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ABSTRACT 

This paper presents a finite element analysis of the free vibration behavior of rigid pavements resting on 

non-uniform foundations. The rigid pavement was modeled using the Mindlin plate theory, while the 

supporting soil medium was approximated by a Winkler model with non-uniform stiffness. A finite 

element formulation was established to govern the equation of free vibration for rigid pavements. 

Subsequently, a computer program was developed based on the proposed algorithm, enabling the 

determination of natural frequencies and mode shapes. The accuracy of the proposed method was verified 

by comparing numerical examples of free vibration with analytical results. These numerical examples also 

demonstrate the significant influence of the foundation stiffness on natural frequencies and mode shapes. 
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I. INTRODUCTION  

Rigid pavements offer numerous advantages, such as 
durability, longevity, good resistance to adverse environmental 
conditions [1], heavy load-bearing capacity, and high cycle 
fatigue durability. These qualities make them a suitable choice 
for airports and roads with heavy loads or high traffic density. 
Despite their outstanding characteristics, rigid pavements also 
have some drawbacks during operation. Except for 
continuously reinforced concrete pavements, rigid pavements 
contain joints to accommodate the expansion and contraction of 
concrete caused by temperature variations. The purpose of 
these joints is to prevent the development of curling and 
warping stresses in the slab, which can cause cracks or other 
forms of damage. Additionally, joints are often included due to 
limitations in construction technology. The arrangement of the 
transverse joints can cause uneven vehicle movement and 
generate noise. Furthermore, when joint sealing compounds 

age, stormwater can infiltrate the foundation or subgrade, 
potentially altering the physical-mechanical properties of the 
base materials and/or subgrade soil. Consequently, this can 
cause a non-uniform load-bearing capacity of the foundation. 
Focussing on the noise defect of rigid pavements it can be 
assumed that their high stiffness and the presence of transverse 
joints result in greater noise emissions compared to other 
pavement types. The process of noise emission on the 
pavement is complicated and derives from numerous sources. 
However, it is partially attributed to the vibration of the 
pavement slabs and the interaction between the tire and the 
pavement surface. The analysis of foundation-supported 
structures has long been a popular topic in construction. 
Various types of structures have attracted interest, including 
beams on elastic foundations [2-4], beams on viscoelastic 
foundations, plates on elastic foundations [5-6], and plates on 
viscoelastic foundations [7-9]. Pavement slabs can be modeled 
as either thin or thick structures. Depending on the type of 
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problem, the analysis of plate structures can employ various 
methods including analytical approaches [10-11], semi-analytic 
techniques, numerical methods such as finite element analysis 
[3, 12-15], and isogeometric analysis [16-17]. In [18], the 
dynamic responses of pavement slabs resting on foundations 
were studied using a state space approach. In [19], the 
eigenproblems of plates with variable thicknesses supported by 
non-uniform elastic foundations were investigated using the 
element-free Galerkin method. In [20], Fourier and Laplace 
transforms were employed to solve the dynamic problems of 
concrete pavements subjected to impact loading. In [21], a 
trigonometric series approximation was used to determine the 
displacement of rectangular thick plates on the Pasternak 
foundation with free boundary edges. In [22], the crack 
behavior of cement concrete pavements was analyzed using the 
finite element software ILLI-SLAB. In [23], three-dimensional 
finite element analysis was used to study the dynamics of rigid 
pavements under moving loads. 

Although several studies explored rigid pavements 
supported by elastic non-foundation, this study aims to develop 
a practical model applicable to engineers' design practices. 
Finite element formulations were developed for analyzing rigid 
pavements resting on non-uniform elastic foundations. The 
current analysis employed four-node quadrilateral elements and 
utilized displacement field assumptions based on the Mindlin 
plate theory. MATLAB was used to implement and execute the 
algorithms. 

II. FINITE ELEMENT MODEL FOR RIGID 

PAVEMENT ON THE NONUNIFORM FOUNDATION 

The model was a rigid pavement slab placed on a 
foundation, which includes layers of base/subbase and 
subgrade and exhibits non-uniform stiffness. This configuration 
is represented as a plate resting on a Winkler foundation, as 
illustrated in Figure 1. 

 

 
Fig. 1.  Model of pavement slab on elastic foundation. 

The computation incorporates the displacement field based 
on the first-order plate theory, commonly referred to as the 
Mindlin plate theory [24]: �(�, �, �) = �	
(�, �)  �(�, �, �) = �	�(�, �)                                              (1) (�, �, �) = �(�, �)     

where w0 represents the displacement along the z-axis, while θx 
and θy denote the rotations of the normal to the middle plane 
around the y and x axes, respectively. 

 

 

Fig. 2.  The rotations θx and θy in the Mindlin plate theory. 

The strain formulation can be expressed as follows: 
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The stress-strain relations can be defined as follows: 
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where the stiffness of the material constituents is: 
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The strain energy of the Mindlin slab is given as: 
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The potential energy of the non-uniform foundation is 
expressed as: :C = (0 ; D$0>?@     (10) 

The interpolation functions [24-25] are used for the 
quadrilateral element: 
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E((F, G) = (H (1 − F)(1 − G)  

E0(F, G) = (H (1 + F)(1 − G)                        (11) 

EJ(F, G) = (H (1 + F)(1 + G)   
EH(F, G) = (H (1 − F)(1 + G)    

The displacement fields are approximated as: 	
L = E(	
(L + E0	
0L + EJ	
JL + EH	
HL   	�L = E(	�(L + E0	�0L + EJ	�JL + EH	�HL            (12) ML = E((L + E00L + EJJL + EHHL  

 

 

Fig. 3.  Quadrilateral element in natural coordinates. 

The displacement vector at the i-th node is represented as: 

��NL = �ML	
L	�L �     (13) 

Approximate strain is obtained using nodal displacements: 
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The bending strain stiffness matrix is defined as: 

XY =
⎣⎢⎢
⎢⎡�R�
 0 00 �R�� 0�R�� �R�
 0⎦⎥⎥

⎥⎤
    (17) 

The shear strain stiffness matrix is given by: 

X9 =
⎣⎢⎢
⎢⎡0 �R�
 00 0 �R��0 �R�� �R�
⎦⎥⎥

⎥⎤
    (18) 

Element stiffness matrices for bending in rigid pavements are:  DY = ; XYZ 5678XY>[\    (19) 

The element stiffness matrices for shear in rigid pavements are:  D9 = ; X9Z5679X9>[\     (20) 

The element stiffness matrices for the elastic foundation are: D] = ; X]ZD$X]>[\     (21) 

The stiffness matrices of the elements are: DL = DY + D9 + D]    (22) 

The element mass matrices are: ^L =  

; _E 0 00 E 00 0 E` _aM 0 00 a0 00 0 a0` _E 0 00 E 00 0 E` >[\  (23) 

The forced vibration equation is given by: 5^7b:cd + 5D7�: = �e    (24) 

where K, U, and F represent the stiffness, displacement, and 
load matrices, respectively. The free vibration equation is 
expressed as: 5^7b:cd + 5D7�: = �0    (25) 

The displacement is represented in terms of a harmonic 
function, given as:  

�: = f �(�0
�gL

h ijk(lm + n)   (26) 

By substituting (26) into (25), an eigenvalue problem can   
be derived to determine the natural frequencies: (5D7 − l05^7)�: = �0    (27) 

III. NUMERICAL EXAMPLES   

A. Example 1: Validation examples 

The natural frequencies of a simply supported rectangular 
plate on an elastic foundation obtained with the proposed 
method were compared with the exact analytical results derived 
using an analytical method [27]. A simply supported 
rectangular plate was considered, with a = 2 m, b = 2 m, 
thickness h = 0.12 m, and elastic modulus E = 30 GPa, mass 
density ρ = 2400kg/m

3
, and Poisson's ratio v = 0.25. The plate 

was discretized into a grid of 10×10 finite elements. The 
equivalent stiffness of the foundation is defined as: oC = pqrs'ℎt      (28) 
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Table I presents the computed results of the rigid pavement 
natural frequencies using the proposed method. A comparison 
with the exact solutions obtained by an analytical method [27] 
revealed very small differences, all less than 0.4%. Figure 4 
visualizes modes 1 and 2. 

 

(a) 

 

(b) 

 

Fig. 4.  (a) First and (b) second mode shapes. 

TABLE I.  COMPARISON OF PROPOSED METHODS' 
RESULTS WITH EXTRACT SOLUTION 

kF 

Mode 

Natural frequencies (rad/s) 

Present 
Analytical 

method [27] 

Error 

(%) 

1 
Mode 1 280.6415 281.4026 0.2705 

Mode 2 692.5564 695.1653 0.3753 

5 
Mode 1 296.0160 296.7765 0.2563 

Mode 2 698.9040 701.5295 0.3743 

10 
Mode 1 314.1780 314.9404 0.2421 

Mode 2 706.7583 709.4045 0.3730 

20 
Mode 1 347.6671 348.4389 0.2215 

Mode 2 722.2106 724.8979 0.3707 
 

B. Example 2 

To investigate the impact of a non-uniform foundation on 
the free vibration of a rigid pavement, a slab with dimensions a 
= 3 m, b = 4 m, and a thickness of 16 cm was considered. This 
slab was characterized by an elastic modulus E = 30 Gpa and a 
Poisson's coefficient of 0.25. The boundary condition of the 
rigid pavement plate consists of four free edges. The stiffness 
of the non-uniform elastic foundation is assumed as follows: 

Foundation 1: linear variation: DC = DM u1 + � 
r + v �8w   (29) 

Foundation 2: nonlinear variation: 

DC = DM !1 + � u0.5 − 
rw0 + v u0.5 − �8w0# (30) 

The parameters for the non-uniform foundation were 
assumed as oC = 10,  � = 0.4, v = 0.4. Figure 5 illustrates the 

first three mode shapes of a simply supported pavement plate 
on a non-uniform linear elastic foundation, with stiffness 
parameter oC = 10 . Figure 5(b),(c) shows the loss of 
asymmetry in the mode shapes due to the nonuniform stiffness 
of the foundation. 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 5.  Modes (a) 1, (b) 2, and (c) 3 with linear elastic foundation kF = 10. 

Table II depicts the calculated results of the first three 
natural frequencies for a simply supported pavement plate on a 
foundation, considering two types of non-uniform foundations: 
linear and nonlinear. Numerical analysis reveals that the 
frequencies associated with a linearly varying foundation were 
higher compared to those associated with a quadratic variation. 

TABLE II.  NATURAL FREQUENCIES OF RIGID PAVEMENT 
ON NONUNIFORM FOUNDATION 

kF 
Natural frequencies (rad/s) 

Mode 1 Mode 2 Mode 3 

1 
Foundation 1 223.47    454.17 634.24 

Foundation 2 221.61 453.29 633.62 

10 
Foundation 1 279.03 483.90 655.83 

Foundation 2 263.81 475.62 649.75 

20 
Foundation 1 329.90 514.93 678.98 

Foundation 2 303.90 499.26 667.22 
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IV. CONCLUSIONS   

This paper presented a finite element formulation for 
analyzing the free vibration behavior of a rigid pavement 
resting on a non-uniform elastic foundation. The stiffness of the 
non-uniform elastic foundation was assumed to exhibit linear 
or quadratic variation within the rigid pavement plane. 
MATLAB was employed to implement and execute the 
algorithms developed for computing the natural frequencies 
and mode shapes of the free vibrations. The numerical results 
clearly illustrated that the mode shape of the vibration 
undergoes significant changes when the foundation stiffness 
varies. 
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