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ABSTRACT 

Event logs are essential in many software systems’ maintenance and development, as detailed runtime 

information is recorded in them, allowing support engineers and developers to monitor systems, 

understand behaviors, and identify errors. With the increasing size and complexity of modern software 

systems, parsing their logs by the traditional (manual) method is cumbersome and useless. For this reason, 

recent studies have focused on automatically parsing log files. This paper presents the Hierarchical 

Clustering Log Parsing method, called HCLPars, for automatically parsing log files, consisting of 3 steps: 

parameter removal according to acquired knowledge in order to avoid errors, grouping similar raw log 

messages, and getting the set of keys that make up the log. Experiments were run on 16 real system log 

data, and the performance of the proposed algorithm was compared with the one of other 14 algorithms. It 

was shown that the HCLPars outperformed the other log parsers in terms of accuracy, efficiency, and 

robustness. 

Keywords-event log mining; system logs; log parsing; log analysis; log management; execution trace; 

HCLPars; agent 

I. INTRODUCTION  

Each system or application has its own log files containing 
detailed information about the operating time (execution 
traces). These execution traces play an important role in 
developing, maintaining, and sustaining software systems. 
They help developers and support engineers to understand the 
system behavior [1, 2] and track and diagnose errors and 
malfunctions that may arise [3, 4]. But despite the enormous 
information buried in the logs, finding ways to effectively 
analyze it remains a huge challenge [5], for two reasons: First, 
modern software systems routinely generate tons of records in 
seconds. This huge volume of logs makes it difficult to inspect 
log messages manually. Second, these log messages are 
unstructured in nature. To be able to analyze such files, the first 
and most important step is logging parsing, which is converting 
the raw log messages into a sequence of structured events [6-
9]. As the example illustrated in Figure 1, each raw log 
message records a specific system event with a set of fields: 
timestamp, verbosity level (e.g. ERROR/INFO/DEBUG), 
component, and event. A raw log message has constant and 

variable parts. The constant part reveals the log key or event 
template for the log message, which remains the same for every 
event occurrence, and varies from event to event, while the 
variable part records runtime information (i.e. parameters and 
states), which may vary among various event occurrences. The 
goal of log parsing is to automatically separate the constant part 
and the variable part of a raw log message, or otherwise match 
each raw log message with a specified log key (constant part) 
[10]. So, we need to extract the log keys first, and then use it in 
the parsing process. 

The traditional method of extracting log keys relies on 
handcrafted regular expressions [11]. Simple as it may seem, 
writing custom rules manually for a large volume of records is 
a time-consuming and error-prone method, and the logging 
code is frequently updated in modern software systems, leading 
to regular reviewing of these rules. To reduce the manual 
efforts in extracting log keys, some studies [12, 13], have 
suggested techniques for extracting log keys directly from the 
source code. These technologies are applicable in some cases, 
but in practice, the source code is not always accessible, and 
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often these technologies are limited to specific software or 
applications. Meanwhile, a static and generic analysis tool is 
needed for all programs across different programming 
languages, and to achieve this, several data-driven approaches 
have been proposed, including iterative mining (SLCT [14]), 
iterative segmentation (IPLoM [15]), and hierarchical 
clustering (LKE [16]). In contrast to handcrafted rules and 
source-based parsing, these methods can learn patterns from 
log data and automatically generate common log keys, but are 
unable to handle huge datasets, so a parallel log parsing 
method, called POP was proposed [17]. POP is able to handle 
large datasets with high accuracy, as it was implemented on top 
of Spark, and it used Resilient Distributed Datasets (RDD) 
abstraction, which is ineffective with data of small size because 
it consumes more time, while using it is expensive when the 
size of the data increases [18]. To address these issues, we 
propose the Hierarchical Clustering Log Parsing method 
(HCLPars), that works on top of Spark like POP [17], but with 
a different abstraction type, which is Data Frame (DF). 
HCLPars was evaluated on large-scale real-world data sets, and 
the results demonstrate its ability to achieve speed, accuracy, 
and efficiency. For example, HCLPars can parse an HDFS 
dataset in less than one minute, while POP requires 7 minutes 
and IPLoM 30 minutes and LenMa and LogSig fail to finish in 
a reasonable time. 

 

 
Fig. 1.  Example of raw log message and log key. 

II. RELATED WORK 

Log key extraction has been studied extensively and has 
been categorized into three approaches: rule-based, source-
code-based, and data-driven. Many researchers use rule-based 
methods [19, 20], which despite their accuracy, require domain 
expertise and are also limited to specific rather than general 
application scenarios. For example, authors in [19] a rule-based 
system for software failure analysis, taking advantage of 
artifacts that were produced at the time the system was 
designed and establishing a set of rules to formalize the 
placement of registration instructions within the source code. 
Authors in [21] proposed the novel Beehive system, which 
identifies potential security threats for a large volume of logs 
by unsupervised collecting of specific data features, then 
manually categorizing outliers. Source-code-based analysis has 
been used to extract a log key. But it is ineffective because the 
source code is often unavailable or incomplete to access. 
Meanwhile, most modern systems incorporate open-source 
software components written by hundreds of developers. For 
example, authors in [13] proposed a general methodology for 
log analysis based on source code analysis to discover large-
scale system issues by extracting log events from console logs. 
Authors in [1] proposed an automated approach for log analysis 
to extract log keys directly from the source code and then 

produce an ordered list of all possible event occurrences. Also, 
several data-driven approaches have been proposed, which 
have the advantage that they do not require domain expertise 
and can learn patterns from log data and automatically generate 
shared registry key templates. For example, in [22] a new 
clustering algorithm (SLCT) that analyzes the log file using 
frequent pattern mining was presented, which helps discover 
frequent patterns and identify anomalous lines in log files. 
Authors in [16] presented a novel algorithm called IPLoM 
(Duplicate Partition Log Mining) to extract the log keys from 
event logs. It performs a 3-step hierarchical partitioning process 
of the log using unique log message properties. Authors in [17] 
proposed a technique for log analysis to detect anomalies. It 
first preprocesses the data using empirical rules and then 
performs hierarchical clustering of log messages using 
weighted edit distance, and finally, log keys are created from 
the resulting clusters. But although the overall accuracy of 
these log parsing approaches is high, they are not effective in 
datasets whose logs are growing at a large scale (for example, 
100 million record messages), as these approaches fail to 
complete in a reasonable time (e.g. 1 hour), and most of them 
can’t handle such data on a single computer. More recently, 
authors in [3] proposed a log parsing method through the 
parallelization on Spark called POP. POP handles logs with 
simple domain knowledge. Then, it uses iterative partitioning 
rules to divide the logs hierarchically into different groups. 
Then, the static parts are extracted to create the event log. 
Finally, similar groups are combined using hierarchical 
clustering to create the log keys. It is a basic system for 
processing large-scale data using the parallelization power of 
computer clusters. POP was implemented on top of Spark and 
used RDD abstraction. RDD cannot modify the system to work 
more efficiently and uses sequencing and garbage collection 
techniques, increasing the load on the system’s memory and 
thus slowing the execution of operations. 

Looking at the issues of the existing research, we suggest a 
new method to extract the log key. This method is based on a 
data-driven approach to analyze the execution log, which was 
built on top of Spark and used the DF abstraction. DF 
abstraction is characterized by its efficiency in analyzing files 
with high accuracy without the knowledge of the program, as 
well as its high speed in analyzing files of any size. We used 
HashCode and Equals method to find similarities between 
messages to ensure accuracy and speed instead of using the 
iterative partitioning used in [3], which consists of more than 
one steps, increasing execution time while it is not accurate 
enough. We used an intelligent Agent that does this process 
and we called it the Prepossessing Agent. A comparison 
between the reviewed papers is illustrated in Table I. 

III. METHODOLOGY  

A log message usually records a run-time behavior of the 
program, including events, state change, and interactions 
between components. It often contains two types of 
information: a free-form text string that is used to describe the 
semantic meaning of a recorded program behavior and a 
parameter that is used to express some important characteristics 
of the current task. 
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TABLE I. SUMMARY OF THE EXISTING RESEARCHES 
FOR LOG KEY EXTRACTION 

Ref.  Approach 
Data-driven 

approach 

Use of 

Spark 
Abstraction 

[19] Rule-based - No - 

[21] Rule-based - No - 

[13] 
Source-

code-based 
- No - 

[1] 
Source-

code-based 
- No - 

[21] 
Data-driven  Frequent pattern 

mining 
No - 

[16] Data-driven  Iterative partitioning No - 

[17] Data-driven  Hierarchical clusterin No - 

[3] 
Data-driven  Iterative partitioning + 

Hierarchical clustering 
Yes RDD 

HCLPars Data-driven  Hierarchical clustering Yes DF 

 

In general, due to the various parameter values, the number 
of different types of log messages is massive or even infinite. 
Thus, the dimension problem of the direct consideration of log 
messages as a whole during log data mining may be 
troublesome. To resolve this problem, we replace every log 
message with its corresponding log key to perform analysis. A 
log key is defined as the common content of all log messages 
which are printed in the source code by the same log-print 
statement. The parameters are defined as a variable value 
printed by the log-print statement. In other terms, without any 
parameters, a log key equals the free-form text string of the 
log-print statement. For example, the key log message 1 and 3 
is "INFO dfs.DataNode$PacketResponder: PacketResponder x 
for block x terminating" (shown in Figure 2). We analyze logs 
based on log keys for the following reasons: 

 Different log-print statements often output different log text 
messages. Each specific log-print statement in the source 
code corresponds to a specific type of log key. So, a 
sequence of log keys will reveal the system’s execution 
path and this will help us predict failures during 
implementation by identifying the normal execution path of 
the system.  

 The number of key log message types is limited and much 
less than the number of raw log message types. It can help 
us avoid the dimension issue while extracting and analyzing 
data. It also provides a simplified view of all the events that 
occurred while the system was running for administrators. 

 

 
Fig. 2.  Example 1 of raw log message and key log message. 

The difficulty here is in identifying the log keys because we 
do not know which log messages are printed by the same 
statement print or the location of the parameters in the log 

messages. Generally, the log messages printed by the different 
log-print statements are often completely different, while the 
messages printed by the same statements are completely similar 
to each other. According to this observation, we can use 
clustering techniques to group the log messages printed by the 
same statement together and then find their common part as the 
log key. Parameters can cause some clustering mistakes 
because some of the different log messages contain a lot of 
matching parameter values, for example, raw log messages 1 
and 2 have many similar parameters (shown in Figure 3). So, 
the Prepossessing Agent will remove the parameter values first, 
according to acquired knowledge, to avoid errors. Then, it 
groups the similar raw log messages and finds the common 
parts in each group to get the log keys.  

A. Erasing Parameters via Acquired Knowledge  

The parameters are mostly in the form of numbers, IP 
addresses, URIs, or follow special symbols like the colon or the 
equal sign. They are often included in parentheses or square 
brackets. It is easy to classify such content. Therefore, simple 
regular expression rules are often used to recognize and remove 
these parameters [23], for example, removing block ID in 
Figure 3 by "blk [-?[0-9]]+". For parameter removal (IP 
addresses, numbers, etc.) we used gained knowledge from 
previous research to define the types of parameters for each 
dataset (shown in the second block in Figure 5). 

 

 
Fig. 3.  Example 2 of raw log message and key log message. 

B. Removing the Duplicate Raw Log Key  

In this step, the Prepossessing Agent is partitioning the raw 
log keys into groups, so we need to find a proper metric to find 
the similarity between the raw log keys. We found that the 
HashCode and Equals method is the best metric for finding the 
similarity between raw log keys, because most programmers 
tend to write log keys firstly, and add the parameters afterward. 

 

 
Fig. 4.  Four log messages from the HDF dataset. 

So, the log keys printed in the source code by the same log-
print statement have the same HashCode. Based on this 
observation, the Prepossessing Agent is generating a hash code 
for all raw log messages. Then it puts the raw log messages that 
have the same hash code in the same group by using the Equals 
method to find matches between them. After selecting all the 
matching raw log messages, the Agent removes the duplicate 
results in each group, and it gets the log keys, while their 
number is limited. Examples of log keys are shown in the third 
block in Figure 5. 
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Fig. 5.  Step of extracting log keys. 

C. Merge Groups by Log Key 

Each log key contains the component (server), log event, 
and message and most groups contain log keys that share the 
same component and log event but differ in the message. For 
example, Figure 4 contains 4 log messages from the HDFS 
dataset. The four log keys that contain the same component are 
dfs.DataNode$DataXceiver, and the same log event is 
writeBlock, but differ in the message. To improve parsing 
accuracy, the Prepossessing Agent clusters similar groups 
based on the component and their log events, through several 
steps.  

1. The first step is to generate a regular expression that will 
be used to separate the log by using the whitespaces (WS) 
shared between all log keys in all groups as separators. 
Algorithm 1 provides the pseudo-code of Generating 
regular expressions. The Prepossessing Agent considers 
every log key from the previous step as a sentence and 

stores them as a list of sentences (line 1). The number of 
WS in each log key (sentence) is calculated, and the results 
are added into the LengthLogKeys list (lines 6-13). Then it 
finds the smallest common number of WS from 
LengthLogKeys list (line 14). For example, the third Block 
in Figure 5 contains 5 log messages from the HDFS 
dataset. These 5 log keys contain a different number of WS 
(6, 3, 4), whereas the smallest common number of WS is 3. 
The last step is generating a regular expression, where it 
replaces the number of WS from the previous step with the 
symbol ("\s"), for example, if the smallest common number 
of WS is 3, then the regular expression will be: ([ˆ\s] +\s) 
([ˆ\s] +\s) ([ˆ\s] +. *). Finally, the regular expression is 
returned (line 16). 

2. The second step is to use a regular expression from step 1 
to separate all the log keys in groups. In this step, every log 
key is transformed from sentence to columns, to find the 
common parts between the log keys in all groups. The 
fourth block of Figure 5 provides some examples of 
separated log keys.  

Algorithm 1: pseudo code for generating a 

regular expression 

Input: a list of log keys from step B 

(LogkeysL) 

Output: regular expression for common 

space between all log keys   

1: ListLogKeys  LogkeysL  

2: LengthLogKeys  => List() (initialize 

with empty list) 

3: RegEx  NULL => (initialize with empty 

string) 

4: SmallestL  NULL => (initialize with 

empty integer) 

5: LLog  NULL => (initialize with empty 

integer) 

6: CurLog  First log in ListLogKeys 

7: while (Curlog has white-space) = true 

do  

8: LLog  compute a white-space in CurLog 

9: add LLog to LengthLogKeys 

10: remove CurLog from ListLogKeys 

11: CurLog  next log in ListLogKeys 

12: until ListLogKeys is empty 

13: End while 

14: SmallestL  find smallest length in 

LengthLogKeys 

15: RegEx generation of regular 

expression 

16: return RegEx 
 

3. In the final step, the Prepossessing Agent uses hierarchical 
clustering [22-25] to cluster similar groups based on 
components and their log events. The groups in the same 
cluster will be merged. This step assumes that if logs from 
different groups have the same component and log event 
type, then the texts of the component and the log events 
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that generated from these groups will be similar, so the the 
Hamming distance [25] is calculated between the texts 
(component and log event) of two logs to assess the 
similarity between them.  

�������, 	
 � ��
 � 0  �
   � � 	
1   ��ℎ������  (1) 

where a is the value of the component in the first log and b is 
the value of the component in the other log. If a and b are 
equal, it returns 0, otherwise 1. For example, we have 3 
components, the first is "dfs.DataNode$DataXceiver:", the 
second is "dfs.FSDataset:", and the third is 
"dfs.DataNode$DataXceiver:". We calculated the Hamming 
distance between these and found that the first and the third are 
classified in the same group because they are exactly equal in 
value. We used the Hamming distance because it is a very 
practical metric for measuring the similarity and difference 
between data strings. Besides, the Hamming distance is 
intuitive, which makes parameter adjusting easier. After the 
above steps, we obtained the log key set (shown in the fifth 
block in Figure 5) from the training log messages in the 
training log files. The first part refers to the event (E1) and the 
second part refers to the message (1). With this step, we were 
able to know each component of the system, what events are 
issued by it, and what message types are issued for each event. 
So, this step provides the administrators with an overview of 
the system and what messages are issued from it. 

IV. IMPLEMENTATION  

The Prepossessing Agent uses Spark to make a large-scale 
analysis of records efficient [22, 26]. Spark is a platform for 
quickly processing data on a large scale and can also distribute 
data processing tasks across multiple computers, either alone or 
in conjunction with other distributed computing tools. Apache 
Spark offers three data abstractions: RDD, DF, and DS. In 
HCLPars, we use the DF API for several reasons: First, the DF 
resolves performance and measurement limitations that occur 
while using the RDD. Second, it uses input optimization 
engines, for exemplify, Catalyst optimizer, to process data 
efficiently. We can use the same engine for all Java, Python, R, 
and Scala DataFrame API. Third, it provides a schematic view 
of the data, meaning that the data has some meaning when it is 
stored, and this serves to provide a simplified view of the data 
for the administrators. Fourthly, DF optimally manages 
memory, it stores data outside the heap but still inside RAM 
(outside the main Java Heap), which in turn reduces garbage 
collection overload, while RDD stores data in memory (inside 
the main Java Heap). Lastly, it is characterized by flexibility 
and scalability. It supports various formats of data and can be 
combined with many other big data tools. 

In our case, a DF can represent execution traces, where 
each message in execution traces is a row. Each step of the 
HCLPars requires specific tasks that are executed on every 
message. To speed up these tasks and execute them with high 
accuracy, we invoke Spark DF specially designed operations to 
work in parallel. Figure 6 illustrates the implementation of the 
Prepossessing Agent on Spark. The numbered arrows represent 
the interactions between the Spark cluster and the main 
program, where the main program works at Spark driver, which 

is responsible for allocating Spark tasks to workers in the Spark 
cluster [27]. For the Spark application, in Step 1, the 
Prepossessing Agent uses sqlContext.read.text() to read the text 
file (e.g. HDFS execution traces), converts every message or 
line into a single row at a single string column called value 
(DF), and loads the DF to the Spark cluster (arrow 1). Then, it 
uses withColumn() to preprocess all log messages (erasing 
parameters) (arrow 2). After preprocessing, it caches the 
preprocessed log messages as schema in off-heap memory and 
returns a DF as the reference (arrow 3). In step 2, it uses 
distinct() to drop duplicate rows (in the column) from the DF 
(arrow 4) and return them (arrow 5). In step 3, it generates 
regular expressions for all log messages (arrows 6, 7) as 
described above. Then, the driver program separates the 
column (value) into many columns based on the regular 
expression from the previous step and adds them into new DF 
(arrows 8, 9). When all the columns are separated, it runs 
hierarchical clustering on them, and then it uses groupby() to 
merge log message (row) based on the clustering result (arrow 
10). Finally, the merged DF (log keys) are outputted as a CSV 
file by use coalesce(1).write() (arrow 11). 

 

 
Fig. 6.  Extracting log key steps. 

V. DATA COLLECTION AND EVALUATION  

In this section, we present the data sets that were used in the 
evaluation process and the evaluation methodology. The 
performance of HCLPars is evaluated in terms of its accuracy, 
efficiency, and effectiveness and the results are compared with 
those of existing log parsers. 

A. Data Collection  

The loghub dataset [6] were used during the training and 
test phases. Loghub is a large collection of logs from 16 real-
world systems, including operating systems, mobile phone 
systems, distributed systems, supercomputers, standalone 
software, and server applications. All these logs are over 77 GB 
in size and contain 440 million log messages. Table II provides 
a summary of the dataset. The columns are marked with the 
symbol (#), as in [29].  

B. Evaluation  

The parameters of the log parsers are fine-tuned through 
over 8 runs and the best results are reported to avoid the 
randomization bias.  
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1) Evaluation Measures  

Accuracy, robustness, and efficiency were considered for 
the evaluation of the results [29].  

 Accuracy is a measure of the ability of a log parser to 
distinguish between fixed and variable parts. Therefore, we 
define the accuracy metric of parsing as the ratio of 
properly parsed log messages to the total number of log 
messages. A log message is parsed correctly if its event 
template matches one of the previously extracted log 
message templates.  

 Robustness of a log parser is measured by the extent of its 
ability to work continuously within different datasets or 
different sizes with the same efficiency.  

 Efficiency is measured by the amount of time it takes the 
parser to parse the data. Τhe less time spent, the higher the 
efficiency.  

TABLE II. SUMMARY OF THE LOGHUB DATASET 

Dataset #  Description # Log size # 
Templates 

(total) # 

HDFS Hadoop distributed file system log 11,175,629 30 

Spark Spark job log 33,236,604 456 

Hadoop Hadoop mapreduce job log 394,308 298 

ZooKeeper ZooKeeper service log 74,380 95 

OpenStack OpenStack software log 207,820 51 

Linux Linux system log 25,567 488 

Mac Mac OS log 117,283 2,214 

Thunderbird Thunderbird supercomputer log 211,212,192 4,040 

BGL Blue Gene/L supercomputer log 4,747,963 619 

HPC High performance cluster log 433,489 104 

Apache Apache server error log 56,481 44 

OpenSSH OpenSSH server log 655,146 62 

Proxifier Proxifier software log 21,329 9 

Android Android framework log 30,348,042 76,923 

Health app  Health app log 253,395 220 

 

2) Evaluation Procedure  

To evaluate HCLPars, we compared it with 14 log parsers 
by using 16 standard datasets. The log parser parameters were 
finely tuned through more than 8 runs, and the best results were 
recorded.  

VI. RESULTS  

A. Accuracy 

In this part, we evaluate the accuracy of HCLPars, and 
compare it with the accuracy of 14 existing log parsers. To 
make the comparison fair, we performed accuracy experiments 
on subsets of the original log datasets, each containing 2,000 
log messages. 

Table III presents the accuracy results of the log parsers 
evaluated in 16 log datasets. Each column indicates the 
accuracy for 1 log parser across the datasets, helping define its 
robustness across different log types. Each row represents the 
accuracy of the parsing for different log parsers in a single 

dataset. For ease of observation, we marked the accuracy 
values greater than 0.9 in boldface, and highlighted the best 
accuracy with an asterisk (*). We can observe that most of the 
datasets were parsed accurately (more than 90%) by at least 2 
log parsers. Totally, 12 out of the 15 log parsers provide the 
best accuracy on at least 3 log datasets. To measure the overall 
effectiveness of the log parsers, we calculated the average 
accuracy of each log parser across different datasets, as shown 
in the last row of Table III. We can observe that HCLPars is the 
most accurate on average with a score of 0.9605, achieving 
high accuracy (over 0.9) in 12 out of 16 datasets. It was 
followed by POP, which achieved high accuracy in 10 datasets. 

 

 
Fig. 7.  Accuracy distribution of the log parsers in different types of logs. 

B. Robustness 

Robustness is an important measure of the practical use of a 
log parser. In this part, we evaluate the robustness of HCLPars 
and compare it with the existing log parsers from 2 aspects: 
across different types and sizes of logs.  

Figure 7 (boxplot diagram) indicates the accuracy 
distribution of each log parser across the 16 log datasets. For 
each box, the highest point of the vertical line corresponds to 
the maximum accuracy values, while the lowest point 
corresponds to the minimum accuracy values. In Figure 7, from 
left to right, the log parsers are arranged in ascending order of 
average accuracy. It can be noted that HCLPars has the highest 
average accuracy. This means that it can efficiently parse 
different types of log data, as its minimum accuracy is 0.889. 
Additionally, we evaluated the robustness of HCLPars on 
different log sizes. We sampled 40 original real-world datasets, 
such as HDFS, BGL, Spark, Hadoop, ZooKeeper, Open-Stack, 
HPC, and Proxifier (Table III). HDFS, Spark, Hadoop, 
ZooKeeper, OpenStack are log files from distributed systems, 
while HDFS, BGL, HPC, ZooKeeper, and Proxifier were used 
in [17, 20]. For log dataset, we changed the size based on its 
total size. For example, HDFS has a total size of 1.47 GB. We 
changed its size to 300 KB, 1 MB, 10 MB, 100 MB, and 1 GB, 
successively. Table IV shows the number of raw log messages 
in the datasets. Each row presents 5 sample datasets created 
from a real dataset. We chose the log parsers that achieved high 
accuracy in more than 4 log datasets, i.e. AEL, IPLOM, 
LenMa, MoLFI, Spell, Drain, and POP and compared them 
with HCLPars. 
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Fig. 8.  Log parser accuracy on dataset log size. 

Figure 8 shows the results of the parsing accuracy on 
different log dataset volumes. Note that some lines are 
incomplete in the Figure because some parsers, such as MoLFI 
and LenMa, cannot finish the parsing in a reasonable period (4 
hours). The results show that POP works continuously in most 
cases except for the 0.24 drop in OpenStack, while the rest of 
the log parsers have clear drops in accuracy or clear 
fluctuations with increasing data volume in most datasets 
(except for HDFS, ZooKeeper, and Spark). The experimental 
results of HCLPars are shown in Table IV and Figure 8. Note 
that the accuracy of HCLPars is very consistent for all datasets. 
The accuracy on HDFS and Spark is 1 for all 5 samples. For 
BGL and Hadoop, the fluctuation of the accuracy is 0.001 at 
most. For Proxifier and ZooKeeper, the fluctuation of the 
accuracy is 0.02 at most. When compared to the other parsers, 
HCLPars is the only to obtain consistently high accuracy in all 
datasets.  

C. Efficiency  

Efficiency is an important aspect to consider when parsing 
log data. To evaluate the efficiency of the log parser, we record 
the runtime it takes to complete the entire parsing process. Like 
previous experiment settings, we evaluate the runtime of log 
parsers on 40 sampled datasets from original real-world 
datasets. The results can be seen in Figure 9. It is obvious that 
the size of the log is directly proportional to runtime, i.e. 
parsing time increases with log size. It is also obvious that the 
efficiency of the log parser depends on the number of event 
templates. The simpler the log data, containing a limited 
number of templates, the easier the parsing process. The 
efficiency of the log parser is shown when there are many log 
templates. Drain and IPLoM have better efficiency, which 
scales linearly with log size. POP has better efficiency with 
large data. AEL and Spell do not scale well with many event 
templates. LenMa and MoLFI do not scale well with large data. 

 

 
Fig. 9.  Running time of log parsers on dataset log size. 

For instance, BGL contains 619 event tem plates. POP can 
finish parsing within 5 min, while Drain and IPLoM take 10 
min. AEL and Spell take a long time to complete parsing (1 
hour), while LenMa and MoLFI cannot finish parsing 1 GB of 
BGL in 2, 4, or 6 hours, respectively. The experimental results 
of HCLPars are also shown in Table VI and Figure 9. 
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TABLE III. ACCURACY OF LOG PARSERS ACROSS DIFFERENT LOG TYPES 

Dataset SLCT AEL IPLOM LKE LFA LogSig SHISO 
Log 

cluster 
LenMa 

Log 

mine 
Spell Drain MoLFI POP HCLPars Best 

HDFS 0.455 0.978 1* 0.998 0.875 0.800 0.978 0.546 0.998 0.851 1* 0.997 0.998 1* 1* 1 

Hadoop 0.432 0.567 0.956 0.700 0.900 0.654 0.865 0.566 0.885 0.867 0.778 0.938 0.957 0.998 0.955* 0.999 

Spark 0.685 0.905 0.920 0.634 0.994 0.544 0.920 0.795 0.887 0.576 0.905 0.920 0.418 0.999 1* 1 

Zookeeper 0.726 0.921 0.992* 0.578 0.839 0.700 0.660 0.789 0.841 0.688 0.964 0.967 0.839 0.990 0.987 0.992 

OpenStack 0.867 0.758 0.871 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213 0.880 0.900* 0.900 

BGL 0.573 0.758 0.939 0.128 0.854 0.227 0.711 0.835 0.69 0.723 0.787 0.963 0.960 0.990 0.996* 0.996 

HPC 0.839 0.900 0.800 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824 0.950 1* 1 

Thunderb 0.882 0.941 0.663 0.813 0.649 0.694 0.576 0.599 0.943 0.919 0.844 0.955* 0.646 0.955* 0.955* 0.955 

Mac 0.558 0.764 0.673 0.366 0.555 0.478 0.595 0.604 0.698 0.872 0.757 0.787 0.636 0.889* 0.889* 0.889 

Windows 0.697 0.690 0.567 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989 0.997 0.406 0.876 1* 1 

Linux 0.297 0.673 0.672 0.519 0.279 0.169 0.701 0.629 0.701 0.612 0.605 0.690 0.284 0.701 0.894* 0.894 

Android 0.882 0.682 0.712 0.909 0.616 0.548 0.585 0.798 0.880 0.504 0.919* 0.911 0.788 0.876 0.919* 0.919 

HealthApp 0.331 0.568 0.872 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440 0.772 0.900* 0.900 

Apache 0.731 1* 1* 1* 1* 0.582 1* 0.709 0.999 1* 1* 0.998 1* 1* 1* 1 

OpenSSH 0.521 0.538 0.802 0.426 0.501 0.373 0.619 0.426 0.925 0.431 0.554 0.788 0.500 0.998 0.999* 0.999 

Proxifier 0.518 0.518 0.519 0.455 0.145 0.969* 0.517 0.951 0.508 0.517 0.527 0.527 0.013 0.900 0.930* 0.969 

Average 0.624 0.760 0.809 0.614 0.647 0.513 0.679 0.702 0.835 0.735 0.782 0.864 0.640 0.923 0.960  

 

TABLE IV. LOG SIZE OF SAMPLE DATASETS 

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

HDFS 300 KB 1 MB 10 MB 100 MB 1 GB 

BGL 400 KB 1 MB 10 MB 100 MB 500 MB 

Spark 300 KB 1 MB 10 MB 100 MB 1 GB 

Hadoop 600 KB 1 MB 10 MB 15 MB 20 MB 

ZooKeeper 4 KB 8 KB 16 KB 32 MB 64 KB 

OpenStack 600 KB 1 MB 10 MB 15 MB 20 MB 

HPC 600 KB 1 MB 10 MB 15 MB 20 MB 

Proxifier 300 KB 600 KB 1200 KB 1800 KB 2400 KB 

TABLE V. ACCURACY OF HCLPARS ON THE SAMPLE 
DATASETS OF TABLE III. 

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

HDFS 1 1 1 1 1 

BGL 0.996 0.996 0.996 0.996 0.995 

Spark 1 1 1 1 1 

Hadoop 0.999 0.999 0.999 0.998 0.999 

ZooKeeper 0.987 0.987 0.987 0.980 0.987 

OpenStack 0.900 0.900 0.900 0.900 0.900 

HPC 1 1 0.996 1 1 

Proxifier 0.93 0.93 0.91 0.91 0.93 

TABLE VI. RUNNING TIME OF HCLPARS (sec) ON SAMPLE 
DATASETS IN TABLE III. 

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

HDFS 4.67 4 5 10 30 

BGL 15.98 20.98 34.76 40.15 60 

Spark 8.403 18.7 20 44.67 50.89 

Hadoop 7 7.98 15 30.38 50 

ZooKeeper 2.120 4.203 18.23 23.78 31.67 

OpenStack 5.21 6 17.95 30 45 

HPC 4.98 5.45 34 50 52 

Proxifier 3.09 7.56 10.45 12.33 10.94 

 

Obviously, the runtime that HCLPars consumes is directly 
proportional to the log size, and the run time of HCLPars does 
not exceed 1 minute for the largest dataset size (1 GB). 
Compared to the other log parsers, HCLPars conducts the 
fastest parsing, as it can parse large logs in a record time that 
does not exceed 1 minute.  

VII. CONCLUSION  

This paper studied the automated parsing for large system 
event logs. Initially, a comprehensive study was conducted on 
the existing log parsing methods and the way they work. Based 
on the result, the Automatic Log Parsing (HCLPars) method 
using Spark was proposed, which consists of three steps: 
removing parameter values according to acquired knowledge, 
grouping of raw log messages based on similarity, and finding 
the common parts in each group to get the log keys. Many 
experiments were conducted on 16 sets of real-world data logs. 
The results from these experiments indicate that HCLPars is 
very effective, as it works accurately and efficiently on all 
types of data logs, regardless of their size. In the future, we 
hope to test this method on more data logs. 
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