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ABSTRACT 

The Internet of Things (IoT) is one of the most rapidly emerging technologies. It is observed that while 

many devices/machines get connected in an application, it is a challenge for the IoT application designer to 

keep the application scalable. Scalability is the ability of a device/application to adapt to the changes in the 

environment and meet the changing needs in the future. The paper presents a layered IoT architecture and 

discusses issues related to the scalability of each layer. The best open-source technologies are explored. A 

novel system architecture of a scalable IoT framework is conceptualized in this paper. An application 

covering vehicle accident reporting is designed with the proposed framework. The application is tested in 

real-time using the standalone hardware and its ability to report the incidents is confirmed. The scalability 

metrics of the proposed framework are evaluated and the results are reported.  

Keywords-IoT; scalability; sensors; computer networks; Message Queue Telemetry Transport (MQTT)   

I. INTRODUCTION  

Scalability refers to the ability of an application or a 
computing process to work with ease at varying capacities of 
increased or decreased inputs and outputs. During the recent 
years the IoT technology has revolutionized the communication 
between physical devices, making computers sense information 
without human intervention. The number of devices that are 
getting connected is ever-increasing, along with the volume of 
data being processed. One of the estimations suggests that the 
number of devices ("Things") that would be connected by 2025 
is going to be around 30.9 billion [1]. Therefore, as the number 
of devices to be handled increases, an IoT application that is 
developed to handle a particular number of devices will 
become inefficient or obsolete sooner or later. In order to 
design any IoT application, it is important to consider current 
and future workloads, data volumes, number of sensors, 
security patches, network traffic, etc. [1-5]. What works in the 
small scale should also work in the large one. However, 
achieving this is a very challenging task. In this paper, the 
dimensions of IoT scaling are investigated and a case study on 
accident management using IoT is presented. 

II. UNDERSTANDING IOT SCALING 

In order to understand IoT scaling, the basic IoT reference 
model needs to be revisited (Figure 1). There are 7 conceptual 

layers in any IoT application. Layer 1, is the perception layer, 
which consists essentially of sensors and the associated 
hardware. With the booming areas of application of IoT, 
including agriculture, healthcare, industrial manufacturing, 
smart homes, offices, cities, and many more, the number of 
sensors in the perception layer is always growing. Also, already 
wired sensors are going to be replaced by upgraded versions. 
Any performing IoT infrastructure must be able to 
accommodate these developments in the perception layer by 
properly recognizing device registry and functionality. Vertical 
scaling refers to incorporating a better version of the device 
with more capacity and horizontal scaling refers to 
incorporating more of the same devices in the system [1, 6]. 
Layers 2 and 3 are basically communication and computing 
layers. The most important component of this network layers is 
the Gateways. Gateways moderate control and data between 
the endpoints of IoT devices and the edge/cloud [6, 7]. 
Important parameters such as the amount of data processing 
expected per device, frequency of data collection, and the types 
of analytical results expected are to be considered while 
choosing the gateways for IoT scaling. Gateways that provide 
multiple internet access (Ethernet, Wifi, global/ 
3G/4G/5G/LTE) are preferred in this layer. The gateways that 
are compatible with rich mainstream protocols (such as MQTT, 
HTTP, Zigbee, LoRaWAN, Modbus) are best suited to make 
this layer scalable [6]. 
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Fig. 1.  The IoT layered reference model. 

Layers 4 and 5 are basically data storage layers. The biggest 
challenge for scalability in databases is their "cardinality". 
Cardinality is the number of possible values in a database. A 
typical IoT deployment produces millions of values. For 
example, an IoT deployment with 5000 devices, each device 
having 100 sensors across 100 warehouse results in database 
cardinality of 5 millions and the number of tables goes on 
increasing. The table structure is not fixed. In order to address 
such scenarios, data storage must be carried out in a non-
traditional way. No SQL databases or key-value pair databases 
fit into this. Zigsaw, Influx, Riak TS, mongoDB [8] are some 
of the preferred databases to make IoT scalable in this layer. 
Layers 6 and 7 provide a picture of the growing application 
users and the applications themselves. 

Sectors such as agriculture, health, industrial 
manufacturing, hospitality, finance, transportation, and 
education have started using the benefits of IoT technology to 
make smart homes, smart cities, and smart life in general. 
These observations suggest that during IoT application 
development, scalability is an important factor to be 
considered. In this paper, a framework for designing a scalable 
application is discussed. 

III. BACKGROUND AND RELATED WORK 

In the past, in order to scale IoT applications, many different 
architectures have been proposed. The most important among 
them are cloud-based architectures, fog-based architectures, 
and, edge-based architectures [1-3]. The cloud-based 
technology is used in [2]. In this technology, every input data 
from the sensors has to reach the distant servers for processing. 
As billions of IoT applications keep sending data to the cloud 
servers, the server becomes heavily loaded and there will be 
delayed response. In [10], a kind of modification was done for 
the cloud approach and small capacity servers were 
dynamically triggered as middle nodes in the cloud. These 
dynamic middle nodes were named "fog servers" [9]. 
Experimental results in fog computing showed that the system 
performance is not always improved and may become worse 

sometimes [10]. In [11, 12] edge/cloud computing methods 
were used. In edge computing, instead of sending the sensor 
data to distant servers, they are processed in a machine nearest 
to the source (a machine at the edge of the network). This 
approach in edge reduces the latency and improves the IoT 
response time. The major players in contributing IoT scaling 
are Microsoft Azure, Amazon Web Services (AWS), and 
Google cloud [6, 8, 9, 13]. However, all these platforms follow 
the pay-as-you-go pricing model. In view of the needs of 
researchers and developers, an open-source scalable IoT 
framework is required. InciComm, is an open-source scalable 
IoT framework that is based on microservice architecture and 
provides improved performance. The following sections 
present the system architecture of the proposed InciComm 
scalable IoT framework. It is used to implement business rules 
and behavior of the use case application. The rule engine helps 
to map hardware pins as input and outputs during the design. 
Third-party services such as AWS can be included using a 
plugin module. As and when new devices/sensors arrive, they 
will be registered and the application starts performing as per 
the business rules specified in the rule engine. Thus, rapid 
development is aided by this scalable architecture. 

IV. SYSTEM ARCHITECTURE 

InciComm architecture is shown in Figure 2. The system 
architecture consists of components such as a gateway 
communicator, authenticator, and API modules. The system 
architecture contains an IoT broker module supporting MQTT, 
HTTP, Websockets, and CoAP protocols [6, 8]. The broker is 
an important module that acts as an interface between the input 
device (publisher) and the output (subscriber) device. A 
separate module called the device registry module exists to 
register the identified device with its device ID, authentication 
captcha, and other attributes. The architecture supports SQL 
and NoSQL databases, including SQLite, InfluxDB, 
MongoDB, and Riak T. In order to record, device metadata 
such as sensor type, units of data collection, etc., a metadata 
event manager module is included. The shadow module creates 
a persistent virtual version of the real device. Device shadow 
helps application development using REST APIs. The rule 
engine is another important component. It is used to implement 
business rules and behavior of the use case application. The 
rule engine helps map hardware pins as input and outputs 
during the design. Third-party services such as AWS cloud 
services can be included using a plugin module. As and when 
new devices/sensors arrive in the applications, they will be 
registered and the application starts performing as per the 
business rules specified in the rule engine. 

V. REAL-LIFE USE CASE 

Figure 3 shows the use case diagram of the application. In 
this use case, it is intended to use the framework to design an 
application that reports vehicle accidents in real-time [14, 15]. 
Device installation, application registration, authentication, 
sending notifications, identifying the nearest rescue responders, 
and identifying false positives to close the event cycle are some 
of the important use cases in the design. Haversine’s algorithm 
[15, 16] is used to find the nearest best location of the rescue 
responders.
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Fig. 2.  InciCom system architecture.

 

Fig. 3.  Use case diagram of an accident reporting system. 

The flow of the application starts with the user installing the 
hardware on the vehicle and registering in the App. The user 
provides information about device ID, customer ID, car/vehicle 
ID, service ID, mobile numbers, etc. The system authenticates 

and sends an email with a valid username and password 
credentials to log in and use the application. The application 
becomes active automatically whenever the vehicle starts 
moving or is made active manually. The active device streams 
heartbeats to the server. The system is designed in such a way 
that it reports only the worst-case scenario (i.e. accident). The 
broker is programmed to provide QoS 1 [17]. A time series 
with an unstructured database schema is used to store the 
streaming data. The vehicle health messages however are 
published (sent) at phased intervals as required by the user 
service demands. The mounted hardware prototype is shown in 
Figure 9 and App instances in Figure 10.  

 

 
Fig. 4.  PIN details and connection diagram using the Raspberry Pi.
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VI. IMPLEMENTATION DETAILS 

This section provides a high-level description of the 
implementation of the use case in the InciComm IoT platform. 
As a proof of the concept, the implementation is carried out 
using a Raspberry Pi mounted with sensors. The hardware 
connectivity schema and the actual circuit are shown in Figures 
4 and 5, respectively. Three types of sensors were used to sense 
events such as an accident. The sensor HC-SR04 for distance 
measurement (Sd), the sensor MP6050 for sensing abnormal 
gyrometric changes (Sg), and the sensor B081V6FLG1 [18, 19] 
for sensing fire occurrences (Sf). An accident (A) is defined as a 
combined abnormal output of these sensors: 

� � Ψ���, ��, �	
          (1) 

If Sd becomes zero at any time, it signals an incident of 
touch/impact. The intensity peak at the time of reduced 
distance indicates the accident. The gyroscopic parameter Sg 
measures the tilt in the planes and Sf signals the occurrence of 
fire/sudden rise in temperature. The accident parameter A is 
calculated based on the majority vote of Sd, Sg, and Sf. 

 

 
Fig. 5.  Accident reporting hardware with Raspberry Pi and sensors. 

 
Fig. 6.  Node-red rule engine flow 

A Python [8] script to sense the sensor data on board the 
raspberry Pi was written, tested, and saved in a file. The 
program reads these sensor inputs and computes the accident-
reporting parameter. An InciComm account is used to log in to 
the IoT platform. Devices are created in the framework by 
using device palletes and linking the device ID with the 
customer ID, access tokens, and service ID details. Node-red is 
used as a rule engine (Figure 6) to map the Raspberry Pi pins 
and other hardware. A dynamic MQTT broker is used to 

publish and subscribe messages in the cloud/edge networks. 
Any number of devices can be scaled up and down in the 
system using this broker. Figure 7 shows the scalable 
application development block diagram of the framework. 

 

 
Fig. 7.  Scalable application development flow. 

VII. EXPERIMENTAL RESULTS 

Initially, simulations were conducted using Node-red and 
MQTT broker. Three hypothetical cars were used. The payload 
and topics are shown in Figure 8. 

 

 
Fig. 8.  Payload and topic arrivals in hypothetical car tests. 
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The MQTT server offers three QoS levels, i.e. Q0, Q1 and 
Q2 [17]. Tests were conducted using Q0. The pay loads 
(messages) were exactly received for the respective topics. The 
messages were streamed at intervals of 10s and the broker was 
found to be working properly. Figure 10 shows instances of 
these simulations. 

 

 
Fig. 9.  The mounted prototype of the carApp hardware. 

  

Fig. 10.  Instances of real-time App usage and location tracking. 

TABLE I.  PAYLOADS AND TOPICS IN THE 
HYPOTHETICAL TESTS 

Car
No 

Payload and topics 

Payload Topic 

1 Car is to be stopped carApp/9686502426/TAS56768 
2 Car is moving dangerously carApp/CD404 
3 Car is moving safely carApp/530713146/TSU303 

 

As a second experiment, a real-time hardware device was 
mounted on an experimental car and its locations were traced 
on the carApp. At different locations, the experimental car was 
made to crash/tilt and the coordinates of the accident spots 
were shown on the map. The application was able to send to 
the nearby rescue responder (police and hospital) successfully.  

VIII. DISCUSSION 

The objective of this research was to provide a scalable IoT 
platform for designing IoT applications. A case study of an IoT 
application for reporting vehicle accidents was designed using 
the proposed scalable platform and its scalability was tested. 
The scalability tests and measured values are reported in Table 
II which lists the Key Performance Indices (KPI’s) and the 
measured values. 

Scalability testing is conducted in order to know the 
response of the system when there are workload variations. In 
this proposed testing, Assetto Corsa Competizione (ACC) 
simulations [20] are used and 5 scalability metrics are 
evaluated (Table II). Device provisioning rate defines the 
number of devices that can come in into the service of IoT 
application [19, 21, 22]. A total of 200 devices per second are 
reported. Over The Air (OTA) update rate is found to be 40. 
The number of messages that are ingested into the system is 
1000 messages per second. The number of messages that fail to 
reach their subscribers is measured by message failure rate 
metric and it is found to be 0.2%. The message latency or delay 
in reaching its subscriber is less than 40 millisecond seconds. 

TABLE II.  IOT SCALABILITY METRICS 

Scalability tests and measured values 

KPI Measured value 

Device provisioning rate 200/s 
Over The Air (OTA) update rate 40 

Message ingest rate 1000/s 
Message failure rate 0.2% 

Message latency  <40 ms 
 

IX. CONCLUSIONS 

In this paper, a scalable IoT framework is discussed along 
with an applied use case on accident reporting. The proposed 
framework allows the dynamic discovery of devices and data 
management. The proposed solution offers scalability with 
respect to the device deployment, number of users/inputs, and 
computing environment. A selected list of scalability metrics 
was evaluated and the scalability of the proposed framework is 
confirmed. The paper discussed a case study application to 
accident reporting and demonstrated the development and 
testing of the same using the proposed framework. In future 
work, the case study application itself needs to be improved 
with improved accident parameter definition. The scalability of 
the framework needs to be tested with the deployment of 
different applications other than the current case study 
application deployment. 
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