
Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10748-10753 10748

www.etasr.com Ghaly & Kadampur: Scalable Incident Reporting Framework: A Sensor and IoT Research

Scalable Incident Reporting Framework: A
Sensor and IoT Research

Sidi Mohamed Ahmed Ghaly

Department of Electrical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic
University, Saudi Arabia | Ecole Normale Suprieure, Nouakchott, Mauritania
smghaly@imamu.edu.sa (corresponding author)

Mohammad Ali Kadampur

Department of Electrical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic
University, Saudi Arabia
mkadampur@imamu.edu.sa

Received: 1 March 2023 | Revised: 23 March 2023 | Accepted: 26 March 2023

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.5820

ABSTRACT

The Internet of Things (IoT) is one of the most rapidly emerging technologies. It is observed that while

many devices/machines get connected in an application, it is a challenge for the IoT application designer to

keep the application scalable. Scalability is the ability of a device/application to adapt to the changes in the

environment and meet the changing needs in the future. The paper presents a layered IoT architecture and

discusses issues related to the scalability of each layer. The best open-source technologies are explored. A

novel system architecture of a scalable IoT framework is conceptualized in this paper. An application

covering vehicle accident reporting is designed with the proposed framework. The application is tested in

real-time using the standalone hardware and its ability to report the incidents is confirmed. The scalability

metrics of the proposed framework are evaluated and the results are reported.

Keywords-IoT; scalability; sensors; computer networks; Message Queue Telemetry Transport (MQTT)

I. INTRODUCTION

Scalability refers to the ability of an application or a
computing process to work with ease at varying capacities of
increased or decreased inputs and outputs. During the recent
years the IoT technology has revolutionized the communication
between physical devices, making computers sense information
without human intervention. The number of devices that are
getting connected is ever-increasing, along with the volume of
data being processed. One of the estimations suggests that the
number of devices ("Things") that would be connected by 2025
is going to be around 30.9 billion [1]. Therefore, as the number
of devices to be handled increases, an IoT application that is
developed to handle a particular number of devices will
become inefficient or obsolete sooner or later. In order to
design any IoT application, it is important to consider current
and future workloads, data volumes, number of sensors,
security patches, network traffic, etc. [1-5]. What works in the
small scale should also work in the large one. However,
achieving this is a very challenging task. In this paper, the
dimensions of IoT scaling are investigated and a case study on
accident management using IoT is presented.

II. UNDERSTANDING IOT SCALING

In order to understand IoT scaling, the basic IoT reference
model needs to be revisited (Figure 1). There are 7 conceptual

layers in any IoT application. Layer 1, is the perception layer,
which consists essentially of sensors and the associated
hardware. With the booming areas of application of IoT,
including agriculture, healthcare, industrial manufacturing,
smart homes, offices, cities, and many more, the number of
sensors in the perception layer is always growing. Also, already
wired sensors are going to be replaced by upgraded versions.
Any performing IoT infrastructure must be able to
accommodate these developments in the perception layer by
properly recognizing device registry and functionality. Vertical
scaling refers to incorporating a better version of the device
with more capacity and horizontal scaling refers to
incorporating more of the same devices in the system [1, 6].
Layers 2 and 3 are basically communication and computing
layers. The most important component of this network layers is
the Gateways. Gateways moderate control and data between
the endpoints of IoT devices and the edge/cloud [6, 7].
Important parameters such as the amount of data processing
expected per device, frequency of data collection, and the types
of analytical results expected are to be considered while
choosing the gateways for IoT scaling. Gateways that provide
multiple internet access (Ethernet, Wifi, global/
3G/4G/5G/LTE) are preferred in this layer. The gateways that
are compatible with rich mainstream protocols (such as MQTT,
HTTP, Zigbee, LoRaWAN, Modbus) are best suited to make
this layer scalable [6].

Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10748-10753 10749

www.etasr.com Ghaly & Kadampur: Scalable Incident Reporting Framework: A Sensor and IoT Research

Fig. 1. The IoT layered reference model.

Layers 4 and 5 are basically data storage layers. The biggest
challenge for scalability in databases is their "cardinality".
Cardinality is the number of possible values in a database. A
typical IoT deployment produces millions of values. For
example, an IoT deployment with 5000 devices, each device
having 100 sensors across 100 warehouse results in database
cardinality of 5 millions and the number of tables goes on
increasing. The table structure is not fixed. In order to address
such scenarios, data storage must be carried out in a non-
traditional way. No SQL databases or key-value pair databases
fit into this. Zigsaw, Influx, Riak TS, mongoDB [8] are some
of the preferred databases to make IoT scalable in this layer.
Layers 6 and 7 provide a picture of the growing application
users and the applications themselves.

Sectors such as agriculture, health, industrial
manufacturing, hospitality, finance, transportation, and
education have started using the benefits of IoT technology to
make smart homes, smart cities, and smart life in general.
These observations suggest that during IoT application
development, scalability is an important factor to be
considered. In this paper, a framework for designing a scalable
application is discussed.

III. BACKGROUND AND RELATED WORK

In the past, in order to scale IoT applications, many different
architectures have been proposed. The most important among
them are cloud-based architectures, fog-based architectures,
and, edge-based architectures [1-3]. The cloud-based
technology is used in [2]. In this technology, every input data
from the sensors has to reach the distant servers for processing.
As billions of IoT applications keep sending data to the cloud
servers, the server becomes heavily loaded and there will be
delayed response. In [10], a kind of modification was done for
the cloud approach and small capacity servers were
dynamically triggered as middle nodes in the cloud. These
dynamic middle nodes were named "fog servers" [9].
Experimental results in fog computing showed that the system
performance is not always improved and may become worse

sometimes [10]. In [11, 12] edge/cloud computing methods
were used. In edge computing, instead of sending the sensor
data to distant servers, they are processed in a machine nearest
to the source (a machine at the edge of the network). This
approach in edge reduces the latency and improves the IoT
response time. The major players in contributing IoT scaling
are Microsoft Azure, Amazon Web Services (AWS), and
Google cloud [6, 8, 9, 13]. However, all these platforms follow
the pay-as-you-go pricing model. In view of the needs of
researchers and developers, an open-source scalable IoT
framework is required. InciComm, is an open-source scalable
IoT framework that is based on microservice architecture and
provides improved performance. The following sections
present the system architecture of the proposed InciComm
scalable IoT framework. It is used to implement business rules
and behavior of the use case application. The rule engine helps
to map hardware pins as input and outputs during the design.
Third-party services such as AWS can be included using a
plugin module. As and when new devices/sensors arrive, they
will be registered and the application starts performing as per
the business rules specified in the rule engine. Thus, rapid
development is aided by this scalable architecture.

IV. SYSTEM ARCHITECTURE

InciComm architecture is shown in Figure 2. The system
architecture consists of components such as a gateway
communicator, authenticator, and API modules. The system
architecture contains an IoT broker module supporting MQTT,
HTTP, Websockets, and CoAP protocols [6, 8]. The broker is
an important module that acts as an interface between the input
device (publisher) and the output (subscriber) device. A
separate module called the device registry module exists to
register the identified device with its device ID, authentication
captcha, and other attributes. The architecture supports SQL
and NoSQL databases, including SQLite, InfluxDB,
MongoDB, and Riak T. In order to record, device metadata
such as sensor type, units of data collection, etc., a metadata
event manager module is included. The shadow module creates
a persistent virtual version of the real device. Device shadow
helps application development using REST APIs. The rule
engine is another important component. It is used to implement
business rules and behavior of the use case application. The
rule engine helps map hardware pins as input and outputs
during the design. Third-party services such as AWS cloud
services can be included using a plugin module. As and when
new devices/sensors arrive in the applications, they will be
registered and the application starts performing as per the
business rules specified in the rule engine.

V. REAL-LIFE USE CASE

Figure 3 shows the use case diagram of the application. In
this use case, it is intended to use the framework to design an
application that reports vehicle accidents in real-time [14, 15].
Device installation, application registration, authentication,
sending notifications, identifying the nearest rescue responders,
and identifying false positives to close the event cycle are some
of the important use cases in the design. Haversine’s algorithm
[15, 16] is used to find the nearest best location of the rescue
responders.

Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10748-10753 10750

www.etasr.com Ghaly & Kadampur: Scalable Incident Reporting Framework: A Sensor and IoT Research

Fig. 2. InciCom system architecture.

Fig. 3. Use case diagram of an accident reporting system.

The flow of the application starts with the user installing the
hardware on the vehicle and registering in the App. The user
provides information about device ID, customer ID, car/vehicle
ID, service ID, mobile numbers, etc. The system authenticates

and sends an email with a valid username and password
credentials to log in and use the application. The application
becomes active automatically whenever the vehicle starts
moving or is made active manually. The active device streams
heartbeats to the server. The system is designed in such a way
that it reports only the worst-case scenario (i.e. accident). The
broker is programmed to provide QoS 1 [17]. A time series
with an unstructured database schema is used to store the
streaming data. The vehicle health messages however are
published (sent) at phased intervals as required by the user
service demands. The mounted hardware prototype is shown in
Figure 9 and App instances in Figure 10.

Fig. 4. PIN details and connection diagram using the Raspberry Pi.

Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10748-10753 10751

www.etasr.com Ghaly & Kadampur: Scalable Incident Reporting Framework: A Sensor and IoT Research

VI. IMPLEMENTATION DETAILS

This section provides a high-level description of the
implementation of the use case in the InciComm IoT platform.
As a proof of the concept, the implementation is carried out
using a Raspberry Pi mounted with sensors. The hardware
connectivity schema and the actual circuit are shown in Figures
4 and 5, respectively. Three types of sensors were used to sense
events such as an accident. The sensor HC-SR04 for distance
measurement (Sd), the sensor MP6050 for sensing abnormal
gyrometric changes (Sg), and the sensor B081V6FLG1 [18, 19]
for sensing fire occurrences (Sf). An accident (A) is defined as a
combined abnormal output of these sensors:

� � Ψ���, ��, �	
 (1)

If Sd becomes zero at any time, it signals an incident of
touch/impact. The intensity peak at the time of reduced
distance indicates the accident. The gyroscopic parameter Sg
measures the tilt in the planes and Sf signals the occurrence of
fire/sudden rise in temperature. The accident parameter A is
calculated based on the majority vote of Sd, Sg, and Sf.

Fig. 5. Accident reporting hardware with Raspberry Pi and sensors.

Fig. 6. Node-red rule engine flow

A Python [8] script to sense the sensor data on board the
raspberry Pi was written, tested, and saved in a file. The
program reads these sensor inputs and computes the accident-
reporting parameter. An InciComm account is used to log in to
the IoT platform. Devices are created in the framework by
using device palletes and linking the device ID with the
customer ID, access tokens, and service ID details. Node-red is
used as a rule engine (Figure 6) to map the Raspberry Pi pins
and other hardware. A dynamic MQTT broker is used to

publish and subscribe messages in the cloud/edge networks.
Any number of devices can be scaled up and down in the
system using this broker. Figure 7 shows the scalable
application development block diagram of the framework.

Fig. 7. Scalable application development flow.

VII. EXPERIMENTAL RESULTS

Initially, simulations were conducted using Node-red and
MQTT broker. Three hypothetical cars were used. The payload
and topics are shown in Figure 8.

Fig. 8. Payload and topic arrivals in hypothetical car tests.

Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10748-10753 10752

www.etasr.com Ghaly & Kadampur: Scalable Incident Reporting Framework: A Sensor and IoT Research

The MQTT server offers three QoS levels, i.e. Q0, Q1 and
Q2 [17]. Tests were conducted using Q0. The pay loads
(messages) were exactly received for the respective topics. The
messages were streamed at intervals of 10s and the broker was
found to be working properly. Figure 10 shows instances of
these simulations.

Fig. 9. The mounted prototype of the carApp hardware.

Fig. 10. Instances of real-time App usage and location tracking.

TABLE I. PAYLOADS AND TOPICS IN THE
HYPOTHETICAL TESTS

Car
No

Payload and topics

Payload Topic

1 Car is to be stopped carApp/9686502426/TAS56768
2 Car is moving dangerously carApp/CD404
3 Car is moving safely carApp/530713146/TSU303

As a second experiment, a real-time hardware device was
mounted on an experimental car and its locations were traced
on the carApp. At different locations, the experimental car was
made to crash/tilt and the coordinates of the accident spots
were shown on the map. The application was able to send to
the nearby rescue responder (police and hospital) successfully.

VIII. DISCUSSION

The objective of this research was to provide a scalable IoT
platform for designing IoT applications. A case study of an IoT
application for reporting vehicle accidents was designed using
the proposed scalable platform and its scalability was tested.
The scalability tests and measured values are reported in Table
II which lists the Key Performance Indices (KPI’s) and the
measured values.

Scalability testing is conducted in order to know the
response of the system when there are workload variations. In
this proposed testing, Assetto Corsa Competizione (ACC)
simulations [20] are used and 5 scalability metrics are
evaluated (Table II). Device provisioning rate defines the
number of devices that can come in into the service of IoT
application [19, 21, 22]. A total of 200 devices per second are
reported. Over The Air (OTA) update rate is found to be 40.
The number of messages that are ingested into the system is
1000 messages per second. The number of messages that fail to
reach their subscribers is measured by message failure rate
metric and it is found to be 0.2%. The message latency or delay
in reaching its subscriber is less than 40 millisecond seconds.

TABLE II. IOT SCALABILITY METRICS

Scalability tests and measured values

KPI Measured value

Device provisioning rate 200/s
Over The Air (OTA) update rate 40

Message ingest rate 1000/s
Message failure rate 0.2%

Message latency <40 ms

IX. CONCLUSIONS

In this paper, a scalable IoT framework is discussed along
with an applied use case on accident reporting. The proposed
framework allows the dynamic discovery of devices and data
management. The proposed solution offers scalability with
respect to the device deployment, number of users/inputs, and
computing environment. A selected list of scalability metrics
was evaluated and the scalability of the proposed framework is
confirmed. The paper discussed a case study application to
accident reporting and demonstrated the development and
testing of the same using the proposed framework. In future
work, the case study application itself needs to be improved
with improved accident parameter definition. The scalability of
the framework needs to be tested with the deployment of
different applications other than the current case study
application deployment.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Saudi Arabia, for funding this research
work through Grant No. (221414020)

REFERENCES

[1] A. Javed, A. Malhi, T. Kinnunen, and K. Främling, "Scalable IoT
Platform for Heterogeneous Devices in Smart Environments," IEEE
Access, vol. 8, pp. 211973–211985, 2020, https://doi.org/10.1109/
ACCESS.2020.3039368.

Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10748-10753 10753

www.etasr.com Ghaly & Kadampur: Scalable Incident Reporting Framework: A Sensor and IoT Research

[2] H. Guo, J. Ren, D. Zhang, Y. Zhang, and J. Hu, "A scalable and
manageable IoT architecture based on transparent computing," Journal
of Parallel and Distributed Computing, vol. 118, pp. 5–13, Aug. 2018,
https://doi.org/10.1016/j.jpdc.2017.07.003.

[3] S. Kubler, J. Robert, A. Hefnawy, K. Främling, C. Cherifi, and A.
Bouras, "Open IoT Ecosystem for Sporting Event Management," IEEE
Access, vol. 5, pp. 7064–7079, 2017, https://doi.org/10.1109/ACCESS.
2017.2692247.

[4] G. N. Cristina, G. V. Gheorghita, and U. Ioan, "Gradual Development of
an IoT Architecture for Real-World Things," in 2015 IEEE European
Modelling Symposium (EMS), Madrid, Spain, Jul. 2015, pp. 344–349,
https://doi.org/10.1109/EMS.2015.57.

[5] M. Tabaa, B. Chouri, S. Saadaoui, and K. Alami, "Industrial
Communication based on Modbus and Node-RED," Procedia Computer
Science, vol. 130, pp. 583–588, Jan. 2018, https://doi.org/10.1016/
j.procs.2018.04.107.

[6] P. Waher, Learning Internet of Things. Packt Publishing, 2015.

[7] K. Ferencz and J. Domokos, "IoT Sensor Data Acquisition and Storage
System Using Raspberry Pi and Apache Cassandra," in 2018
International IEEE Conference and Workshop in Óbuda on Electrical
and Power Engineering (CANDO-EPE), Budapest, Hungary, Aug. 2018,
pp. 000143–000146, https://doi.org/10.1109/CANDO-EPE.2018.
8601139.

[8] G. C. Hillar, Internet of Things with Python. Packt Publishing, 2016.

[9] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya,
"Chapter 4 - Fog Computing: principles, architectures, and applications,"
in Internet of Things: Principles and Paradigms, R. Buyya and A. V.
Dastjerdi, Eds. Morgan Kaufmann, 2016.

[10] J. Jermyn, R. P. Jover, I. Murynets, M. Istomin, and S. Stolfo,
"Scalability of Machine to Machine systems and the Internet of Things
on LTE mobile networks," in 2015 IEEE 16th International Symposium
on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),
Boston, MA, USA, Jun. 2015, pp. 1–9, https://doi.org/10.1109/
WoWMoM.2015.7158142.

[11] M. Gheisari, G. Wang, and S. Chen, "An Edge Computing-enhanced
Internet of Things Framework for Privacy-preserving in Smart City,"
Computers & Electrical Engineering, vol. 81, Jan. 2020, Art. no.
106504, https://doi.org/10.1016/j.compeleceng.2019.106504.

[12] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge Computing: Vision
and Challenges," IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–
646, Jul. 2016, https://doi.org/10.1109/JIOT.2016.2579198.

[13] D. Minoli, K. Sohraby, and B. Occhiogrosso, "IoT Considerations,
Requirements, and Architectures for Smart Buildings—Energy
Optimization and Next-Generation Building Management Systems,"
IEEE Internet of Things Journal, vol. 4, no. 1, pp. 269–283, Oct. 2017,
https://doi.org/10.1109/JIOT.2017.2647881.

[14] Z. Alwan and H. Alshaibani, "Car Accident Detection and Notification
System Using Smartphone," International Journal of Computer Science
and Mobile Computing, vol. 4, no. 4, pp. 620–635, Apr. 2015.

[15] M. H. Alkinani, A. A. Almazroi, N. Z. Jhanjhi, and N. A. Khan, "5G and
IoT Based Reporting and Accident Detection (RAD) System to Deliver
First Aid Box Using Unmanned Aerial Vehicle," Sensors, vol. 21, no.
20, Jan. 2021, Art. no. 6905, https://doi.org/10.3390/s21206905.

[16] R. A. Azdy and F. Darnis, "Use of Haversine Formula in Finding
Distance Between Temporary Shelter and Waste End Processing Sites,"
Journal of Physics: Conference Series, vol. 1500, no. 1, Dec. 2020, Art.
no. 012104, https://doi.org/10.1088/1742-6596/1500/1/012104.

[17] M. Basyir, M. Nasir, S. Suryati, and W. Mellyssa, "Determination of
Nearest Emergency Service Office using Haversine Formula Based on
Android Platform," EMITTER International Journal of Engineering
Technology, vol. 5, no. 2, pp. 270–278, 2017, https://doi.org/
10.24003/emitter.v5i2.220.

[18] "OASIS: MQTT Version 5.0," Mar. 07, 2019. https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[19] F. Alorifi, S. M. A. Ghaly, M. Y. Shalaby, M. A. Ali, and M. O. Khan,
"Analysis and Detection of a Target Gas System Based on TDLAS &
LabVIEW," Engineering, Technology & Applied Science Research, vol.
9, no. 3, pp. 4196–4199, Jun. 2019, https://doi.org/10.48084/etasr.2736.

[20] "assetto-corsa-competizione," GitHub. https://github.com/topics/assetto-
corsa-competizione.

[21] K. Alsnaie, S. M. A. Ghaly, and M. A. Ali, "Study and Design of a
Multi-range Programmable Sensor for Temperature Measurement,"
Engineering, Technology & Applied Science Research, vol. 12, no. 6,
pp. 9601–9606, Dec. 2022, https://doi.org/10.48084/etasr.5284.

[22] S. M. A. Ghaly, "LabVIEW Based Implementation of Resistive
Temperature Detector Linearization Techniques," Engineering,
Technology & Applied Science Research, vol. 9, no. 4, pp. 4530–4533,
Aug. 2019, https://doi.org/10.48084/etasr.2894.

