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ABSTRACT 

This study investigated the buckling behavior of Porous Functionally Graded Material (PFGM) plates. The 

present model assumes unevenly distributed porosity along the plate thickness and the use of the novel 

hyperbolic shear deformation functions and hyperbolic tangent and secant thickness stretching functions. 

In the present work, a porous Functionally Graded (FG) plate was analyzed by the principle of virtual 

work in order to understand the buckling behavior under uniaxial and biaxial compressive loading. The 

Rayleigh quotient method was applied to find the critical buckling load. The mesh convergence was 

investigated on a Finite Element (FE) model, and the accuracy of the results was compared with the prior 

research. The results of the proposed model match reasonably well with the ones of the published 

literature. Thorough parametric studies were performed to investigate the effect of porosity on the critical 

buckling load of the PFGM plate. 

Keywords-FG porous plate; finite element method; buckling load; porosity 

I. INTRODUCTION  

The expansion of modern society's infrastructure has 
created the need for new smart building materials, which ought 
to be more readily available, safer, and more ecologically 
friendly. Numerous investigations on Functionally Graded 
Material (FGM) beams, plates, and shells have been carried out 
[1, 2]. Structures with graded porosity have inserted pores into 
the microstructure to satisfy the required structural 
performance by customizing the local density of the structure, 
are one of the most recent innovations in FGM. FGM has a 
progressive change in composition along the volume, which 
causes gradual changes in the mechanical material's 
characteristics. In a variety of technical applications, PFGMs 
have significant potential. For instance, graded metal foam 
presents special promise for lightweight construction in the 
civil, automotive, and aerospace industries [3, 4]. Additionally, 
PFGMs are the ideal choice for structures under dynamic or 
impact loads due to their great energy-absorbing capacity [5, 
6]. Despite its practical significance, research in this 
developing field is still in its infancy and fairly sparse, with the 
majority of earlier work focused on the compression behavior 
[7, 8]. For the porous materials model, a progressive change in 
material characteristics results from the change in porosity over 
the thickness direction of the structures. So, scientists and 

researchers have paid much attention to structures composed of 
porous-cellular materials [9].  

In order to investigate more the annular sectorial porous 
plates' respond to evenly distributed in-plane compressive 
pressure in terms of buckling and vibration, authors in [10] 
suggested an analytical method. Many shear deformation 
theories have been proposed, using various shape functions, 
and assumptions to developed high-order shear theory (HSDT) 
using a sinusoidal function for FG sandwich members [11-13]. 
Using classical plate theory, authors in [14] examined the 
buckling modes of rectangular FG plates subjected to in-plane 
stress. Mechanical and thermal loads were applied on FG 
circular plates, and nonlinear bending and post-buckling 
behavior were analyzed by Von Karman nonlinearity. The 
result shows that FG plates have good resistance against 
thermal load or a combination of mechanical and thermal loads 
than the fully metallic plates [15]. The post-buckling behavior 
of imperfect nanobeams formed of metal foam with different 
porosity distributions was studied in [16]. Authors in [17, 18] 
used the traditional plate theory to examine thermal and 
mechanical buckling of FG circular plates constructed of 
porous material. Buckling analysis of FG plates with two 
different kinds of thermal loads was discussed in [19]. Authors 
in [20] investigated the impact of evenly and unevenly 
distributed porosity on the critical buckling load in the FG 
plates and constructed a mathematical model. 
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The current work investigates the uniaxial and biaxial 
compression behavior of PFGM plates using hyperbolic shear 
deformation functions and hyperbolic tangent and secant 
thickness stretching functions. There is a need to develop a 
simple two-dimensional model to analyze the buckling 
behavior of porous FGM plates. Hence, in the current work, a 
C0 FE model is created based on the new mathematical model 
for simplifying buckling analysis. The FE model was tested for 
convergence and the obtained results were validated with the 
literature. The buckling behavior was investigated 
parametrically to examine the effect of porosity with variations 
of the side to thickness ratio. 

II. FORMULATION 

A. Geometry of the Porous FG Plate 

Figure 1 shows the geometrical characteristics of the porous 
FG plate whose length, width, and thickness are a, b, and h, 
respectively, and which has unevenly distributed porosity. The 
mid-plane of the plate is taken as the reference plane (z = 0). 

 

 

Fig. 1.  Geometry of the porous FG plate. 

B. Homogenization of the FG Plate 

Effective material parameter like Young’s modulus E�z� 
and Poisson ratio µ�z�, can be determined as a function of 
thickness coordinates from the mid-plane. Voigt's rule of 
mixture homogenization technique is utilized to determine the 
mechanical characteristics of the PFGM plate, considering 
unevenly porosities across the plate thickness direction, 
effective properties can be determined as follows: 

E�z� = E��	 + �E�� − E��	� ∗ ��� + ����
  

            −ξ ����������� �1 − 2 |!|" �   (1) 

µ�z� = µ��	 + �µ�� − µ��	� ∗ ��� + ����
  

             −ξ �µ���µ����� �1 − 2 |!|" �   (2) 

where Emet, µmet and Ecr, µcr are the Young’s modulus and 
Poission’s ratio of metal and ceramic, respectively. Power 
index (p≥ 0) equal to zero corresponds to the purely ceramic 
state. Vcr is the ceramic volume fraction and Vmet is the metallic 
volume fraction. Their relation is: Vcr+ Vmet =1 

The proposed HSDT uses the shear deformation function 
f(z) associated with βsx and βsy which is represented in (3). To 
define the transverse shear strain distribution along the plate 
thickness, the thickness stretching function t(z) associated with 

ϕ is expressed in (4) to include the thickness stretching 
deformation of the plate.  f�z� = zcosh ���� − hsinh ����   (3) 

t�z� = �./� � 01 − tanh� ��2 − ./� sech� ��  (4) 

In-plane displacements u, v, and transverse displacement w 
are expressed in (5)-(7) using the shape function f(z) and 
thickness stretching function t(z). For C0 continuity of the FE 
analysis, the out of plane derivatives are complex due to the 
involvement of the strain with the second-order derivatives, but 
C1 continuity is extremely intricate and difficult to model. 
Therefore, new nodal unknowns are substituted for the out-of-
plane derivatives to verify that the displacement field variables 
are continuous within the elements and need the application of 
the penalty approach during the FE formulation. 

u�x, y, z� = u8�x, y� − zα:;�x, y� − <zcosh ���� −hsinh ����= β?;�x, y�    (5) v�x, y, z� = v8�x, y� − zα:A�x, y� − <zcosh ���� −hsinh ����= β?A�x, y�    (6) w�x, y, z� = w8�x, y� + <�./� � 01 − tanh� ��2 −
./� sech� ��= ϕ�x, y�    (7) 

where DEF = GHGF , DEI = GHGI . 

C. Kinematics of Structure 

The strain–displacement connection is derived by 
differentiating the displacement field equations as given below: ∈;;= KLMK; − z KNOPK; − f�z� KQRPK;    

∈AA= KSMKA − z KNOTKA − f�z� KQRTKA    
∈��= K	UK� ϕ            
γ;A = �KLMKA + KSMK; � − z �KNOPKA + KNOTK; �   (8) 

          −f�z�{KQRPKA + KQRTK; }    
γ;� = KYZK; − α:; − K[UK� β?; + t�z� K\K;   
γA� = KYZKA − α:A − K[UK� β?A + t�z� K\KA  

D. Constitutive Relations for the Porous FG Plate 

The linear constitutive relationship between stresses and 
strain is given by the constitutive matrix. 

Q�� = Q�� = Q.. = ����^�_µ`a�_.µ`_�µb   
Q�� = Q�. = Q�. = ����µ���µ��_.µ`_�µb    (9) 
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Qcc = Qdd = Qee = ��������µ�  

⎩⎪⎨
⎪⎧σ;;
σAA
σ��
τ;A
τ;�
τA�⎭⎪⎬

⎪⎫ =
⎣⎢⎢
⎢⎢⎡
Q�� Q�� Q�. 0 0 0Q�� Q�� Q�. 0 0 0Q�. Q�. Q.. 0 0 00 0 0 Qcc 0 00 0 0 0 Qdd 00 0 0 0 0 Qee⎦⎥⎥

⎥⎥⎤
⎩⎪⎨
⎪⎧ ϵ;;ϵAAϵ��
γ;A
γ;�
γA�⎭⎪⎬

⎪⎫
 (10) 

E. Equations of Motion 

Euler-Lagrange equations of motion can be derived by 
applying the virtual work principle to the strain energy (U), the 
external work done by compressive forces (C), and the artificial 
constraint (R) of PFGM plate system as shown in (11): ∮ δ�U + R − C� ∂Ω = 0   (11) 

The strain energy of the PFGM plate is shown in (12): U = �� ∭ ϵ|σ ∂x ∂y ∂z  

    = �� ∬ ϵ8|{� Z|[Q��]Z ∂z}ϵ8 ∂x ∂y  (12) 

The critical buckling load along x and y axes is represented 
by Nx and Ny, while Nxy represents shear buckling. The total 
work done by the external compressive forces acting on the 
plate edges: 

V = �� ∭ <N; KYK; � + NA KYKA � + 2N;A KYK; KYKA = dxdydz (13) 

The material rigidity matrix [D] is obtained from the 
constitutive matrix given in (10) and the thickness matrix given 
in (14). This matrix facilitates the use of the proposed HSDT as 
an equivalent single layer theory to downscale the 3-D domain 
to the 2-D domain for the analysis. 

[Z] =
⎣⎢
⎢⎢
⎢⎡1 0 0 0 0 z 0 0 0 0 f� 0 0 0 0 0 0 00 1 0 0 0 0 z 0 0 0 0 f� 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t�� 0 00 0 1 0 0 0 0 z 0 0 0 0 f� 0 0 0 0 00 0 0 1 0 0 0 0 1 0 0 0 0 f �� 0 0 t� 00 0 0 0 1 0 0 0 0 1 0 0 0 0 f �� 0 0 t�⎦⎥

⎥⎥
⎥⎤
 (14) 

[D] = � [Z]|���/���_�/� �Q���[Z] ∂z   (15) 

The geometric rigidity matrix [DG] is obtained by [�]�  and 
the thickness coordinate matrix [Zb]: [D�] = � [Z:]|�N��[Z:]���/���_�/� ∂z   (16) 

where: [N]� = � N; N;AN;A NA � ,  [Z:] =  � 10t�z�0
010t�z��  

The displacement in the FE model can be represented as the 
linear combination of node shapes and corresponding shape 
functions. The material stiffness matrix and the geometrical 
stiffness matrix are expressed in (17) and (18), respectively. [J] 
is the Jacobian matrix of the system, [J] = ∂(x,y)/∂(ζ,η). [K] = ∬[B]|[D][B] [J] ∂ζ ∂η   (17) [K�] = ∬[B�]|[D�][B�] [J] ∂ζ ∂η  (18) 

III. RESULTS AND DISCUSSION 

In this work, buckling analysis of porous FG plate was 
carried out using the FE formulation based on the nine-node 
isoparametric C0 continuous shape function.  

A. Model Convergence and Validation 

Based on the suggested innovative HSDT, the governing 
equations for the FE model, which is utilized for the buckling 
analysis of the PFGM plate, are obtained from the principle of 
virtual work. In-house MATLAB algorithm for FE formulation 
is written using the nine-noded Lagrangian isoparametric shape 
functions. Using mesh convergence studies, the FE model is 
evaluated and its performance is assessed. The FE analysis is 
carried out on simply supported square (SSSS) PFGM plate. 
The material properties are shown in Table I. To predict the 
buckling response of the PFGM plate, we consider the plate to 
be subjected to axial in-plane forces. 

TABLE I.  MATERIAL PROPERTIES 

Material Poission’s ratio 
Density 

(kg/m3) 

Modulus of 

elastiity (GPa) 

Al2O3 0.3 2702 70 

Al 0.3 3800 380 
 

To investigate the change in the dimensionless critical 
buckling load with various power law indices, different uneven 
porosity distribution types and mesh sizes were considered. 
The numerical solutions are computed using the novel theory, 
and the results are compared with the ones in the literature. The 
non-dimensional critical buckling ratio is expressed as: 

2

cr 3

m

N×a
N = 

 E h
     (19) 

where N is the critical buckling load due to the external 
compressive load. 

Several mesh sizes were used and the results are reported in 
Table II in terms of non-dimensional critical buckling load. It 
can be seen that as the power law index increases, the non-
dimensional critical buckling load for uniaxial compression 
loading decreases. It also decreases with increase in porosity 
for constant size to thickness ratio. For validation and accuracy, 
the results were compared with the findings of [20]. For a 
critical buckling load, it has been observed that a mesh size of 
13×13 can provide sufficient convergence. Table III gives the 
critical buckling loads for a square simply supported PFGM 
plate for biaxial compressive buckling loads. In Table IV, the 
dimensionless critical buckling load for uniaxial compressive 
loading is presented for various porosities. A square Al/Al2O3 
PFGM plate was analyzed for buckling with all sides simply-
supported. It has been observed that, with a given size-to-
thickness (a/h) ratio, a rise in the porosity results in a gradual 
decrease in the non-dimensional critical buckling load. It is also 
observed that an increase in the a/h ratio results in an increase 
in the critical buckling load. Table V gives the dimensionless 
critical buckling load for biaxial compressive load. Figure 2 
depicts that the Young's modulus decreases as porosity 
increases. Figure 3 depicts the variation of non-dimensional 
critical buckling ratio with power index for various porosities 
for a square plate in the simply supported condition. 
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TABLE II.  NON-DIMENSIONAL UNIAXIAL CRITICAL BUCKLING LOADS FOR VARIOUS POWER LAW EXPONENTS AND POROSITY 
FOR A SQUARE AL/AL2O3 PFGM PLATE 

a/h Remark 
ξ = 0.2 ξ = 0.4 

p=0 p=0.1 p=0.5 p=1 p=0 p=0.1 p=0.5 p=1 

10 

[20] 17.9991 16.1914 11.4689 8.5746 17.3877 15.5757 10.7802 7.7486 

Present (5×5) 18.1196 16.3440 12.1682 9.8071 17.5063 15.7324 11.5284 9.0943 

Present (7×7) 18.0764 16.3036 12.1293 9.7668 17.4662 15.6949 11.4920 9.0559 

Present (9×9) 18.0657 16.2934 12.1190 9.7557 17.4562 15.6856 11.4823 9.0452 

Present (11×11) 18.0621 16.2900 12.1153 9.7514 17.4529 15.6824 11.4788 9.0410 

Present (13×13) 18.0606 16.2886 12.1136 9.7494 17.4515 15.6810 11.4772 9.0390 

TABLE III.  NON-DIMENSIONAL BIAXIAL CRITICAL BUCKLING LOADS FOR VARIOUS POWER LAW EXPONENTS AND POROSITY 
FOR A SQUARE AL/AL2O3 PFGM PLATE 

a/h Remark 
ξ = 0.2 ξ = 0.4 

p=0 p=0.1 p=0.5 p=1 p=0 p=0.1 p=0.5 p=1 

10 

[20] 8.9995 8.0957 5.7344 4.2873 8.6938 7.7894 5.3901 3.8743 

Present (5×5) 9.0598 801720 6.0842 4.9043 8.7531 7.8662 5.7644 4.5483 

Present (7×7) 9.0382 8.1518 6.0648 4.8842 8.7331 7.8474 5.7462 4.5291 

Present (9×9) 9.0329 8.1467 6.0596 4.8787 8.7281 7.8428 5.7414 4.5238 

Present (11×11) 9.0310 8.1450 6.0578 4.8765 8.7264 7.8412 5.7396 4.5217 

Present (13×13) 9.0303 8.1443 6.0569 4.8755 8.7257 7.8405 5.7388 4.5207 

 

TABLE IV.  NON-DIMENSIONAL UNIAXIAL CRITICAL 
BUCKLING LOAD FOR VARIOUS POROSITIES FOR A 

SQUARE AL/AL2O3 PFGM PLATE (p= 0.5) 

Boundary 

condition 
a/h ξ =0 ξ =0.1 ξ =0.3 ξ =0.5 

SSSS 

5 11.1799 10.8671 10.2275 9.5633 

10 12.7376 12.4269 11.7972 11.1528 

15 13.0766 12.7679 12.1443 11.5094 

20 13.2010 12.8932 12.2719 11.6409 

25 13.2608 12.9533 12.3332 11.7040 

50 13.5202 13.0430 12.4240 11.7968 

100 13.3834 13.0762 12.4573 11.8306 

TABLE V.  NON-DIMENSIONAL BIAXIAL CRITICAL 
BUCKLING LOAD FOR VARIOUS POROSITIES FOR A 

SQUARE AL/AL2O3 PFGM PLATE (P= 0.5) 

Boundary 

condition 
a/h ξ =0 ξ =0.1 ξ =0.3 ξ =0.5 

SSSS 

5 5.5900 5.4336 5.1136 4.7810 

10 6.3689 6.2136 5.8988 5.5766 

15 6.5384 6.3841 6.0723 5.7549 

20 6.6006 6.4467 6.1361 5.8207 

25 6.6305 6.4768 6.1667 5.8522 

50 6.6752 6.5216 6.2121 5.8986 

100 6.6918 6.5382 6.2288 5.9155 

 

IV. CONCLUSIONS 

In this paper, buckling analysis of PFGM plate was carried 
out using FE formulation based on the nine-node isoparametric 
C0 continuous shape functions from the proposed displacement 
fields with hybrid hyperbolic tangent and secant function for 
accounting the effect of thickness stretching which may arise 
due to porosity. 

The performance of the FE model was assessed as 
satisfying after comparing the findings with the existing 
literature. For the parametric study, the model was transformed 
for different a/h ratio values and porosity distributions. The 
corresponding critical buckling load for uniaxial and biaxial 
compressive loading was calculated. 

 

(a) 

 

(b) 

 

Fig. 2.  Variation of Young’s modulus with thickness coordinates for 

various values of porosity and power law indices, (a) p= 2 (b) p = 0.5. 

The main drawn conclusions regarding the critical buckling 
load in buckling analysis are: 

 The FE model shows good convergence, producing 
accurate results, with an optimal mesh size of 13×13. 
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Fig. 3.  Variation of the non-dimensional critical buckling ratio with power 

index for different porosities. 

 For the same boundary conditions and plate geometry, the 
critical buckling load for uniaxial buckling is greater than 
that for biaxial buckling.  

 The percentage error for the FE model is comparable with 
the existing results.  

 There is a strong correlation between the critical buckling 
load and the ceramic volume fraction. The magnitude of the 
critical buckling load depends on the ceramic volume 
fraction, and as it goes down, so does the critical buckling 
load. 

 As the a/h ratio increases, the non-dimensional critical 
buckling load for constant porosity increases. The net effect 
of increased porosity is a decrease in stiffness. 
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