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ABSTRACT 

Advanced controllers are an excellent choice for the trajectory tracking problem of Wheeled Mobile 

Robots (WMRs). However, these controllers pose a challenge to the hardware structure of WMRs due to 

the controller's complex structure and the large number of calculations needed. In that context, designing 

a controller with a simple structure and a small number of computations but good real-time performance 

is necessary in order to improve the tracking accuracy for the WMRs without requiring high hardware 

architecture. In this work, a neural network controller with a simple structure for the trajectory-tracking 
of a Mecanum-Wheel Mobile robot (MWMR) based on a reference controller is proposed. A two-layer 

feedforward neural network is designed as a tracking controller for the robot. The neural network is 

trained with a sample input-output data set so that the error between the neural network output and the 

reference control signal of the supervisory controller is minimal. The neural network parameters are 
trained to update over time. The simulation results verified the effectiveness of the neural network 

controller, whose parameters are tuned adaptively to ensure a fast convergence to the desired Bézier 

trajectory. 

Keywords-mecanum wheel mobile robot; tracking control; neural networks; Bézier trajectory 

I. INTRODUCTION  

There is a considerable scientific interest in the area of 
Wheeled Mobile Robots (WMRs), and especially Mecanum-
Wheeled Mobile Robot (MWMRs), which have been widely 
applied to many fields due to their maneuverability and 
superior motion ability [1-3]. For control engineers, the 
trajectory tracking control problem of MWMR has always 
received significant attention. Trajectory tracking control is the 
key to realizing the autonomous movement of the MWMRs. 
However, the trajectory tracking control of the WMRs is a 
challenging study area because WMR systems are typically 
subjected to non-holonomic constraints, random disturbances 

and uncertainties. Many researchers studied control design and 
development with different controllers to improve the tracking 
control performance of the MWMRs. A time-varying 
parameter PID controller has been proposed in [4] to control a 
four-MWMR along a desired trajectory with minimal error. An 
advanced intelligent adaptive motion controller was designed 
in [5] using fuzzy wavelet networks for Mecanum Wheeled 
Omnidirectional Robots (MWORs) with parameter variations. 
Authors in [6] presented a novel neural network adaptive 
sliding mode control system for an omnidirectional vehicle 
with four mecanum wheels. Network weight adaptation was 
based on the analysis of the Lyapunov stability. Other 



Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10541-10547 10542  
 

www.etasr.com Ly et al.: A Neural Network Controller Design for the Mecanum Wheel Mobile Robot 

 

controllers used for MWMR for trajectory tracking control 
used adaptive integral terminal sliding mode [7], robust 
adaptive control [8], adaptive fuzzy tracking control [9-11], 
PID controller with time-varying parameters [12], adaptive 
back stepping control using neural networks [13], predictive 
control [14], self-tuning fuzzy-PID control [15], and fuzzy 
adaptive PID control [16]. For robots to operate in a dynamic 
working environment and meet the required safety, accuracy, 
and reliability, advanced intelligent control systems are a 
valuable solution for the trajectory-tracking control problem 
[17-19]. The use of neural networks for the control of mobile 
robots has received attention from many researchers because 
they are self-learning and provide a real-time approximation of 
nonlinearities in a mathematical model of a robot using 
network weight adaptation [20-22]. Artificial Neural Networks 
(ANNs) are increasingly used to solve trajectory tracking 
problems, such as the adjustment of control coefficients, the 
choice of the direction of motion, speed correction, and 
identification of information from sensors. 

The above discussion verified that the advanced controllers 
have excellent trajectory-tracking performance. Even so, they 
have the disadvantage that the complex controller structure 
leads to many complex calculations requiring high hardware 
structure. Therefore, it is necessary to design a controller with a 
simple structure, a small number of computations and good 
real-time performance to improve trajectory-tracking 
performance with a minor error for MWMR. Therefore, this 
work focuses on designing a simple computational ANN-based 
model reference controller to accommodate the trajectory 
tracking of the MWMR with minor errors, simultaneously 
significantly reducing the hardware's processing speed and 
capacity versus advanced controllers.  

II. KINEMATIC ERROR MODEL OF MWMR 

A. Kinematic Model 

Consider an MWMR moving along the Bézier trajectory  
with the assumption of no longitudinal and lateral slip in the 
global coordinate system }yxO{ ffff , as shown in Figure 1. 

The angular velocities relationship of wheels to the linear and 
angular velocities of the MWMR are determined by [4]: 

f
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where: 
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and r, L and d are the radii of the wheel, the distance in the xR-
axis and the yR-axis of two wheels, Vx, Vy, and Ω are the linear 
and angular velocities of the MWMR in the global coordinate 

f , respectively. 
 

 
Fig. 1.  Illustration og the kinematic error of MWMR. 

From (1), the forward kinematics equation of the MWMR 
is given by: 

ωJQqQq  )()(  Rf ɺɺ    (2) 

where   TT JJJJ
1  is the pseudo-inverse of J. 

B. Kinematic Error Model 

The error model describes the variation in position and 
orientation of the MWMR when moving along the desired 
trajectory , defined by the position error vector e [23]: 

 Tyxfd eee  qqe    (3) 

 Tdddd ttytx )()()( q and  Tffff ttytx )()()( q are 

the MWMR's desired and actual motion pose vectors in the 

global coordinate f . The kinematic error model of the 

MWMR in the local coordinate system }yx{G RRR  attached 

to the MWMR is given by: 
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Derivative (4) is obtained by: 
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III. NEURAL NETWORK CONTROLLER DESIGN FOR 
THE MECANUM WHEEL MOBILE ROBOT  

The proposed Neural Network (NN) control system to track 
the desired motion trajectory is described in Figure 2. The 
control system consists of the NN controller, the kinematic 
model of MWMR, the reference controller and the desired 
trajectory . The NN's parameters are adapted online according 
to the reference model described in Figure 2, in which the 
reference controller is the kinematic controller proposed in [23] 
to generate the reference control signals ur to determine the 
reference linear and angular velocities (VrR, rR) for the 
MWMR to follow the desired trajectory . In [23], the control 
gains K1, K2 and K3 of the reference controller are time-varying 
parameters for MWMR to achieve high tracking accuracy. The 
parameters for the proposed ANN controller are given in Table 
I. The inputs to the ANN are the position errors of MWMR e, 
and the ANN’s outputs are nu (the velocities of MWMR). 

TABLE I.  THE NEURAL NETWORK PARAMETERS 

Parameter Value 

Number of input neurons 3 
Number of output neurons 3 
Number of hidden layers 2 

Number of neurons in hidden layer 1 3 
Number of neurons in hidden layer 2 3 
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used to adapt the weights W and bias b in order to reduce the 
NN’s error on the output: 
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IV. NEURAL NETWORK CONTROLLER 

A. The Neuron Network Controller Model 

It is defined by: 
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where 2112 ,,, bbWW  are the weight matrix and bias vector of 

the NN, respectively, and e  is given by (2). On the other hand, 
considering the MWMR's local coordinate system, we have: 
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Fig. 2.  Structure of neurocontrolled MWMR with supervised learning. 

B. Neural Network Training 

The parameters of the NN, including the weight matrix W 
and the bias vector b, are updated as the time by the back-
propagation method according to the following law: 
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where m = 1, 2,..N, N is the number of layers of the NN, 
[0,1]a  is the learning rate, fn  is the activation function of the 

mth layer. The weights values of the NN are adjusted so that the 
cost function given by (10) is minimized: 
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2

1
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T
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V. SIMULATION SETUP 

A. The MWMR Dimension Setup 

The dimensions of the MWMR are: length × width × height 
of 380mm × 260mm×165mm, L = 316mm, d = 270mm, and r 
= 30mm is the radius of wheels. 

B. The Bézier Moving Trajectory of the Robot 

The Bézier curve [24] is defined by trajectory interpolation 
points and is given by: 
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where Bi represents the coordinates of interpolated points, as 
described in Figure 3, i is the ordinal number of the 
interpolation points, and Jn,i(t) is a Bernstein polynomial of 
degree n, given by: 
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Bernstein polynomial degree and the curve's degree. From the 
above Bézier curve design method, we have the desired 
moving trajectory of the robot shown in Figure 3 with the 
points Ai (i = 1-14) being the interpolation points. 

 

 
Fig. 3.  The desired Bézier trajectory of the MWMR. 

C. MWMR Linear and Angular Velocity Determination 

The desired velocity Vd(t) of the MWMR is determined by 
the Bézier motion trajectory d  as follows:  
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The desired angular velocity Ωd of the MWMR is 
determined by: 
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Clearly, from (14)-(16) and the data of the trajectory 
interpolation points given in Figure 3, we have the desired 
linear velocity Vd and angular velocity Ωd of the MWMR 
described in Figure 4 when the MWMR moves along the 
Bézier trajectory  with ∆t = 0.1s and maximal allowed speed 
Vdmax = 0.3m/s. Thus, the desired dqɺ vector is defined by 

 Tddd V qɺ . 

 

 
Fig. 4.  The desired linear and angular velocites of the MWMR. 

D. Setting Parameters of Neural Network Training 

The initialization values at the input/output of the NN while 

training are: a0 = e, a2 = u and uk ebaWFs )()( 21222  ɺ . The 

learning coefficient  = 1 is determined by trial and error, and 
is such that the jump does not exceed the optimal value. The 
parameter matrices are updated online to control the MWMR 
trajectory tracking with a minor tracking error. 

VI. RESULTS AND DISCUSSION 

The installed parameters consist of (1) the size of the 
MWMR, (2) the parameters and the training parameters of the 
neural network, and (3) the motion trajectory and the 
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parameters of MWMR. The motion trajectory of the MWMR, 
after 1072 online training updates, is depicted in Figure 5, with 
the orange line as the desired trajectory and the blue line as the 
motion trajectory of the robot controlled by the proposed neural 
network controller. The position and posture errors of MWMR 
are depicted in Figure 6. 

 

 

Fig. 5.  The moving trajectory of the MWMR. 

 

Fig. 6.  The position error of the G-point and posture error of the robot. 

Figure 6 shows that the proposed controller has the 
maximum error in the x-direction (exmax) not more than 11mm, 
and the maximum position error in the y - direction (eymax) is 
17mm at position 9. The maximum posture error of the robot 
eφmax does not exceed 0.34o. The points marked from 1 to 9 in 
Figure 6 correspond to where the MWMR changes direction in 
Figures 5 and 3. In general, significant position errors often 
occur at the points where the MWMR changes direction. These 
are the points where the MWMR changes from clockwise to 
counterclockwise rotation and vice versa. Figures 5 and 6 
clearly show that the proposed controller can track the desired 
trajectory with minor errors.  

Figure 7 shows the cost function value when training the 
neural network to update the weight matrices W and bias 
vector b in real time. From Figure 7, it is easy to see that at the 

points where the direction of the MWMR change, the control 
signal of the neural network has a deviation from the signal of 
the reference control model. Still, it was trained in time to 
minimize the error to asymptotically reach zero. 

 

 

Fig. 7.  The cost fucntion. 

 
(a)                                                       (b) 

Fig. 8.  The network parameters of the first hidden layer: (a) The network 
bias b1, (b) The network weight matrix W1. 

Figures 8 and 9 verify the online updating of the network 
weight matrix W and bias vector b of the proposed controller 
for the MWMR to follow the Bézier trajectory. The NN 
weights from zero initial values changed during the adaptation 
process and stabilized at specific values. Since the neural 
network structure is rather simple, the proposed neural network 
can find the optimum values of the network parameters quickly 
and accurately. Figure 10 shows that the velocities of the 
MWMR are adjusted around the desired value such that the 
MWMR position to an asymptote value is '0'. Figure 10 shows 
that the velocity error Vxr ranges from 0 to 0.0011m/s, the 
velocity error Vyr is adjusted around the desired value 0 to 
0.0009m/s, and the maximum angular velocity error of 
MWMR is more than 0.00054rad/s. Figure 10 shows that the 
proposed controller is precisely following the reference linear 
and angular velocities. Figures 11 and 12 show that the angular 
velocities of the wheels always follow the desired values, and 
the angular velocities error varies from 0 to 0.05rad/s. The 
angular velocity errors were limited and had the most 
significant values at the beginning and at the points where the 
MWMR changed direction. 
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(a)                                                            (b) 

Fig. 9.  The ANN parameters of the second hidden layer 2: (a) The 
network bias b2, (b) The network weight matrix W2. 

 
Fig. 10.  Linear and angular velocities of the MWMR. 

The efficacy of the proposed controller can also be proved 
from the velocity and error curves, which show that the control 
system based on the NN controller can track the desired 
trajectory with minimum tracking error, and the control inputs 
strictly follow the reference velocities. Additionally, the neural 
network has overcome the disadvantages of our previous 
studies [4], where the time-varying PID controller was used to 
control the MWMR, such as (i) the time-varying PID controller 
requires the linear model of the robot and (ii) the PID controller 
needs to know the functions of the controller gains and the 
gains are often assumed as the linear function of the robot 
error. 

VII. CONCLUSIONS 

The following conclusions can be derived from the results 
and discussion of the current study. 

An artificial neural network-based model reference 
controller for the Bézier trajectory tracking of the mecanum-
wheeled mobile robot with a minor tracking error is proposed 
in this paper. Compared to other controllers, the neural network 
in the proposed controller has a simple structure, but it 
effectively improves performance with minor error. This 
primarily ensures that a small number of computations 
increases the convergence speed to update the control gains 

online. The adapted gains are derived by satisfying the 
condition that the error between the actual and controller 
outputs is zero asymptotically.  

 

 

Fig. 11.  The angular velocities of the four wheels. 

 

Fig. 12.  The angular velocity error of four wheels. 

The simulation results demonstrate the effectiveness of the 
proposed controller. They show that the errors in the x- and y-
directions do not exceed 11mm and 17mm, respectively, and 
the direction error does not exceed 0.34o. In addition, the 
position and orientation errors of the MWMR are often 
significant at the points where the MWMR changes direction to 
the desired trajectory tracking. We believe this will yield 
guarantees on the tracking performance of the MWMR. 
Additionally, the proposed controller exhibited motion error, 
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including the linear velocity error, limited to 0.0014m/s and 
angular velocity error limited to 0.00054rad/s. 

Likewise, the proposed controller can be applied to any 
desired trajectory with minimal control action and perfect 
orientation with low hardware structure cost. Nevertheless, this 
research does not account for the longitudinal and lateral slip, 
friction at the wheel-ground contact points, friction between the 
roller rotation and the roller's shaft on the wheels, and inertia 
forces. These are considered parts of our future research goals. 
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