
when it experiences a unit impulse input, or equivalently when 
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the input has white noise of a unit variance. In [18], the 
stabilization of a 2-D discrete switched system represented by 
the Roesser model, was studied. Using a multiple Lyapunov 
function, sufficient criteria were established for the existence of 
the DOF controller to examine the H2 effectiveness of 2-D 
discrete switched systems. In [16], based on the 2-D bounded 
real lemma for Finsler's lemma, a new necessary condition for 
the H∞ evolved, relying on a 2-D discrete Roesser model. A 
SOF controller design was presented to ensure asymptotic 
stability and H∞ disturbance attenuation level in terms of linear 
matrix inequalities. In [22], the H∞ control problem was 
considered on a 2-D Takagi Sugeno (TS) system, described by 
the second FM model with time delays in both horizontal and 
vertical directions, bounded noise, and probabilistic missing 
measurements. Using the CCL algorithm, some equality 
constraints were successfully transformed into LMIs, and the 
parameters of the desired fuzzy controller were obtained. 
Finally, sufficient conditions were established to design the 
closed loop 2-D fuzzy system with SOF controller to the 
specified prescribed H∞ performance criterion. 

In [22], novel slack matrices for DOF controller construct 
criteria were presented for a 2-D TS fuzzy model as described 
by the second FM model, where there were no restrictions on 
the system matrices, i.e., they were not required to be row or 
column full rank. Sufficient criteria were established in terms 
of an LMI, which guarantees an H∞ noise attenuation level of 
the resulting closed-loop system. In [21], an observer-based H∞ 
controller was designed for a 2-D discrete fuzzy TS model 
described by the FM second model. In this study, a Luenberger 
observer was used to estimate the state. An LMI condition for 

the existence of the fuzzy observer and the fuzzy controller was 
given so that the whole system was stabilizable with a specified 
H∞ performance γ. Authors in [15] focused on investigating H∞ 
fuzzy output-feedback controllers to ensure that the closed-loop 
fuzzy TS control system is exponentially stable in the mean 
square. The H∞ control was proposed for a class of discrete-
time fuzzy systems. Using the H∞ performance index, 
disturbance rejection attenuation was constrained to a given 
level. At first, the model was proposed, which according to the 
Bernoulli distribution describes multiple probabilistic 
communication delays of different sizes. Second, based on 
partial sensor outputs, multiple missing measurements with a 
missing probability were considered over the interval [0, 1]. A 
robust H∞ fuzzy dynamic output feedback controller was 
devised, so that the closed-loop fuzzy system was 
exponentially stable with guaranteed H∞ performance. When 
calculating the controller parameters, the equality conditions 
were modified into strict LMIs, using the CCL algorithm [35-
39], which can be easily solved in the Matlab LMI toolbox [40-
41]. The study in [39] began with a brief overview of four 
types of matrix inequalities, followed by a discussion of two 
unresolved challenges with H∞ SOF management of 
continuous-time systems. The two open issues were shown to 
be fundamentally identical to the problem of selecting a 
Coordinate Transformation Matrix (CTM) by establishing the 
links between matrix inequalities. A two-step optimization 
strategy was developed to answer this open challenge. In [42], 
a cone complementarity was constructed but did not give a full 
evaluation of all the major contributions to the field, only 
specific LMI/NMI scenarios of interest were examined. The 
challenge of selecting a CTM is an obstacle.  

TABLE I.  COMPARATIVE ANALYSIS OF DIFFERENT FINDINGS OF THE H∞ APPROACH 

Ref. Year Findings Pros Cons 

[43] 2018 
Proposed a novel H∞ output feedback 

controller for 2-D systems. 

A distributed hybrid active control scheme for 
output formation-containment of interacted 

heterogeneous linear systems. 

Requires knowledge of the system matrices, 
which may not be available in practice. 

[44] 2021 
New LMI conditions for H∞/H2 output 
feedback control of linear discrete-time 

systems. 

Simulations showed that the new conditions 
were effective, achieving good performance in 

terms of stability and robustness. 

The new conditions are more complex than 
some existing - have not yet been implemented 

in a real-world system. 

[45] 2017 
Controllers were effective in simulation 

studies, achieving good performance in terms 
of stability and robustness. 

The new criterion can be used to design output 
feedback controllers for discrete time-delay 

systems. 

Design of output feedback controllers is more 
complex than for systems without time delay - 

difficult to implement in practice. 

[46] 2019 
Anew approach to output feedback H∞ control 

for discrete-time systems. 

Is more general than traditional output feedback 
H∞ control methods, as it can handle systems 

with uncertain parameters. 

The approach is more complex than traditional 
output feedback H∞ control methods. 

[47] 2020 
The H∞ optimal linear matrix inequality 

technique was used to achieve the objectives. 
Improved power-sharing accuracy and was a 

robust controller. 
It is a computationally complex controller and 

not easy as others. 

[48] 2019 
Used a Kalman filter to estimate the states of 

the system and an LQR controller to control it. 
Robust controller that can handle variable load 

conditions. 
Requires more computations than traditional 

LQR controllers. 

[49] 2016 
New method for SOF stabilization of 

fractional-order systems in TS fuzzy models. 

Based on LMIs, which makes it relatively easy 
to implement. Also, able to handle systems with 

multiple fuzzy subsystems. 

Requires knowledge of the system's fractional 
order, which may not be always available. 

Also, requires the computation of LMI 
solutions, which can be computationally 

expensive for large systems. 

[50] 2021 
Method for co-designing an event-triggered 
mechanism and a dissipative-based output 

feedback controller for 2-D systems. 

Can significantly reduce the communication 
overhead while ensuring the stability and 
performance of the closed-loop system. 

Requires knowledge of the system parameters, 
which may not be always available - Relies on 
the quadratic Lyapunov function, which may 

not be suitable for all systems. 

[51] 2023 
Provides more details on the implementation 

of the proposed SMC scheme. 

Proposed a sliding mode control scheme for 
uncertain 2-D fractional-order MIMO systems 

under stochastic scheduling. 

Requires knowledge of the system parameters, 
which may not be available in practice. 
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III. CONCLUSIONS 

This paper presented a detailed survey report on the 
application of H∞ control-based output feedback techniques for 
the stability analysis of 2-D discrete systems. All the different 
approaches that have been presented so far for the stability 
analysis of 2-D discrete systems were systematically put 
together in a compiled form. In conclusion, output feedback 
control systems have several advantages, including increased 
robustness, disturbance rejection, better tracking performance, 
and simpler implementation. Such systems can be designed 
using various control algorithms such as LQR, H-infinity, and 
SMC. However, designing an output feedback control system 
requires careful consideration of the system's dynamics, 
stability, and observability. In general, output feedback control 
is an effective and widely used technique in modern control 
engineering, enabling the design of sophisticated and reliable 
control systems for a wide range of applications. 
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