
Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10401-10406 10401

www.etasr.com Luc et al.: Building Applications and Developing Digital Signature Devices based on the Falcon Post-…

Building Applications and Developing Digital
Signature Devices based on the Falcon Post-
Quantum Digital Signature Scheme

Nhu Quynh Luc

Academy of Cryptography Techniques, Vietnam
quynhln@actvn.edu.vn
(corresponding author)

Tat Thang Nguyen

National Agency of Cryptography and Information Security, Vietnam
thangnt@bcy.gov.vn

Duc Huy Quach

Academy of Cryptography Techniques, Vietnam
qdhuy2000gl@gmail.com

Toan Thanh Dao

University of Transport and Communications, Vietnam
daotoan@utc.edu.vn

Ngoc-Thao Pham

VNU University of Engineering and Technology, Vietnam
thao.pham@vnu.edu.vn

Received: 9 January 2023 | Revised: 23 January 2023 and 9 February 2023 | Accepted: 11 February 2023

ABSTRACT

Falcon is an efficient and secure postquantum signature scheme for services based on quantum computing.

It employs the hash-and-sign approach in conjunction with the Gentry, Peikert, and Vaikuntanathan

(GPV) framework on Number Theory Research Unit (NTRU) lattices. This study evaluated the operation

procedure and the capacity to run the Falcon scheme using a key length of 1024 bits on different hardware

and software platforms, such as personal computers and Raspberry Pi 4 and Windows, Ubuntu, and

Android operating systems. The following results were obtained: file sizes ranged from 30 to 5449268KB,

digital signature times ranged from 50 to 19500ms, and signature verification times ranged from 14 to

19000ms. The results show that the Falcon post-quantum signature scheme works stably and ensures

execution speed on different platforms, similar to current digital signature schemes.

Keywords-post-quantum; signature; falcon; NTRU lattices; Raspberry Pi 4 Model B

I. INTRODUCTION

With the emergence of quantum computers, traditional
cryptography is gradually losing its security elements, and
becomes a threat to the security of asymmetric cryptosystems
and digital signatures based on number theory in quantum
computers, such as RSA, DSA, Diffie-Hellman, ElGamal, and
elliptic curve variants [1-4]. Post-quantum cryptosystems must
ensure their security properties even in the face of quantum
computers [4-5]. The Falcon scheme is one of the post-

quantum digital signature schemes nominated in the post-
quantum cryptography competition that can be used on NIST
quantum computer systems as of 2017 [1]. NIST has presented
several cryptosystems that can meet the security requirements
against quantum computing systems, known as post-quantum
cryptography, such as NTRU, Rainbow, Classic McEliece,
Falcon, etc. [1]. In particular, the Falcon digital signature is one
of the schemes that has many security advantages against
quantum computer systems [6-7].

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10401-10406 10402

www.etasr.com Luc et al.: Building Applications and Developing Digital Signature Devices based on the Falcon Post-…

The GPV framework theory for lattice-based digital
signatures was presented in 2008 [2]. The design of the Falcon
signature scheme was based on the lattice theory for the digital
signature scheme [2]. This lattice theory is constructed by first
initializing it with the NTRU lattice and the trapdoor sampler
"Fourier Rapid Sampling" [8-9]. The complexity of the Falcon
signature scheme is based on the openness of finding the Short
Integer Solution (SIS) when solving the NTRU lattice problem
[10]. This is a current open problem. This problem has been
solved in cases where the boundary conditions of the equation
are small, but the solution is still challenging when the
boundary conditions of the equation are large, even with the
help of a quantum computer.

This study investigated and assessed the design and
implementation of the Falcon digital signature scheme for key
generation, digital signature, and signature verification on
hardware (Raspberry Pi 4 Model B [11-13]) and software
(Windows, Ubuntu, Android), using experiments to assess its
performance.

II. THE FALCON SCHEME

A. Mathematical Basis of the Falcon Post-Quantum Signature
Scheme

In the Falcon digital signature scheme, the GPV framework
theory is used to build a lattice-based digital signature scheme.
The framework can be described as having the following
components:

 The public key is a matrix with full rank � ∈ ���×�, m > n,
that creates a lattice Λ.

 The secret key is a matrix � ∈ ���×� that creates an
orthogonal mesh 	�
 . Here, 	�
 is the orthogonal grid
symbol of the lattice Λ modulo q and the orthogonal mesh
satisfies the following property: with every x ∈ Λ and y ∈
	�
 , then the condition ⟨x, y⟩ = 0 mod q is satisfied.
Equivalently, the orthogonal rows of A and B satisfy:

� × �� = 0 (1)

 Perform signature for message m: the signature form is a
short integer value � ∈ ��� , so that sAt = H(m), therein
�: {0,1}∗ → ��� is a hash function. Then, for A, the
validation of signature s is performed simply by checking if
s is a short integer value that satisfies the condition sAt =
H(m).

 Signature verification: The signature validation process is
more complicated. At first, the user has to calculate the pre-
image value �� ∈ ��� to satisfy C0A

t = H(m). This is
entirely possible with linear algebra calculus tools as C0 is
not required to be short and m ≥ n. Then, B is used to
compute the orthogonal closing vector � ∈ 	�
 close to C0.
The validity of the signature is determined by � = �� − �.
When c0 and v are close enough (small c0 – v) then:

s A� = c��� − vA� = c − 0 = H() (2)

As a result, s is short. This shows that the Falcon signature
scheme has the advantage that the signature must be short.

In the GPV frame, v is calculated based on the algorithm
randomness generated in the algorithm variant to find the
nearest plane corresponding to v [14]. As the algorithm to find
the primitive nearest plane is vulnerable to an attack on the
corresponding basis set of the secret corresponding to B, the
schema is unsafe. However, this was improved when the
algorithm was used with a given m and sampling s according to
the demand distribution [15]. The spherical Gaussian
distribution on the translated lattice is C0 + 	�
. This method
was proven to not reveal information about B, and it was the
first algorithm to use trapdoor sampling sets.

Afterward, choosing a cryptosystem for the GPV frame is a
requirement. The Falcon post-quantum digital signature
scheme used an NTRU lattice in addition to a ring structure.
The purpose of this idea was to help reduce the size of public
keys with computational complexity "(#) and speed up the
scheme by reducing the computational complexity to "(#/
%&' #). In terms of the theory of lattice on rings, the NTRU
lattice has been proven to be the smallest standard grid, i.e. the
smallest set that has many good properties. The good
cryptographic properties of the NTRU lattice on this
polynomial ring are shown by the following property: The
public key is a reminder of a simple (one-variable) polynomial
on the ring of polynomial ℎ ∈ ��[*] whose largest degree is n-
1. With the advantages of the NTRU lattice when applying
such public key generation, the GPV framework used with the
NTRU grid ensures the security of the Falcon scheme [9]. The
NTRU grid is represented as:

, = *� + 1 , (# = 2/) (3)

The secret key of NTRU is a set of four polynomials f, g, F,
G ∈ Z[x]/(φ), that satisfy:

01 − '2 = 3 &4 , (4)

where the polynomial f must be invertible modulo q. For the
public key, the polynomial h can be calculated by:

ℎ ← ' ∙ 078 &4 3 (5)

The polynomial h is called the public key. Thus, for the
Falcon scheme, the public key is the polynomial h and the
secret key is a set of the four polynomials f, g, F, G.

B. Prove the Correctness of the Key Generation Process

The two matrices 91 ℎ
0 3: and ;0 '

2 1< must be on the same

lattice. In this case, if the polynomials f and g are produced
with a sufficiently large entropy, then the generated public key
h guarantees good pseudo-randomness [9]. However, in
practice, even if f and g have relatively small entropy, it is still
difficult to find the corresponding small polynomials f' and g'
satisfying the condition ℎ = '= ∙ (0=)78 &4 3. This makes the
NTRU lattice difficult to solve when the lattice is large enough,
increasing complexity and ensuring its safety against quantum
computers.

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10401-10406 10403

www.etasr.com Luc et al.: Building Applications and Developing Digital Signature Devices based on the Falcon Post-…

C. Implementation of the Falcon Post-Quantum Signature
Scheme

The Falcon key generation, digital signature, and
authentication are built on top of the GPV framework and
implemented as follows:

 For the key generation, the public key is A = [1 | h*], which
is equivalent to knowing the polynomial h.

 The secret key is: � = ;' −0
1 −2<

 For the key validation, A and B are orthogonal through the
expression: � × �∗ = 0 &4 3.

 For the digital signature, the signature of the message m
takes the form of a salt r along with a pair of polynomials
(s1, s2) satisfying:

�8 + �>ℎ = �(?||m) (6)

Since s1 is completely determined by m, r, and s2, the
signature is a pair (r, s2).

D. Selecting a Set of Parameters to Ensure the Safety of the
Falcon Scheme

The input parameters to the Falcon signature scheme are
important to ensure a secure digital signature process. The
scheme is built on the GPV framework on defining the sample
for the trapdoor sampler. The inputs to the trapdoor sampler
include matrix A, trapdoor function T, and objective value c.
The output is a short vector s that satisfies:

��� = � &4 3 (7)

Calculating this output value is equivalent to finding a
vector � ∈ 	�
 that has a value close enough to c0. This shows
that the tailgate sampler is important. These input parameter
values are taken to ensure the quality of the trapdoor sampler
based on efficient matrix calculations, and the "quality" of the
sampler must be guaranteed: The shorter the vector s, i.e. the
closer v is to c0, the safer the sample.

E. Theoretical Security Assessment for the Falcon Post-
Quantum Digital Signature Scheme

With theoretical safety criteria, the NIST has made several
evaluations of current trapdoor samplers. Table I details the
survey, analysis, and performance evaluation in terms of speed,
outputs, and compatibility with the NTRU lattice.

TABLE I. COMPARE SAMPLING ALGORITHMS [1]

Sampling

Algorithm
Speed

Output s

short

NTRU lattice

compatibility

[15] No Yes No
[17] Yes No Yes
[18] Yes Yes No
[8] Yes Yes Yes

In the implementation of the algorithm presented in [5],

matrix B is taken as a trapdoor and then the algorithm generates
vector s with normalized form ∥B∥GS. The process of
generating a short vector s increases the security of the

algorithm. This process has a computational complexity in time
and space of approximately O(m2) [16].

The algorithm proposed in [17] is a version of the algorithm
for finding the nearest plane at random. In [17], it was shown
that this algorithm was equivalent to [15], and the output s was
also a vector, but expressed in a normalized form ∥B∥2. But, as
s is represented in its second normal form, the security will not
be equal to [15]. In terms of complexity and processing time,
this algorithm has time and space complexity of O(m logm).
The algorithm in [17] allows sampling the trapdoor from the
trapdoor of A simply and efficiently. However, this algorithm is
not compatible with the NTRU lattice and does not achieve a
small enough initial vector s to correspond to the NTRU lattice
built, according to the GPV framework [18]. The algorithm
"fast Fourier transform for the nearest plane" proposed in [8]
was a variant of the algorithm "find the nearest plane of Babai"
with a lattice on a polynomial ring. In this algorithm, recursion
is very similar to a fast Fourier transform, which is the reason
for the algorithm's name. The algorithm was built based on the
trapdoor sampling method with assurance according to the
[15]. This shows that the algorithm in [8] works as efficiently
as the algorithm in [17] and can be used with the NTRU lattice.

According to Table I, the "fast Fourier transforms for
nearest plane" algorithm on the NTRU grid [8] is the most
suitable for the objectives of this study. After generating the
key according to the NTRU lattice, the polynomials f, g, F, G
will be converted to a canonical form for use as a new secret
key of the form sk=E�F ,TG. Matrix �F is calculated according to:

�F = 922H(') −22H(0)
22H(1) −22H(2): (8)

The calculation of the falcon tree T is performed in 2 steps.

At first, T-tree is calculated from G → �F×BI∗
 as an

unnormalized Falcon tree. Then, normalization is performed on
T-tree, according to standard deviation σ. The key generated in
this way ensures compactness and allows fast signature
generation.

III. RESULTS AND DISCUSSION

A. Design and Build Falcon Post-Quantum Digital Signature
Application on Windows, Ubuntu, and Android OS

The Falcon post-quantum digital signature module used in
this study includes the following modules: quantum key
generation (based on NTRU lattice combined with the falcon
tree), Falcon digital signature (according to the GPV
framework built on NTRU lattice with trapdoor sampling
"Quick Fourier Transform Sampling"), and Falcon digital
signature authentication. Figure 1 shows a working model of
the Falcon post-quantum digital signature. On the first start of
the Falcon, after entering the input file, the program generates a
key according to the above algorithms if no standard set of
keys has been generated or set before. The private part of this
key will be used to digitally sign the file, and the digital
signature of the original file along with the public key will be
transmitted to the recipient so that he can verify it.

The program module was designed with 2 main interfaces:
Figure 2 shows the interface for the digital signature process

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10401-10406 10404

www.etasr.com Luc et al.: Building Applications and Developing Digital Signature Devices based on the Falcon Post-…

according to the Falcon digital signature scheme to (a) sign and
protect a file against post-quantum algorithms and (b) validate
it. To sign a file, a user has to select it, type the filename to
save the signed one, and press the "Sign" button. If the key
exists, the program will immediately return the signing result.
If not, it will generate a quantum key as described above. If the
generation of the digital signature is successful, the signature
will be printed along with the time elapsed for its generation.
When authenticating a signed file, a user has to select it along
with the public key of the signature and then click the "Verify"
button. The program will automatically verify the signature,
showing the appropriate message and the time elapsed for the
validation procedure. The application was built in
Python/Tkinter [19] and tested on Windows, Ubuntu, and
Android, as shown in Figure 3.

Fig. 1. Falcon Post-quantum digital signature operation model

(a)

(b)

Fig. 2. Implemented (a) Falcon Post-Quantum digital signature and (b)
signature authentication interfaces.

B. Development of Falcon Post-Quantum Digital Signature
Device on Raspberry Pi 4 Model B Hardware Platform

In addition to evaluating the software, this study built a
digital signature mechanism using a Raspberry Pi 4. The
Falcon digital signature system was installed on a Raspberry Pi

4 Model B connected to a wifi router. Users accessed the
system's IP address to utilize the service, as seen in Figure 4.
To use the program, the system must be powered on, as seen in
Figure 6(a), then access the system's IP address from the client
and log in, as seen in Figure 6(b). After a successful
authentication, the user can use the services using a pre-
initialized key saved on the device, as seen in Figure 6(c). The
user then can upload the file to the system, which will digitally
sign it with a pre-initialized key and return the signed file to
download.

(a) (b) (c)

Fig. 3. Executing the application in (a) Ubuntu, (b) Android, and (c)
Windows.

Fig. 4. Flowchart of Falcon digital signature system operation using a
Raspberry Pi 4.

Fig. 5. Flowchart of key generation, key storage, and key use on the
server.

This procedure uses four algorithms. The key generation
algorithm is:

Require: Request the creation of a new account.

Ensure: a secret key sk, a public key pk.

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10401-10406 10405

www.etasr.com Luc et al.: Building Applications and Developing Digital Signature Devices based on the Falcon Post-…

1.Random ϕ = x1024 + 1

2.Calculate q = 121024 + 1

3.Compute NTRU polynomials f, g, F, G verifying:
fG - gF = q mod ϕ (sk)

4.Calculate pk: h ← g · f-1 mod q

5.Save sk, pk for this account in a yaml file.

The signing algorithm is detailed as:

Require: A message m, a secret key sk.

Ensure: A signature sig of m.

1.Random salt r

2.Hash the message m with salt r: H(r||m)

3.Repeat the signing procedure until finding a
signature that is short enough (both the
Euclidean norm and the byte length)

4.Return: a signature sig of m

The verification algorithm is:

Require: A signature sig of m, a public key pk, a
message m’

Ensure: accept or not

1.Unpack the salt r and the short polynomial s2

2.Compute s1 and normalize its coefficients in

 (-q/2, q/2]

3.Check that the (s1, s2) is short

4.Check that s1 + s2h = H(r||m’)

5.If all checks are passed, accept

The login verification algorithm is:

Require: Username, password

Ensure: accept or not

1.Check whether the username is in the database
(yaml file)

2. Hash the password (hp’)

3. Check that hp’ = hp (hp is the hash password
for username in the yaml file)

4.If all checks are passed, accept

(a) (b) (c)

Fig. 6. (a) Raspberry Pi 4 System startup, (b) login, and (c) digital
signature interface.

To evaluate the performance of the system, different file
types were digitally signed on these platforms with a key length
of 1024 bits. Table II shows the results obtained for the Falcon

post-quantum signature process and verification. These results
show that the execution time for the Falcon digital signature
system on various platforms demonstrates the program's
efficacy and stability. Digital signing takes 50–19500ms,
signature authentication takes 14–19000ms, and the signature
size is 1.28KB for file sizes ranging from 30 to 5,449,268KB,
on different hardware (personal computer and Raspberry Pi 4)
and software (Windows, Ubuntu, and Android). It is clear that
the digital signature speed is related to the size of the file but
always yields the same signature file size. The Falcon post-
quantum cryptography can be used securely for quantum
computers, as it has shorter execution times than the Rainbow
post-quantum cryptosystem on the same machine [1]. This can
be explained by Rainbow ("(#J)) having more computational
complexity than Falcon ("(#/ %&' #)).

TABLE II. FALCON SIGNATURE AND VALIDATION TIMES
ACROSS PLATFORMS AND RAINBOW

File

type

Capacity

(KB)

Signature

time (ms)

Authentication

time (ms)

Signature size

(KB)

Windows 10 [16Gb RAM – 2.3Ghz (8 CPUs)]

jpg 124 50.896 14.994 1.28
exe 636,133 2314.817 2230.037 1.28
rar 2,977,754 11073.385 10615.610 1.28
iso 5,449,268 19448.226 19014.150 1.28

Ubuntu 20.04.4 – VMWare [16Gb RAM – 2.3Ghz (2 CPUs)]

jpg 127 57.470 13.882 1.28
rar 40,803 208.493 164.825 1.28
exe 636,133 2481.803 2446.245 1.28
deb 3,335,876 12502.191 11989.483 1.28

Android [6Gb RAM – Snapdragon 695 5G]

pdf 6758.4 164.661 99.195 1.28
rar 39,843 294.353 229.441 1.28
apk 357,808 1445.067 1350.679 1.28
mp4 1,184,891 4783.171 4470.747 1.28

Raspberry Pi 4 Model B [4Gb RAM - ARM Cortex-A72]

File

type

Capacity

(KB)

Signature time

(ms)

Signature size

(KB)

jpg 4,855 246.922 1.28
mov 102,363 911.44 1.28
rar 134,607 1128.04 1.28
exe 636,133 4632.76 1.28

Rainbow - Windows 10 [16Gb RAM – 2.3Ghz (8 CPUs)] [1]

File

type
Capacity (word)

Signature time

(ms)

Authentication

time (ms)

Text 500 108.3 38.8
Text 1000 46.4 37.4
Text 10000 20.7 28.9

The Fortify Static Code Analyzer toolkit v.22.1.0.0166 was
used to validate the code structure, showing that the code was
created securely. These results show that this application has
reasonably fast post-quantum digital sign and verification
speeds, which meet the current user requirements.

IV. CONCLUSION

This study investigated the mathematical assessment and
security guarantees for the Falcon post-quantum digital
signature system and tested its schema's key generation, and
digital signature and validation processes. The results obtained
with a key length of 1024 bits for the Falcon schema on both
hardware and software (running on Windows, Ubuntu, and
Android platforms) for file sizes between 30-5,449,268KB.

Engineering, Technology & Applied Science Research Vol. 13, No. 2, 2023, 10401-10406 10406

www.etasr.com Luc et al.: Building Applications and Developing Digital Signature Devices based on the Falcon Post-…

The time to perform a digital signature was approximately 50-
19,500ms, the time to perform signature authentication was
approximately 14-19,000ms, and the signature size was
1.28KB. These results demonstrate that the Falcon post-
quantum digital signature method has steady performance and
guarantees the same execution speed as existing digital
signature systems on a variety of platforms. Future work
should investigate the use of the Falcon post-quantum digital
signature on more hardware platforms and its integration into
commercial applications.

ACKNOWLEDGMENT

The authors acknowledge the Academy of Cryptography
Techniques and the Minister of Education and Training
(MOET) for supporting this work under grant numbers B2022-
GHA-09 and B2022-GHA-10.

REFERENCES

[1] G. Alagic et al., "Status Report on the Third Round of the NIST Post-
Quantum Cryptography Standardization Process," National Institute of
Standards and Technology, NIST Internal or Interagency Report
(NISTIR) 8413, Sep. 2022. https://doi.org/10.6028/NIST.IR.8413-upd1.

[2] C. Gentry, C. Peikert, and V. Vaikuntanathan, "Trapdoors for hard
lattices and new cryptographic constructions," in Proceedings of the
fortieth annual ACM symposium on Theory of computing, Victoria,
Canada, Feb. 2008, pp. 197–206, https://doi.org/10.1145/1374376.
1374407.

[3] U. Iftikhar, K. Asrar, M. Waqas, and S. A. Ali, "Evaluating the
Performance Parameters of Cryptographic Algorithms for IOT-based
Devices," Engineering, Technology & Applied Science Research, vol.
11, no. 6, pp. 7867–7874, Dec. 2021, https://doi.org/10.48084/etasr.
4263.

[4] R. Bhat, N. R. Sunitha, and S. S. Iyengar, "A probabilistic public key
encryption switching scheme for secure cloud storage," International
Journal of Information Technology, Sep. 2022, https://doi.org/10.1007/
s41870-022-01084-8.

[5] N. M. Mukhammadovich and A. R. Djuraevich, "Working with
cryptographic key information," International Journal of Electrical and
Computer Engineering (IJECE), vol. 13, no. 1, pp. 911–919, Feb. 2023,
https://doi.org/10.11591/ijece.v13i1.pp911-919.

[6] H. M. Bahig, A. Alghadhban, M. A. Mahdi, K. A. Alutaibi, and H. M.
Bahig, "Speeding up the Multiplication Algorithm for Large Integers,"
Engineering, Technology & Applied Science Research, vol. 10, no. 6,
pp. 6533–6541, Dec. 2020, https://doi.org/10.48084/etasr.3932.

[7] M. F. Hyder, S. Tooba, and Waseemullah, "Performance Evaluation of
RSA-based Secure Cloud Storage Protocol using OpenStack,"
Engineering, Technology & Applied Science Research, vol. 11, no. 4,
pp. 7321–7325, Aug. 2021, https://doi.org/10.48084/etasr.4220.

[8] L. Ducas and T. Prest, "Fast Fourier Orthogonalization," in Proceedings
of the ACM on International Symposium on Symbolic and Algebraic
Computation, Waterloo, Canada, Apr. 2016, pp. 191–198,
https://doi.org/10.1145/2930889.2930923.

[9] D. Stehlé and R. Steinfeld, "Making NTRU as Secure as Worst-Case
Problems over Ideal Lattices," in Advances in Cryptology –
EUROCRYPT 2011, Tallinn, Estonia, 2011, pp. 27–47,
https://doi.org/10.1007/978-3-642-20465-4_4.

[10] D. Das, V. Saraswat, and K. Basu, "Lattice signatures using NTRU on
the hardness of worst-case ideal lattice problems," IET Information
Security, vol. 14, no. 5, pp. 496–504, 2020, https://doi.org/10.1049/iet-
ifs.2019.0580.

[11] W. Donat, Learn Raspberry Pi Programming with Python: Learn to
Program on the World’s Most Popular Tiny Computer, 2nd ed. O’Reilly
Media Inc., 2018.

[12] "Datasheet Raspberry Pi Model B." https://datasheets.raspberrypi.com/.

[13] Edwar Jacinto Gomez; Caterinne Perilla Gutierrez; Lina Uyasaba
Murillo, "Hardware based cryptography: technological advances for
applications in Colombia using embedded systems," International
Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1,
pp. 508–517, Feb. 2021, https://doi.org/10.11591/ijece.v11i1.pp508-517.

[14] G. McGuire and O. Robinson, "Lattice Sieving in Three Dimensions for
Discrete Log in Medium Characteristic," Journal of Mathematical
Cryptology, vol. 15, no. 1, pp. 223–236, Jan. 2021, https://doi.org/
10.1515/jmc-2020-0008.

[15] P. Klein, "Finding the closest lattice vector when it’s unusually close," in
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, San Francisco, CA, USA, Oct. 2000, pp. 937–941.

[16] P. Q. Nguyen and T. Vidick, "Sieve algorithms for the shortest vector
problem are practical," Journal of Mathematical Cryptology, vol. 2, no.
2, pp. 181–207, Jul. 2008, https://doi.org/10.1515/JMC.2008.009.

[17] C. Peikert, "An Efficient and Parallel Gaussian Sampler for Lattices," in
Advances in Cryptology – CRYPTO 2010, Santa Barbara, CA, USA,
2010, pp. 80–97, https://doi.org/10.1007/978-3-642-14623-7_5.

[18] D. Micciancio and C. Peikert, "Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller," in Advances in Cryptology – EUROCRYPT 2012,
Cambridge, UK, 2012, pp. 700–718, https://doi.org/10.1007/978-3-642-
29011-4_41.

[19] Y. Chen, N. Genise, and P. Mukherjee, "Approximate Trapdoors for
Lattices and Smaller Hash-and-Sign Signatures," in Advances in
Cryptology – ASIACRYPT 2019, Kobe, Japan, 2019, pp. 3–32,
https://doi.org/10.1007/978-3-030-34618-8_1.

[20] T. Weber, R. Georgii, and P. Böni, "Takin: An open-source software for
experiment planning, visualisation, and data analysis," SoftwareX, vol. 5,
pp. 121–126, Jan. 2016, https://doi.org/10.1016/j.softx.2016.06.002.

