
Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11130

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

HCLPars: Α New Hierarchical Clustering Log
Parsing Method

Arwa Bin Lashram

University of Jeddah, Saudi Arabia
arwa.alashram@yahoo.com (corresponding author)

Lobna Hsairi

University of Jeddah, Saudi Arabia
lalhabib@uj.edu.sa

Haneen Al Ahmadi

University of Jeddah, Saudi Arabia
hhalahamade@uj.edu.sa

Received: 5 May 2023 | Revised: 17 May 2023 | Accepted: 18 May 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6013

ABSTRACT

Event logs are essential in many software systems’ maintenance and development, as detailed runtime

information is recorded in them, allowing support engineers and developers to monitor systems,

understand behaviors, and identify errors. With the increasing size and complexity of modern software

systems, parsing their logs by the traditional (manual) method is cumbersome and useless. For this reason,

recent studies have focused on automatically parsing log files. This paper presents the Hierarchical

Clustering Log Parsing method, called HCLPars, for automatically parsing log files, consisting of 3 steps:

parameter removal according to acquired knowledge in order to avoid errors, grouping similar raw log

messages, and getting the set of keys that make up the log. Experiments were run on 16 real system log

data, and the performance of the proposed algorithm was compared with the one of other 14 algorithms. It

was shown that the HCLPars outperformed the other log parsers in terms of accuracy, efficiency, and

robustness.

Keywords-event log mining; system logs; log parsing; log analysis; log management; execution trace;

HCLPars; agent

I. INTRODUCTION

Each system or application has its own log files containing
detailed information about the operating time (execution
traces). These execution traces play an important role in
developing, maintaining, and sustaining software systems.
They help developers and support engineers to understand the
system behavior [1, 2] and track and diagnose errors and
malfunctions that may arise [3, 4]. But despite the enormous
information buried in the logs, finding ways to effectively
analyze it remains a huge challenge [5], for two reasons: First,
modern software systems routinely generate tons of records in
seconds. This huge volume of logs makes it difficult to inspect
log messages manually. Second, these log messages are
unstructured in nature. To be able to analyze such files, the first
and most important step is logging parsing, which is converting
the raw log messages into a sequence of structured events [6-
9]. As the example illustrated in Figure 1, each raw log
message records a specific system event with a set of fields:
timestamp, verbosity level (e.g. ERROR/INFO/DEBUG),
component, and event. A raw log message has constant and

variable parts. The constant part reveals the log key or event
template for the log message, which remains the same for every
event occurrence, and varies from event to event, while the
variable part records runtime information (i.e. parameters and
states), which may vary among various event occurrences. The
goal of log parsing is to automatically separate the constant part
and the variable part of a raw log message, or otherwise match
each raw log message with a specified log key (constant part)
[10]. So, we need to extract the log keys first, and then use it in
the parsing process.

The traditional method of extracting log keys relies on
handcrafted regular expressions [11]. Simple as it may seem,
writing custom rules manually for a large volume of records is
a time-consuming and error-prone method, and the logging
code is frequently updated in modern software systems, leading
to regular reviewing of these rules. To reduce the manual
efforts in extracting log keys, some studies [12, 13], have
suggested techniques for extracting log keys directly from the
source code. These technologies are applicable in some cases,
but in practice, the source code is not always accessible, and

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11131

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

often these technologies are limited to specific software or
applications. Meanwhile, a static and generic analysis tool is
needed for all programs across different programming
languages, and to achieve this, several data-driven approaches
have been proposed, including iterative mining (SLCT [14]),
iterative segmentation (IPLoM [15]), and hierarchical
clustering (LKE [16]). In contrast to handcrafted rules and
source-based parsing, these methods can learn patterns from
log data and automatically generate common log keys, but are
unable to handle huge datasets, so a parallel log parsing
method, called POP was proposed [17]. POP is able to handle
large datasets with high accuracy, as it was implemented on top
of Spark, and it used Resilient Distributed Datasets (RDD)
abstraction, which is ineffective with data of small size because
it consumes more time, while using it is expensive when the
size of the data increases [18]. To address these issues, we
propose the Hierarchical Clustering Log Parsing method
(HCLPars), that works on top of Spark like POP [17], but with
a different abstraction type, which is Data Frame (DF).
HCLPars was evaluated on large-scale real-world data sets, and
the results demonstrate its ability to achieve speed, accuracy,
and efficiency. For example, HCLPars can parse an HDFS
dataset in less than one minute, while POP requires 7 minutes
and IPLoM 30 minutes and LenMa and LogSig fail to finish in
a reasonable time.

Fig. 1. Example of raw log message and log key.

II. RELATED WORK

Log key extraction has been studied extensively and has
been categorized into three approaches: rule-based, source-
code-based, and data-driven. Many researchers use rule-based
methods [19, 20], which despite their accuracy, require domain
expertise and are also limited to specific rather than general
application scenarios. For example, authors in [19] a rule-based
system for software failure analysis, taking advantage of
artifacts that were produced at the time the system was
designed and establishing a set of rules to formalize the
placement of registration instructions within the source code.
Authors in [21] proposed the novel Beehive system, which
identifies potential security threats for a large volume of logs
by unsupervised collecting of specific data features, then
manually categorizing outliers. Source-code-based analysis has
been used to extract a log key. But it is ineffective because the
source code is often unavailable or incomplete to access.
Meanwhile, most modern systems incorporate open-source
software components written by hundreds of developers. For
example, authors in [13] proposed a general methodology for
log analysis based on source code analysis to discover large-
scale system issues by extracting log events from console logs.
Authors in [1] proposed an automated approach for log analysis
to extract log keys directly from the source code and then

produce an ordered list of all possible event occurrences. Also,
several data-driven approaches have been proposed, which
have the advantage that they do not require domain expertise
and can learn patterns from log data and automatically generate
shared registry key templates. For example, in [22] a new
clustering algorithm (SLCT) that analyzes the log file using
frequent pattern mining was presented, which helps discover
frequent patterns and identify anomalous lines in log files.
Authors in [16] presented a novel algorithm called IPLoM
(Duplicate Partition Log Mining) to extract the log keys from
event logs. It performs a 3-step hierarchical partitioning process
of the log using unique log message properties. Authors in [17]
proposed a technique for log analysis to detect anomalies. It
first preprocesses the data using empirical rules and then
performs hierarchical clustering of log messages using
weighted edit distance, and finally, log keys are created from
the resulting clusters. But although the overall accuracy of
these log parsing approaches is high, they are not effective in
datasets whose logs are growing at a large scale (for example,
100 million record messages), as these approaches fail to
complete in a reasonable time (e.g. 1 hour), and most of them
can’t handle such data on a single computer. More recently,
authors in [3] proposed a log parsing method through the
parallelization on Spark called POP. POP handles logs with
simple domain knowledge. Then, it uses iterative partitioning
rules to divide the logs hierarchically into different groups.
Then, the static parts are extracted to create the event log.
Finally, similar groups are combined using hierarchical
clustering to create the log keys. It is a basic system for
processing large-scale data using the parallelization power of
computer clusters. POP was implemented on top of Spark and
used RDD abstraction. RDD cannot modify the system to work
more efficiently and uses sequencing and garbage collection
techniques, increasing the load on the system’s memory and
thus slowing the execution of operations.

Looking at the issues of the existing research, we suggest a
new method to extract the log key. This method is based on a
data-driven approach to analyze the execution log, which was
built on top of Spark and used the DF abstraction. DF
abstraction is characterized by its efficiency in analyzing files
with high accuracy without the knowledge of the program, as
well as its high speed in analyzing files of any size. We used
HashCode and Equals method to find similarities between
messages to ensure accuracy and speed instead of using the
iterative partitioning used in [3], which consists of more than
one steps, increasing execution time while it is not accurate
enough. We used an intelligent Agent that does this process
and we called it the Prepossessing Agent. A comparison
between the reviewed papers is illustrated in Table I.

III. METHODOLOGY

A log message usually records a run-time behavior of the
program, including events, state change, and interactions
between components. It often contains two types of
information: a free-form text string that is used to describe the
semantic meaning of a recorded program behavior and a
parameter that is used to express some important characteristics
of the current task.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11132

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

TABLE I. SUMMARY OF THE EXISTING RESEARCHES
FOR LOG KEY EXTRACTION

Ref. Approach
Data-driven

approach

Use of

Spark
Abstraction

[19] Rule-based - No -

[21] Rule-based - No -

[13]
Source-

code-based
- No -

[1]
Source-

code-based
- No -

[21]
Data-driven Frequent pattern

mining
No -

[16] Data-driven Iterative partitioning No -

[17] Data-driven Hierarchical clusterin No -

[3]
Data-driven Iterative partitioning +

Hierarchical clustering
Yes RDD

HCLPars Data-driven Hierarchical clustering Yes DF

In general, due to the various parameter values, the number
of different types of log messages is massive or even infinite.
Thus, the dimension problem of the direct consideration of log
messages as a whole during log data mining may be
troublesome. To resolve this problem, we replace every log
message with its corresponding log key to perform analysis. A
log key is defined as the common content of all log messages
which are printed in the source code by the same log-print
statement. The parameters are defined as a variable value
printed by the log-print statement. In other terms, without any
parameters, a log key equals the free-form text string of the
log-print statement. For example, the key log message 1 and 3
is "INFO dfs.DataNode$PacketResponder: PacketResponder x
for block x terminating" (shown in Figure 2). We analyze logs
based on log keys for the following reasons:

 Different log-print statements often output different log text
messages. Each specific log-print statement in the source
code corresponds to a specific type of log key. So, a
sequence of log keys will reveal the system’s execution
path and this will help us predict failures during
implementation by identifying the normal execution path of
the system.

 The number of key log message types is limited and much
less than the number of raw log message types. It can help
us avoid the dimension issue while extracting and analyzing
data. It also provides a simplified view of all the events that
occurred while the system was running for administrators.

Fig. 2. Example 1 of raw log message and key log message.

The difficulty here is in identifying the log keys because we
do not know which log messages are printed by the same
statement print or the location of the parameters in the log

messages. Generally, the log messages printed by the different
log-print statements are often completely different, while the
messages printed by the same statements are completely similar
to each other. According to this observation, we can use
clustering techniques to group the log messages printed by the
same statement together and then find their common part as the
log key. Parameters can cause some clustering mistakes
because some of the different log messages contain a lot of
matching parameter values, for example, raw log messages 1
and 2 have many similar parameters (shown in Figure 3). So,
the Prepossessing Agent will remove the parameter values first,
according to acquired knowledge, to avoid errors. Then, it
groups the similar raw log messages and finds the common
parts in each group to get the log keys.

A. Erasing Parameters via Acquired Knowledge

The parameters are mostly in the form of numbers, IP
addresses, URIs, or follow special symbols like the colon or the
equal sign. They are often included in parentheses or square
brackets. It is easy to classify such content. Therefore, simple
regular expression rules are often used to recognize and remove
these parameters [23], for example, removing block ID in
Figure 3 by "blk [-?[0-9]]+". For parameter removal (IP
addresses, numbers, etc.) we used gained knowledge from
previous research to define the types of parameters for each
dataset (shown in the second block in Figure 5).

Fig. 3. Example 2 of raw log message and key log message.

B. Removing the Duplicate Raw Log Key

In this step, the Prepossessing Agent is partitioning the raw
log keys into groups, so we need to find a proper metric to find
the similarity between the raw log keys. We found that the
HashCode and Equals method is the best metric for finding the
similarity between raw log keys, because most programmers
tend to write log keys firstly, and add the parameters afterward.

Fig. 4. Four log messages from the HDF dataset.

So, the log keys printed in the source code by the same log-
print statement have the same HashCode. Based on this
observation, the Prepossessing Agent is generating a hash code
for all raw log messages. Then it puts the raw log messages that
have the same hash code in the same group by using the Equals
method to find matches between them. After selecting all the
matching raw log messages, the Agent removes the duplicate
results in each group, and it gets the log keys, while their
number is limited. Examples of log keys are shown in the third
block in Figure 5.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11133

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

Fig. 5. Step of extracting log keys.

C. Merge Groups by Log Key

Each log key contains the component (server), log event,
and message and most groups contain log keys that share the
same component and log event but differ in the message. For
example, Figure 4 contains 4 log messages from the HDFS
dataset. The four log keys that contain the same component are
dfs.DataNode$DataXceiver, and the same log event is
writeBlock, but differ in the message. To improve parsing
accuracy, the Prepossessing Agent clusters similar groups
based on the component and their log events, through several
steps.

1. The first step is to generate a regular expression that will
be used to separate the log by using the whitespaces (WS)
shared between all log keys in all groups as separators.
Algorithm 1 provides the pseudo-code of Generating
regular expressions. The Prepossessing Agent considers
every log key from the previous step as a sentence and

stores them as a list of sentences (line 1). The number of
WS in each log key (sentence) is calculated, and the results
are added into the LengthLogKeys list (lines 6-13). Then it
finds the smallest common number of WS from
LengthLogKeys list (line 14). For example, the third Block
in Figure 5 contains 5 log messages from the HDFS
dataset. These 5 log keys contain a different number of WS
(6, 3, 4), whereas the smallest common number of WS is 3.
The last step is generating a regular expression, where it
replaces the number of WS from the previous step with the
symbol ("\s"), for example, if the smallest common number
of WS is 3, then the regular expression will be: ([ˆ\s] +\s)
([ˆ\s] +\s) ([ˆ\s] +. *). Finally, the regular expression is
returned (line 16).

2. The second step is to use a regular expression from step 1
to separate all the log keys in groups. In this step, every log
key is transformed from sentence to columns, to find the
common parts between the log keys in all groups. The
fourth block of Figure 5 provides some examples of
separated log keys.

Algorithm 1: pseudo code for generating a

regular expression

Input: a list of log keys from step B

(LogkeysL)

Output: regular expression for common

space between all log keys

1: ListLogKeys  LogkeysL

2: LengthLogKeys  => List() (initialize

with empty list)

3: RegEx  NULL => (initialize with empty

string)

4: SmallestL  NULL => (initialize with

empty integer)

5: LLog  NULL => (initialize with empty

integer)

6: CurLog  First log in ListLogKeys

7: while (Curlog has white-space) = true

do

8: LLog  compute a white-space in CurLog

9: add LLog to LengthLogKeys

10: remove CurLog from ListLogKeys

11: CurLog  next log in ListLogKeys

12: until ListLogKeys is empty

13: End while

14: SmallestL  find smallest length in

LengthLogKeys

15: RegEx generation of regular

expression

16: return RegEx

3. In the final step, the Prepossessing Agent uses hierarchical
clustering [22-25] to cluster similar groups based on
components and their log events. The groups in the same
cluster will be merged. This step assumes that if logs from
different groups have the same component and log event
type, then the texts of the component and the log events

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11134

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

that generated from these groups will be similar, so the the
Hamming distance [25] is calculated between the texts
(component and log event) of two logs to assess the
similarity between them.

�������, 	
 � ��
 � 0 �
 � � 	
1 ��ℎ������ (1)

where a is the value of the component in the first log and b is
the value of the component in the other log. If a and b are
equal, it returns 0, otherwise 1. For example, we have 3
components, the first is "dfs.DataNode$DataXceiver:", the
second is "dfs.FSDataset:", and the third is
"dfs.DataNode$DataXceiver:". We calculated the Hamming
distance between these and found that the first and the third are
classified in the same group because they are exactly equal in
value. We used the Hamming distance because it is a very
practical metric for measuring the similarity and difference
between data strings. Besides, the Hamming distance is
intuitive, which makes parameter adjusting easier. After the
above steps, we obtained the log key set (shown in the fifth
block in Figure 5) from the training log messages in the
training log files. The first part refers to the event (E1) and the
second part refers to the message (1). With this step, we were
able to know each component of the system, what events are
issued by it, and what message types are issued for each event.
So, this step provides the administrators with an overview of
the system and what messages are issued from it.

IV. IMPLEMENTATION

The Prepossessing Agent uses Spark to make a large-scale
analysis of records efficient [22, 26]. Spark is a platform for
quickly processing data on a large scale and can also distribute
data processing tasks across multiple computers, either alone or
in conjunction with other distributed computing tools. Apache
Spark offers three data abstractions: RDD, DF, and DS. In
HCLPars, we use the DF API for several reasons: First, the DF
resolves performance and measurement limitations that occur
while using the RDD. Second, it uses input optimization
engines, for exemplify, Catalyst optimizer, to process data
efficiently. We can use the same engine for all Java, Python, R,
and Scala DataFrame API. Third, it provides a schematic view
of the data, meaning that the data has some meaning when it is
stored, and this serves to provide a simplified view of the data
for the administrators. Fourthly, DF optimally manages
memory, it stores data outside the heap but still inside RAM
(outside the main Java Heap), which in turn reduces garbage
collection overload, while RDD stores data in memory (inside
the main Java Heap). Lastly, it is characterized by flexibility
and scalability. It supports various formats of data and can be
combined with many other big data tools.

In our case, a DF can represent execution traces, where
each message in execution traces is a row. Each step of the
HCLPars requires specific tasks that are executed on every
message. To speed up these tasks and execute them with high
accuracy, we invoke Spark DF specially designed operations to
work in parallel. Figure 6 illustrates the implementation of the
Prepossessing Agent on Spark. The numbered arrows represent
the interactions between the Spark cluster and the main
program, where the main program works at Spark driver, which

is responsible for allocating Spark tasks to workers in the Spark
cluster [27]. For the Spark application, in Step 1, the
Prepossessing Agent uses sqlContext.read.text() to read the text
file (e.g. HDFS execution traces), converts every message or
line into a single row at a single string column called value
(DF), and loads the DF to the Spark cluster (arrow 1). Then, it
uses withColumn() to preprocess all log messages (erasing
parameters) (arrow 2). After preprocessing, it caches the
preprocessed log messages as schema in off-heap memory and
returns a DF as the reference (arrow 3). In step 2, it uses
distinct() to drop duplicate rows (in the column) from the DF
(arrow 4) and return them (arrow 5). In step 3, it generates
regular expressions for all log messages (arrows 6, 7) as
described above. Then, the driver program separates the
column (value) into many columns based on the regular
expression from the previous step and adds them into new DF
(arrows 8, 9). When all the columns are separated, it runs
hierarchical clustering on them, and then it uses groupby() to
merge log message (row) based on the clustering result (arrow
10). Finally, the merged DF (log keys) are outputted as a CSV
file by use coalesce(1).write() (arrow 11).

Fig. 6. Extracting log key steps.

V. DATA COLLECTION AND EVALUATION

In this section, we present the data sets that were used in the
evaluation process and the evaluation methodology. The
performance of HCLPars is evaluated in terms of its accuracy,
efficiency, and effectiveness and the results are compared with
those of existing log parsers.

A. Data Collection

The loghub dataset [6] were used during the training and
test phases. Loghub is a large collection of logs from 16 real-
world systems, including operating systems, mobile phone
systems, distributed systems, supercomputers, standalone
software, and server applications. All these logs are over 77 GB
in size and contain 440 million log messages. Table II provides
a summary of the dataset. The columns are marked with the
symbol (#), as in [29].

B. Evaluation

The parameters of the log parsers are fine-tuned through
over 8 runs and the best results are reported to avoid the
randomization bias.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11135

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

1) Evaluation Measures

Accuracy, robustness, and efficiency were considered for
the evaluation of the results [29].

 Accuracy is a measure of the ability of a log parser to
distinguish between fixed and variable parts. Therefore, we
define the accuracy metric of parsing as the ratio of
properly parsed log messages to the total number of log
messages. A log message is parsed correctly if its event
template matches one of the previously extracted log
message templates.

 Robustness of a log parser is measured by the extent of its
ability to work continuously within different datasets or
different sizes with the same efficiency.

 Efficiency is measured by the amount of time it takes the
parser to parse the data. Τhe less time spent, the higher the
efficiency.

TABLE II. SUMMARY OF THE LOGHUB DATASET

Dataset # Description # Log size #
Templates

(total) #

HDFS Hadoop distributed file system log 11,175,629 30

Spark Spark job log 33,236,604 456

Hadoop Hadoop mapreduce job log 394,308 298

ZooKeeper ZooKeeper service log 74,380 95

OpenStack OpenStack software log 207,820 51

Linux Linux system log 25,567 488

Mac Mac OS log 117,283 2,214

Thunderbird Thunderbird supercomputer log 211,212,192 4,040

BGL Blue Gene/L supercomputer log 4,747,963 619

HPC High performance cluster log 433,489 104

Apache Apache server error log 56,481 44

OpenSSH OpenSSH server log 655,146 62

Proxifier Proxifier software log 21,329 9

Android Android framework log 30,348,042 76,923

Health app Health app log 253,395 220

2) Evaluation Procedure

To evaluate HCLPars, we compared it with 14 log parsers
by using 16 standard datasets. The log parser parameters were
finely tuned through more than 8 runs, and the best results were
recorded.

VI. RESULTS

A. Accuracy

In this part, we evaluate the accuracy of HCLPars, and
compare it with the accuracy of 14 existing log parsers. To
make the comparison fair, we performed accuracy experiments
on subsets of the original log datasets, each containing 2,000
log messages.

Table III presents the accuracy results of the log parsers
evaluated in 16 log datasets. Each column indicates the
accuracy for 1 log parser across the datasets, helping define its
robustness across different log types. Each row represents the
accuracy of the parsing for different log parsers in a single

dataset. For ease of observation, we marked the accuracy
values greater than 0.9 in boldface, and highlighted the best
accuracy with an asterisk (*). We can observe that most of the
datasets were parsed accurately (more than 90%) by at least 2
log parsers. Totally, 12 out of the 15 log parsers provide the
best accuracy on at least 3 log datasets. To measure the overall
effectiveness of the log parsers, we calculated the average
accuracy of each log parser across different datasets, as shown
in the last row of Table III. We can observe that HCLPars is the
most accurate on average with a score of 0.9605, achieving
high accuracy (over 0.9) in 12 out of 16 datasets. It was
followed by POP, which achieved high accuracy in 10 datasets.

Fig. 7. Accuracy distribution of the log parsers in different types of logs.

B. Robustness

Robustness is an important measure of the practical use of a
log parser. In this part, we evaluate the robustness of HCLPars
and compare it with the existing log parsers from 2 aspects:
across different types and sizes of logs.

Figure 7 (boxplot diagram) indicates the accuracy
distribution of each log parser across the 16 log datasets. For
each box, the highest point of the vertical line corresponds to
the maximum accuracy values, while the lowest point
corresponds to the minimum accuracy values. In Figure 7, from
left to right, the log parsers are arranged in ascending order of
average accuracy. It can be noted that HCLPars has the highest
average accuracy. This means that it can efficiently parse
different types of log data, as its minimum accuracy is 0.889.
Additionally, we evaluated the robustness of HCLPars on
different log sizes. We sampled 40 original real-world datasets,
such as HDFS, BGL, Spark, Hadoop, ZooKeeper, Open-Stack,
HPC, and Proxifier (Table III). HDFS, Spark, Hadoop,
ZooKeeper, OpenStack are log files from distributed systems,
while HDFS, BGL, HPC, ZooKeeper, and Proxifier were used
in [17, 20]. For log dataset, we changed the size based on its
total size. For example, HDFS has a total size of 1.47 GB. We
changed its size to 300 KB, 1 MB, 10 MB, 100 MB, and 1 GB,
successively. Table IV shows the number of raw log messages
in the datasets. Each row presents 5 sample datasets created
from a real dataset. We chose the log parsers that achieved high
accuracy in more than 4 log datasets, i.e. AEL, IPLOM,
LenMa, MoLFI, Spell, Drain, and POP and compared them
with HCLPars.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11136

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

Fig. 8. Log parser accuracy on dataset log size.

Figure 8 shows the results of the parsing accuracy on
different log dataset volumes. Note that some lines are
incomplete in the Figure because some parsers, such as MoLFI
and LenMa, cannot finish the parsing in a reasonable period (4
hours). The results show that POP works continuously in most
cases except for the 0.24 drop in OpenStack, while the rest of
the log parsers have clear drops in accuracy or clear
fluctuations with increasing data volume in most datasets
(except for HDFS, ZooKeeper, and Spark). The experimental
results of HCLPars are shown in Table IV and Figure 8. Note
that the accuracy of HCLPars is very consistent for all datasets.
The accuracy on HDFS and Spark is 1 for all 5 samples. For
BGL and Hadoop, the fluctuation of the accuracy is 0.001 at
most. For Proxifier and ZooKeeper, the fluctuation of the
accuracy is 0.02 at most. When compared to the other parsers,
HCLPars is the only to obtain consistently high accuracy in all
datasets.

C. Efficiency

Efficiency is an important aspect to consider when parsing
log data. To evaluate the efficiency of the log parser, we record
the runtime it takes to complete the entire parsing process. Like
previous experiment settings, we evaluate the runtime of log
parsers on 40 sampled datasets from original real-world
datasets. The results can be seen in Figure 9. It is obvious that
the size of the log is directly proportional to runtime, i.e.
parsing time increases with log size. It is also obvious that the
efficiency of the log parser depends on the number of event
templates. The simpler the log data, containing a limited
number of templates, the easier the parsing process. The
efficiency of the log parser is shown when there are many log
templates. Drain and IPLoM have better efficiency, which
scales linearly with log size. POP has better efficiency with
large data. AEL and Spell do not scale well with many event
templates. LenMa and MoLFI do not scale well with large data.

Fig. 9. Running time of log parsers on dataset log size.

For instance, BGL contains 619 event tem plates. POP can
finish parsing within 5 min, while Drain and IPLoM take 10
min. AEL and Spell take a long time to complete parsing (1
hour), while LenMa and MoLFI cannot finish parsing 1 GB of
BGL in 2, 4, or 6 hours, respectively. The experimental results
of HCLPars are also shown in Table VI and Figure 9.

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11137

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

TABLE III. ACCURACY OF LOG PARSERS ACROSS DIFFERENT LOG TYPES

Dataset SLCT AEL IPLOM LKE LFA LogSig SHISO
Log

cluster
LenMa

Log

mine
Spell Drain MoLFI POP HCLPars Best

HDFS 0.455 0.978 1* 0.998 0.875 0.800 0.978 0.546 0.998 0.851 1* 0.997 0.998 1* 1* 1

Hadoop 0.432 0.567 0.956 0.700 0.900 0.654 0.865 0.566 0.885 0.867 0.778 0.938 0.957 0.998 0.955* 0.999

Spark 0.685 0.905 0.920 0.634 0.994 0.544 0.920 0.795 0.887 0.576 0.905 0.920 0.418 0.999 1* 1

Zookeeper 0.726 0.921 0.992* 0.578 0.839 0.700 0.660 0.789 0.841 0.688 0.964 0.967 0.839 0.990 0.987 0.992

OpenStack 0.867 0.758 0.871 0.787 0.200 0.200 0.722 0.696 0.743 0.743 0.764 0.733 0.213 0.880 0.900* 0.900

BGL 0.573 0.758 0.939 0.128 0.854 0.227 0.711 0.835 0.69 0.723 0.787 0.963 0.960 0.990 0.996* 0.996

HPC 0.839 0.900 0.800 0.574 0.817 0.354 0.325 0.788 0.830 0.784 0.654 0.887 0.824 0.950 1* 1

Thunderb 0.882 0.941 0.663 0.813 0.649 0.694 0.576 0.599 0.943 0.919 0.844 0.955* 0.646 0.955* 0.955* 0.955

Mac 0.558 0.764 0.673 0.366 0.555 0.478 0.595 0.604 0.698 0.872 0.757 0.787 0.636 0.889* 0.889* 0.889

Windows 0.697 0.690 0.567 0.990 0.588 0.689 0.701 0.713 0.566 0.993 0.989 0.997 0.406 0.876 1* 1

Linux 0.297 0.673 0.672 0.519 0.279 0.169 0.701 0.629 0.701 0.612 0.605 0.690 0.284 0.701 0.894* 0.894

Android 0.882 0.682 0.712 0.909 0.616 0.548 0.585 0.798 0.880 0.504 0.919* 0.911 0.788 0.876 0.919* 0.919

HealthApp 0.331 0.568 0.872 0.592 0.549 0.235 0.397 0.531 0.174 0.684 0.639 0.780 0.440 0.772 0.900* 0.900

Apache 0.731 1* 1* 1* 1* 0.582 1* 0.709 0.999 1* 1* 0.998 1* 1* 1* 1

OpenSSH 0.521 0.538 0.802 0.426 0.501 0.373 0.619 0.426 0.925 0.431 0.554 0.788 0.500 0.998 0.999* 0.999

Proxifier 0.518 0.518 0.519 0.455 0.145 0.969* 0.517 0.951 0.508 0.517 0.527 0.527 0.013 0.900 0.930* 0.969

Average 0.624 0.760 0.809 0.614 0.647 0.513 0.679 0.702 0.835 0.735 0.782 0.864 0.640 0.923 0.960

TABLE IV. LOG SIZE OF SAMPLE DATASETS

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

HDFS 300 KB 1 MB 10 MB 100 MB 1 GB

BGL 400 KB 1 MB 10 MB 100 MB 500 MB

Spark 300 KB 1 MB 10 MB 100 MB 1 GB

Hadoop 600 KB 1 MB 10 MB 15 MB 20 MB

ZooKeeper 4 KB 8 KB 16 KB 32 MB 64 KB

OpenStack 600 KB 1 MB 10 MB 15 MB 20 MB

HPC 600 KB 1 MB 10 MB 15 MB 20 MB

Proxifier 300 KB 600 KB 1200 KB 1800 KB 2400 KB

TABLE V. ACCURACY OF HCLPARS ON THE SAMPLE
DATASETS OF TABLE III.

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

HDFS 1 1 1 1 1

BGL 0.996 0.996 0.996 0.996 0.995

Spark 1 1 1 1 1

Hadoop 0.999 0.999 0.999 0.998 0.999

ZooKeeper 0.987 0.987 0.987 0.980 0.987

OpenStack 0.900 0.900 0.900 0.900 0.900

HPC 1 1 0.996 1 1

Proxifier 0.93 0.93 0.91 0.91 0.93

TABLE VI. RUNNING TIME OF HCLPARS (sec) ON SAMPLE
DATASETS IN TABLE III.

Dataset Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

HDFS 4.67 4 5 10 30

BGL 15.98 20.98 34.76 40.15 60

Spark 8.403 18.7 20 44.67 50.89

Hadoop 7 7.98 15 30.38 50

ZooKeeper 2.120 4.203 18.23 23.78 31.67

OpenStack 5.21 6 17.95 30 45

HPC 4.98 5.45 34 50 52

Proxifier 3.09 7.56 10.45 12.33 10.94

Obviously, the runtime that HCLPars consumes is directly
proportional to the log size, and the run time of HCLPars does
not exceed 1 minute for the largest dataset size (1 GB).
Compared to the other log parsers, HCLPars conducts the
fastest parsing, as it can parse large logs in a record time that
does not exceed 1 minute.

VII. CONCLUSION

This paper studied the automated parsing for large system
event logs. Initially, a comprehensive study was conducted on
the existing log parsing methods and the way they work. Based
on the result, the Automatic Log Parsing (HCLPars) method
using Spark was proposed, which consists of three steps:
removing parameter values according to acquired knowledge,
grouping of raw log messages based on similarity, and finding
the common parts in each group to get the log keys. Many
experiments were conducted on 16 sets of real-world data logs.
The results from these experiments indicate that HCLPars is
very effective, as it works accurately and efficiently on all
types of data logs, regardless of their size. In the future, we
hope to test this method on more data logs.

ACKNOWLEDGEMENT

This work was funded by the University of Jeddah, Jeddah,
Saudi Arabia, under grant No. (UJ-20-123-DR). The authors,
therefore, acknowledge with thanks the University of Jeddah
technical and financial support.

REFERENCES

[1] J. Svacina et al., "On Vulnerability and Security Log analysis: A
Systematic Literature Review on Recent Trends," in International
Conference on Research in Adaptive and Convergent Systems, Gwangju,
Korea, Oct. 2020, pp. 175–180, https://doi.org/10.1145/3400286.
3418261.

[2] J. Sun, B. Liu, and Y. Hong, "LogBug: Generating Adversarial System
Logs in Real Time," in 29th ACM International Conference on
Information & Knowledge Management, New York, NY, USA, Oct.
2020, pp. 2229–2232, https://doi.org/10.1145/3340531.3412165.

[3] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
"SherLog: error diagnosis by connecting clues from run-time logs," in
Fifteenth International Conference on Architectural support for

Engineering, Technology & Applied Science Research Vol. 13, No. 4, 2023, 11130-11138 11138

www.etasr.com Bin Lashram et al.: HCLPars: Α New Hierarchical Clustering Log Parsing Method

programming languages and operating systems, Pittsburgh, PA, USA,
Mar. 2010, pp. 143–154, https://doi.org/10.1145/1736020.1736038.

[4] X. Xu, L. Zhu, I. Weber, L. Bass, and D. Sun, "POD-Diagnosis: Error
Diagnosis of Sporadic Operations on Cloud Applications," in 44th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, Atlanta, GA, USA, Jun. 2014, pp. 252–263,
https://doi.org/10.1109/DSN.2014.94.

[5] A. Oliner, A. Ganapathi, and W. Xu, "Advances and challenges in log
analysis," Communications of the ACM, vol. 55, no. 2, pp. 55–61, Oct.
2012, https://doi.org/10.1145/2076450.2076466.

[6] X. Xie, Z. Wang, X. Xiao, Y. Lu, S. Huang, and T. Li, "A Confidence-
Guided Evaluation for Log Parsers Inner Quality," Mobile Networks and
Applications, vol. 26, no. 4, pp. 1638–1649, Aug. 2021,
https://doi.org/10.1007/s11036-019-01501-6.

[7] H. Dai, "logram: efficient log paring using n-gram model," M.S. thesis,
Concordia University, Montreal, QC, Canada, 2020.

[8] D. Aroussi, B. Aour, and A. S. Bouaziz, "A Comparative Study of 316L
Stainless Steel and a Titanium Alloy in an Aggressive Biological
Medium," Engineering, Technology & Applied Science Research, vol. 9,
no. 6, pp. 5093–5098, Dec. 2019, https://doi.org/10.48084/etasr.3208.

[9] M. V. Japitana and M. E. C. Burce, "A Satellite-based Remote Sensing
Technique for Surface Water Quality Estimation," Engineering,
Technology & Applied Science Research, vol. 9, no. 2, pp. 3965–3970,
Apr. 2019, https://doi.org/10.48084/etasr.2664.

[10] J. Zhu et al., "Tools and Benchmarks for Automated Log Parsing," in
41st International Conference on Software Engineering: Software
Engineering in Practice, Montreal, QC, Canada, Dec. 2019, pp. 121–
130, https://doi.org/10.1109/ICSE-SEIP.2019.00021.

[11] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A
Distributed Real-Time Search and Analytics Engine. Sebastopol, CA,
USA: O’Reilly Media, 2015.

[12] M. Nagappan, K. Wu, and M. A. Vouk, "Efficiently Extracting
Operational Profiles from Execution Logs Using Suffix Arrays," in 20th
International Symposium on Software Reliability Engineering, Mysuru,
India, Nov. 2009, pp. 41–50, https://doi.org/10.1109/ISSRE.2009.23.

[13] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, "Detecting
large-scale system problems by mining console logs," in 22nd
Symposium on Operating Systems Principles, Big Sky, MT, USA, Oct.
2009, pp. 117–132, https://doi.org/10.1145/1629575.1629587.

[14] R. Vaarandi, "A data clustering algorithm for mining patterns from event
logs," in 3rd IEEE Workshop on IP Operations & Management (IPOM
2003) (IEEE Cat. No.03EX764), Kansas City, MO, USA, Oct. 2003, pp.
119–126, https://doi.org/10.1109/IPOM.2003.1251233.

[15] A. A. O. Makanju, A. N. Zincir-Heywood, and E. E. Milios, "Clustering
event logs using iterative partitioning," in 15th ACM SIGKDD
international conference on Knowledge discovery and data mining,
Paris, France, Jul. 2009, pp. 1255–1264, https://doi.org/10.1145/
1557019.1557154.

[16] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, "A Lightweight
Algorithm for Message Type Extraction in System Application Logs,"
IEEE Transactions on Knowledge and Data Engineering, vol. 24, no.
11, pp. 1921–1936, Aug. 2012, https://doi.org/10.1109/TKDE.2011.138.

[17] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, "Towards Automated Log
Parsing for Large-Scale Log Data Analysis," IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 6, pp. 931–944, Aug.
2018, https://doi.org/10.1109/TDSC.2017.2762673.

[18] Y. Ohno, S. Morishima, and H. Matsutani, "Accelerating Spark RDD
Operations with Local and Remote GPU Devices," in 22nd International
Conference on Parallel and Distributed Systems, Wuhan, China, Dec.
2016, pp. 791–799, https://doi.org/10.1109/ICPADS.2016.0108.

[19] M. Cinque, D. Cotroneo, and A. Pecchia, "Event Logs for the Analysis
of Software Failures: A Rule-Based Approach," IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, Jun. 2013,
https://doi.org/10.1109/TSE.2012.67.

[20] M. Du, F. Li, G. Zheng, and V. Srikumar, "DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning," in
ACM SIGSAC Conference on Computer and Communications Security,

Dallas, TX, USA, Nov. 2017, pp. 1285–1298, https://doi.org/10.1145/
3133956.3134015.

[21] M. Zaharia et al., "Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing," in 9th USENIX
conference on Networked Systems Design and Implementation,
Berkeley, CA, United States, Apr. 2012, pp. 1–14.

[22] T.-F. Yen et al., "Beehive: large-scale log analysis for detecting
suspicious activity in enterprise networks," in 29th Annual Computer
Security Applications Conference, New Orleans, LA, USA, Dec. 2013,
pp. 199–208, https://doi.org/10.1145/2523649.2523670.

[23] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, "Abstracting
Execution Logs to Execution Events for Enterprise Applications (Short
Paper)," in The Eighth International Conference on Quality Software,
Oxford, UK, Aug. 2008, pp. 181–186, https://doi.org/10.1109/
QSIC.2008.50.

[24] J. C. Gower and G. J. S. Ross, "Minimum Spanning Trees and Single
Linkage Cluster Analysis," Journal of the Royal Statistical Society:
Series C (Applied Statistics), vol. 18, no. 1, pp. 54–64, 1969,
https://doi.org/10.2307/2346439.

[25] E. F. Krause, "Taxicab Geometry," The Mathematics Teacher, vol. 66,
no. 8, pp. 695–706, Dec. 1973, https://doi.org/10.5951/MT.66.8.0695.

[26] "Apache SparkTM - Unified Engine for large-scale data analytics,"
Apache Spark. https://spark.apache.org/.

[27] M. A. Biberci and M. B. Celik, "Dynamic Modeling and Simulation of a
PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving
Cycle," Engineering, Technology & Applied Science Research, vol. 10,
no. 3, pp. 5796–5802, Jun. 2020, https://doi.org/10.48084/etasr.3352.

[28] S. He, J. Zhu, P. He, and M. R. Lyu, "Loghub: A Large Collection of
System Log Datasets towards Automated Log Analytics." arXiv, Aug.
14, 2020, https://doi.org/10.48550/arXiv.2008.06448.

[29] T.-K. Hu, T. Chen, H. Wang, and Z. Wang, "Triple Wins: Boosting
Accuracy, Robustness and Efficiency Together by Enabling Input-
Adaptive Inference." arXiv, Feb. 24, 2020, https://doi.org/
10.48550/arXiv.2002.10025.

[30] W. Xu, "System Problem Detection by Mining Console Logs," Ph.D.
dissertation, University of California, Berkeley, CA, USA, 2010.

