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ABSTRACT 

In an electric power grid, Load-Frequency Control (LFC) plays a crucial role as it aims to maintain the 

system frequency at a nominal value, 50 or 60 Hz, by minimizing the effects of load changes. However, a 

modern power system is currently characterized by a huge number of nonlinearities and uncertainties, 

making control methodologies much more challenging. Among them, the nonlinear features of Governor 

Dead-Band (GDB) and Generation Rate Constraint (GRC) strongly affect the accuracy and performance 

of LFC applied to a power network. This study focused on designing an applicable and efficient LFC by 

proposing a novel Sliding-Mode Control (SMC) scheme. The traditional SMC can successfully solve 

several nonlinear control problems, and in case of having a reasonable adjustment, it is completely suitable 

to design the LFC strategy. The modified SMC, integrated with an effective optimization technique, i.e., 

Particle Swarm Optimization (PSO), can dramatically improve the performance of LFC. This paper 

presents numerical simulation results implemented in MATLAB/Simulink to demonstrate the feasibility 

and effectiveness of the proposed control strategy. 

Keywords-LFC; mSMC; PSO; nonlinearities; robust control 

I. INTRODUCTION  

Electricity consumption in a power system changes 
continuously and randomly over time, causing imbalances 
between load and demand, and therefore affecting the network 
frequency, which is one of the most important parameters in an 
electric power grid, forcing it to oscillate and deviate from the 
nominal value. As a result, the power system cannot maintain 
stable and economical operation. The Load-Frequency Control 
(LFC) control strategy aims to deal with this problem and bring 
the network back to stability and efficiency [1-10]. A practical 
power system is usually characterized by nonlinearities, such as 
Governor Dead-Band (GDB) and Generation Rate Constraint 
(GRC), which strongly affect the stability of a power system 
and make the implementation of LFC highly challenging [3-5]. 
In this aspect, applying traditional regulators, such as PI or 
PID, or modern controllers, based on fuzzy logic or neural 
networks, to efficiently solve the LFC issue cannot obtain 

acceptable performance. Therefore, it is essential to design a 
robust control method to tackle the nonlinearities of a practical 
power system for frequency regulation. 

Sliding Mode Control (SMC) is known as a robust and 
efficient control strategy, which is typically adopted to deal 
with not only nonlinearities but also with the uncertainties of a 
system [11-23]. Therefore, it has also been successfully applied 
to solve the LFC of a power system considering nonlinearities 
[10]. The current paper proposes a novel robust SMC-based 
LFC, which is modified from the fundamental SMC strategy. 
This robust control strategy is capable of dealing with the 
nonlinearities of a power system, especially the GDB and GRC 
characteristics. The proposed control scheme was simulated 
and numerically analyzed in MATLAB/Simulink, was 
compared with the PID regulator and the fuzzy logic controller, 
and the results obtained verified its feasibility and superiority. 
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II. RELATED WORKS 

LFC has been studied and applied in practical power 
systems for decades and a huge number of controllers have 
been proposed. In [2], several traditional LFC regulators, such 
as Integral (I), Proportional-Integral (PI), and Proportional-
Integral-Derivative (PID) were proposed. In [10], an effective 
integration of a PI-type fuzzy logic controller with suitable 
optimization techniques was introduced to address the LFC 
problem of an interconnected power system. In [4], several 
intelligent LFC controllers were presented, which exhibited 
feasible control performance. Among them, the SMC-based 
schemes applied for LFC have attracted the interest of 
researchers due to their ability to solve the control issues of 
uncertain and nonlinear power grids [12-14]. In [11], a control 
strategy was proposed using BESS based on an adaptive fuzzy 
super-twisting SMC method for a power system using wind 
energy. In [17], a new discrete-time SMC was proposed, using 
a state estimation method based on the fast sampling of 
measured output variables for the LFC in control areas of a 
power system consisting of thermal and hydropower plants. A 
new high-order adaptive SMC with a minimizing chattering 
mechanism was presented in [23]. In these studies, the SMC 
schemes had fixed internal parameters and might not be 
optimized. This characteristic may lead to a shortcoming that 
can be improved by an optimization technique. This study 
aimed to solve this issue by designing a modified SMC 
(mSMC) strategy based on Particle Swarm Optimization 
(PSO), which is one of the most well-known evolutionary 
optimization algorithms. 

III. TRADITIONAL SLIDING MODE CONTROL - AN 
OVERVIEW 

As mentioned above, SMC is a robust control strategy that 
addresses the nonlinearities and uncertainties of a system. To 
make a quick review of the SMC scheme, let's consider a 
simple case of a Single Input Single Output (SISO) nonlinear 
control system below [16, 19]: 

��� = �� + �� = 	(�) + �(�). �� = �� + �� = ℎ(�)   (1) 

where � = [��, ��, … , ��]� ∈ ℜ�is a state vector of the control 
system, � ∈ ℜ is the input control signal, � ∈ ℜ is the output 
signal, A, B, C, and D are state matrices for input and output 
vectors, 	(�) ∈ ℜ�  and �(�) ∈ ℜ�  are two functions 
describing the dynamics of the system, and ℎ(�) ∈ ℜ is a 
function representing a relationship between the state vector x 
and the output y. It is required that the real output signal y(t) 
should track the desired output yd(t), meaning that the error e 
between them must satisfy 

����→∞�( ) = ����→∞|�( ) − �#( )| = 0  (2) 

Assuming that it is possible to differentiate the system (1) a 
number of n times, one can be obtained as: 

�(�) = %(�) + &(�). �    (3) 

where:    

%(�) = '(�ℎ(�)  

&(�) = ')'(�*�ℎ(�) ≠ 0  

'(ℎ(�) = ,ℎ(-)
,- 	(�) = .,ℎ(-)

,-/ , . . . , ,ℎ(-)
,-0 1 [	�(�), . . . , 	�(�)]�  

'(2ℎ(�) = ,3456/
ℎ(-)

,- 	(�)   

')'(2ℎ(�) = ,345ℎ(-)
,- �(�)  

The error between the desired and real output signals can be 
calculated as: 

�( ) = �( ) − �#( )    (4) 

This error and its differentials are used to determine the 
following function:  

7 = �(�*�) + 8��(�*�)+. . . +8�*��� + 8�*�� (5) 

where n coefficients ξi (i = 1, 2, …n) are positive real numbers 
and they must be chosen to satisfy the Hurwitz polynomial: 

9(:) = :�*� + 8�:�*�+. . . +8�*�: + 8�*� (6) 

It is clear that all roots of the equation Δ(s)=0 decide the 
transient response of the process given in (2) with the following 
constraint: 

7 = �(�*�) + 8��(�*�)+. . . +8�*��� + 8�*�� = 0 (7) 

Equation (7) defines a sliding surface with the characteristic 
polynomial ∆(s) indicated in (6). The purpose of the control 
methodology is to force y(t) to track the reference signal yd(t) 
with an acceptable tolerance. This requirement is converted 
into a simple control problem: determination of a control signal 
u(t) to meet 7 → 0. 

To prove the above statement, let's select a Lyapunov 
function as follows: 

; = �
� 7�     (8) 

The first-order differential of (8) is: 

;� = 77�      (9) 

The control signal u(t) needs to be chosen to satisfy the 
following constraint: 

;� = 77� < 0     (10) 

From (5), it is straightforward to deduce the following: 

7� = �(�) + 8��(�*�)+. . . +8�*��= + 8�*��� = �(�)( ) −
�#(�)( ) + ∑ 8�*2�(2)�*�2?�     (11) 

which in combination with (3) can give: 

7� = −�#(�)( ) + %(�) + &(�). � + ∑ 8�*2�(2)�*�2?�  (12) 

The control signal vector u(t) is selected to satisfy: 

7� = −@:��A(7)    (13) 

where K is a positive real number. Eventually, the control 
signal u(t) is: 
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�( ) = �
B(-) C�#(�)( ) − %(�) − ∑ 8�*2�(2) −�*�2?�

@:��A(7)D     (14) 

With the above control law, the first-order differential of 
the Lyapulov function can be computed as: 

;� = 77� = −@7:��A(7) = −@|7| < 0(∀7 ≠ 0) (15) 

The statement mentioned in (15) clarifies the asymptotical 
stability of the given control system according to Lyapulov's 
theory. The following section presents a modified SMC 
strategy applied to the LFC proposition. 

IV. MODIFIED SMC STRATEGY APPLIED TO THE 
LFC PROBLEM 

A modified control scheme needs to be proposed to apply 
SMC as a more effective strategy. 

A. The Modified SMC Strategy 

Several SMC methods deal with the nonlinear control 
problem. The SMC method presented in the previous section is 
one of the fundamental versions and has been widely applied to 
simple SISO systems. A modified version of SMC was 
considered to create a more efficient LFC scheme for practical 
power systems with nonlinearities and uncertainties (i.e., GDB 
and GRC). Recall the state-space model of a nonlinear system 
in the following form: 

F�(�) = %(�, �� , �= , . . . , �(�*�),  ) + &(�,  ). �( )
�(�)( ) = �(�)( )  (16) 

In this aspect, the sliding surface can be defined as follows: 

7(�,  ) = G #
#� + HI(�*�) . �( )   (17) 

where e(t) is the error for the time between the real and the 
desired output, as mentioned in (4). When compared with the 
traditional sliding surface indicated in (5), it is clear that all 
coefficients ξi have been replaced with only one factor λ (17). It 
is highly significant to seek the optimal factors because the 
number of variables to be optimized has been dramatically 
reduced. Therefore, this is the first proposed modification of 
the SMC strategy. 

As mentioned above, the crucial idea of SMC is to design 
the switching control law in a suitable way to assure the 
stability of the nonlinear system. The system state needs to be 
landed on the sliding surface and reach zero even in case of 
occurring disturbances. To design an appropriate switching 
law, the sliding surface mentioned in (17) needs to be carefully 
taken into consideration. Differentiating this function gives: 

7(�,  ) = G #
#� + HI� �( ) = ∑ #065

(#�)065 H2�( )�2?J  (18) 

Similar to (11), combining (17) and (15), can give: 

7�(�,  ) = ��( ) − �#(�)( ) + H�[�( ) − �#( )] +
∑ #065

(#�)065�*�2?� H2�( ) =  

−�#(�)( ) + C%K�, �� , �= , … , �(�*�),  L + &(�,  )�( )D +
H�[�( ) − �#( )] + ∑ #065

(#�)065�*�2?� H2�( )  (19) 

where ∑ #065
(#�)065 H2�( ) = M̱(2)�*�2?�  describes the lower-order 

nonlinear systems. These systems have lower order than n, and 
they can be omitted in a particular perspective on taking care of 
the n-order nonlinear system. It is assumed that the nonlinear 
part %(�, �� , �= , . . . , �(�*�),  )  can be estimated as %̄(�, �� , �= , . . . , �(�*�),  ).  When the derivative of the sliding 
surface reaches zero, an estimate control law can be calculated: 

�P( ) = �
B(-,�) [−%PK�, �� , �= , … , �(�*�) ,  L + �#(�)( ) +

H�K�( ) − �#( )L + M(2)]    (20) 

The switching control law here can be chosen as: 

�( ) = �̄( ) − Q
B :��A(7)   (21) 

where �̄( ) is computed from (20). To testify to the stability of 
the control law given in (20), a Lyapunov function candidate 
similar to (8) can be selected as follows: 

;(7) = �
� 7�     (22) 

From (19) and (21), omitting the lower-order systems, the 
following can be achieved: 

7� = C%(�, �� , . . . , �(�*�),  ) − %̄(�, �� , . . . , �(�*�),  )D −@:��A(7)     (23) 

Assuming that the tolerance of the estimate is small 
enough, it is straightforward to deduce the following equation: 

7� ≈ −@. :��A(7)    (24) 

In this perspective, the derivative of the Lyapunov function 
candidate is expressed as 

;� (7) = 7. 7� = −@. 7. :��A(7) = −@. |7| ≤ 0∀7 (25) 

It is obvious from (25) that the modified control law 
presented in (21) can be asymptotically stable according to 
Lyapulov's theory. Hence, it can be applied to solve the LFC 
problem of an electric power interconnection with 
nonlinearities and uncertainties. 

B. The Robust SMC-based LFC Scheme 

A power system with nonlinearities, such as GDB and 
GRC, may be of a control plant which is difficult to apply the 
LFC strategies. In this context, the modified SMC method, as 
mentioned previously, is capable of being a robust and efficient 
control solution. To clarify the superiority of the proposed LFC 
strategy based on the modified SMC, let's consider a single-
area power system using a non-reheat turbine as shown in 
Figure 1. The GDB and GRC are also considered for this 
electric power grid. Four steps need to be executed to design a 
robust SMC-based LFC strategy. 

1) Step 1: Build an Ordinary Differential Equation (ODE) 
Model for the Given Control Plant 

As shown in Figure 1, the ODE model can be built as 
follows. First, let the deviation of system frequency ∆f be set as 
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a state variable x. From Figure 1, considering the load-machine 
model, it is straightforward to yield the following: 

�(:) = 9	(:) = (9T�(:) − 9T3(:)) QU
�VW�U (26) 

9T�(:) = 9T3(:) + �U
QU �(:): + �

QU �(:)  (27) 

Thereafter, considering the non-reheat turbine model: 

9T�(:) = (9XY(:) − 9T�(:)) �
�Z . �W  (28) 

and combined with (27), it is easy to get: 

9XY(:) = 9T3(:) + �U
QU �(:): + �

QU �(:) + 9T3(:)[�: +
�Z�U
QU �(:):� + �Z

QU �(:):    (29) 

From (29), the corresponding ODE model can be obtained 
as follows: 

∆XY( ) = ∆T3( ) + �U
QU ��( ) + �

QU �( ) + [�∆T3� ( ) +
�Z�U
QU �=( ) + �Z

QU ��( )    (30) 

From a governor model, a relationship between control 
signal u and valve/gate position change ∆XG can be described 
as: 

.�(:) − �
] �(:)1 �

�VW�^ = 9XY(:)  (31) 

The corresponding ODE model is: 

9X�Y( ) = �
�^ .�( ) − �

] �( ) − 9XY( )1   (32) 

Differentiating (30), and then substituting it for (32), the 
final ODE model is yielded below: 

�⃛( ) = −` �
�^ + �

�Z + �
�Ua �=( ) − ` �

�^�Z + �
�Z�U +

�
�U�^a ��( ) − ` QU

]�^�Z�U + �
�^�Z�Ua �( ) − QU

�U ∆T3= ( ) −
QU

�^�U ∆T3� ( ) − QU
�^�Z�U ∆T3( ) + QU

�^�Z�U �( )  (33) 

2) Step 2: Designing the Sliding Surface 

The ODE model in (33) has an order of three, thus a two-
order sliding surface should be selected below: 

7(�,  ) = G #
#� + HI� = �=( ) + 2H��( ) + H��( ) (34) 

It is noted that the desired frequency deviation should be 
equal to zero, hence, one can be obtained below: 

�( ) = �( ) − �#( )|-c(�)?J = �( )  (35) 

From (34) and (35), the derivative of the sliding surface is: 

7�(�,  ) = �⃛( ) + 2H�=( ) + H���( )  (36) 

3) Step 3: Designing the Equivalent Control Law 

From (36), letting the derivative of the sliding surface be 
equal to zero gives: 

�⃛( ) = −2H�=( ) − H���( )   (37) 

Combining the above equation with (33), it is clear to 
establish an estimate of the control signal as follows: 

�P( ) = �
QU

K[Y[� + [�[d + [d[Y − 2H[Y[�[dL�= ( ) +
�
QU

K[d + [Y + [� − H�[Y[�[dL�� ( ) + `�
] + �

QU
a �( ) +

[Y[�∆T3= ( ) + [�∆T3� ( ) + ∆T3( )   (38) 

4) Step 4: Designing the Sliding Control Law 

As mentioned in (20), the sliding control law can be: 

�( ) = �P( ) − @:��A(7) = �
eU

K[Y[� + [�[d + [d[Y −
2H[Y[�[dL�= ( ) + �

QU
K[d + [Y + [� − H�[Y[�[dL��( ) +

`�
] + �

QU
a �( ) + [Y[�∆T3= ( ) + [�∆T3� ( ) + ∆T3( ) −

@:��A(7)     (39) 

V. THE ELECTRIC POWER SYSTEM UNDER STUDY 

Figure 2 shows the simulated model built, in 
MATLAB/Simulink, to investigate the applicability of the 
proposed SMC-based LFC strategy in dealing with the 
nonlinearities of a power system (i.e. GDB and GRC). This 
model includes a power system with the nonlinearities of GDB 
and GRC. The simulation parameters are presented in [2]. In 
addition, an SMC controller was built to create the control 
signal to the governor, to automatically modulate the opening 
angle of the heat steam valve of the turbine through the 
governor response. This control manner can hereby maintain 
the system frequency at the nominal value within an acceptable 
tolerance. To clarify the superiority of the proposed SMC 
controller over the conventional LFC regulators, a PID [2] and 
a fuzzy logic [24] counterpart were also considered. 

When performing numerical simulations, the nonlinearities 
including GDB and GRC are chosen as in [2]. It should be 
noted that the PSO algorithm was adopted to determine three 
parameters, as it is one of the most effective optimization 
techniques [25]. The optimization mechanism begins with a 
random solution which is defined as initialization. The aim is to 
find the optimal solution by iterations similar to generations in 
the genetic algorithm. Each solution must be evaluated by an 
objective or a fitness function. The candidate fitness function 
selected in this study is: 

	� A�:: = 	f�gh = i |9	( )|.  j �
J   (40) 

where T denotes a simulation time. This fitness candidate was 
similarly employed to an Integration of Time and Absolute 
Error (ITAE) control criterion.  

Three parameters need to be optimized: K and λ indicated 
in (34) and (39), and Tf, which is used with regard to a time 
constant of a filter. It should be necessary to use a filter with a 
suitable time constant Tf to the disturbance ∆PL(t), which is 
considered to be an input of the control system, to ensure its 
possible derivative when calculating the sliding control signal. 
Figure 3 shows the operating principle of the whole system. A 
step-load change of a 2% amplitude is embedded in the system.  
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Fig. 1.  A single-area power system considering GDB and GRC. 

 
Fig. 2.  Simulated model for applying robust mSMC-based LFC strategy 

 
Fig. 3.  Convergence results for the PSO algorithm applied to the mSMC. 

 
Fig. 4.  The convergence of three parameters resulting from PSO. 
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Fig. 5.  Frequency deviation and sliding surface resulting of mSMC. 

 

Fig. 6.  Results for the proposed SMC-based LFC strategy 

Figures 3-6 illustrate the obtained numerical results. Figure 
3 shows the convergence of the PSO algorithm. After several 
iterations, it is clear that the global and local values are the 
same, hereby the three parameters converge, as shown in 
Figure 4. Figures 5 and 6 show the frequency deviation and 
load changes regarding their values, the first and second 
derivatives, the fluctuations in the system frequency, and the 
sliding mode surface. 

Figure 7 shows the simulation results of frequency 
deviations in the case of using mSMC, PID [2], and PI-like 
fuzzy logic controllers (PI~FLC) [24]. Figure 8 describes the 
undershoots of oscillations regarding frequency changes for all 
three FLC controllers. These Figures show that the proposed 

mSMC-based LFC can damp the dynamic deviation of 
frequency quickly against the presence of nonlinearities and 
disturbance. The PID-based LFC controller and the fuzzy logic 
one can also force the system frequency to zero, but obtain 
poor control performances such as higher undershoots and 
much longer settling times. 

 

 

Fig. 7.  Frequency deviations resulting from different LFC controllers 

 

Fig. 8.  Comparison of different LFC controllers regarding undershoots 
demonstrating the better performance of mSMC. 

In this context, the mSMC strategy outperforms the other 
two counterparts. In conclusion, the robustness and 
effectiveness of the proposed mSMC control strategy were 
clearly demonstrated when dealing with the LFC problem 
considering nonlinearities. 

VI. CONCLUSIONS 

This paper presented a novel robust SMC-based LFC 
strategy to deal with the nonlinearities of an electric power 
system. The effect of nonlinearities (i.e. GDB and GRC) was 
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minimized successfully when the proposed control method was 
applied. The superiority of the proposed control strategy over 
the traditional PID regulator and the traditional fuzzy logic 
counterpart was also proved through several numerical 
simulations. The promising results show the feasibility of the 
proposed control strategy. Future work should focus on 
extending the power system to be more complicated and 
practical, e.g. having more generators and controllers. 
Furthermore, uncertain parameters should be considered to 
reach the real conditions of electric power grids. 
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