
Engineering, Technology & Applied Science Research Vol. 5, No. 3, 2015, 795-800 795

www.etasr.com Issawi et al.: Efficient Adaptive Load Balancing Algorithm for Cloud Computing Under Bursty Workload

An Efficient Adaptive Load Balancing Algorithm for
Cloud Computing Under Bursty Workloads

Sally F. Issawi
Faculty of Information Technology
Islamic University of Gaza (IUG)

Gaza, Palestine
sally.issawi@gmail.com

Alaa Al Halees
Faculty of Information Technology
Islamic University of Gaza (IUG)

Gaza, Palestine
Alhalees@iugaza.edu.ps

Mohammed Radi
Faculty of Applied Science

Al-Aqsa University
Gaza, Palestine

moh_radi@alaqsau.edu.ps

Abstract—Cloud computing is a recent, emerging technology in
the IT industry. It is an evolution of previous models such as grid
computing. It enables a wide range of users to access a large
sharing pool of resources over the internet. In such complex
system, there is a tremendous need for an efficient load balancing
scheme in order to satisfy peak user demands and provide high
quality of services. One of the challenging problems that degrade
the performance of a load balancing process is bursty workloads.
Although there are a lot of researches proposing different load
balancing algorithms, most of them neglect the problem of bursty
workloads. Motivated by this problem, this paper proposes a new
burstness-aware load balancing algorithm which can adapt to the
variation in the request rate by adopting two load balancing
algorithms: RR in burst and Random in non-burst state. Fuzzy
logic is used in order to assign the received request to a balanced
VM. The algorithm has been evaluated and compared with other
algorithms using Cloud Analyst simulator. Results show that the
proposed algorithm improves the average response time and
average processing time in comparison with other algorithms.

Keywords-cloud computing; cloud analyst; burstness; fuzzifier;
load balancing algorithm

I. INTRODUCTION

Nowadays most developments in the IT industry come to
meet the demands for utilizing more resources in lower costs.
This technological trend has enabled the evolution of a new
computing model called cloud computing, in which resources
and services are available on the Internet and can be leased and
released on demand [1]. Cloud computing can improve
business performance by minimizing the overhead of buying,
managing and controlling IT resources. The financial model
applied in cloud computing is “Pay-per-Use” so the consumer
only pay for his needs. The scale up in demands make load
balancing a major concern in cloud computing. This is defined
as a method to distribute the workload across one or more
servers, network interfaces, hard drives, or other computing
resources. Load balancing is used to make sure that none of the
existing resources are idle while others are being utilized [2].
One of the most challenging problems that dramatically
degrade the performance of a load balancing process is the
burstiness in workloads. Bursty traffic refers to an uneven
pattern of data transmission: sometimes very high data
transmission rate while other times low [3].

 Several load balancing algorithms had been proposed
which focus on key elements such as processing time, response
time and processing costs. However these algorithms neglect
the case of bursty workloads. According to that, in this research
we proposed an efficient adaptive load balancing algorithm for
cloud computing under bursty workloads. The proposed
algorithm adapt to the variation in the received request rate by
adopting two different load balancing algorithms according to
the workload state. It detects the start of the burst by
calculating the average received requests and use Round Robin
(RR) in the burst case, otherwise the Random algorithm is
used. Those two load balancing algorithm select a suitable VM
based on the knowledge provided by a fuzzifier.

The algorithm has been evaluated and compared with other
algorithms using the Cloud Analyst simulator. Results show
that the proposed algorithm improves the average response
time and average processing time compared to other
algorithms.

II. CLOUD COMPUTING

The core idea behind cloud computing is not a new one. It
was actually pronounced way back in 1960 [4]. Cloud
computing is a type of parallel and distributed system. It
consists of a collection of interconnected and virtualized
computers that are dynamically provisioned and presented as
one or more unified computing resources. The services
delivered to the consumer are based on service-level
agreements (SLA), established through negotiation between the
service provider and consumers [5]. The objective of cloud
computing is to provide secure, qualitative, scalable, quick,
more responsive, on demand, cost-efficient and automatically
provisioned services such as computation services, storage
services, networking etc. Although those services are
geographically distributed all over the world, they are provided
in a location independent way [4]. Cloud computing can help
improve business performance while making a contribution to
control the cost of delivering IT resources to any organization.
It minimizes the overhead of buying, managing and controlling
IT resources. The financial model applied in cloud computing
is “Pay-per-Use” so the consumer only pay for his needs.

Research on cloud computing is still at an early stage.
Several new challenges keep emerging from industry

Engineering, Technology & Applied Science Research Vol. 5, No. 3, 2015, 795-800 796

www.etasr.com Issawi et al.: Efficient Adaptive Load Balancing Algorithm for Cloud Computing Under Bursty Workload

applications, and many issues need to be properly addressed.
Some of the challenging research issues in cloud computing
are: security and privacy, performance, resource management
and scheduling. Resource management is a very important
issue in cloud computing, as large numbers of users share the
same resources. So in order to meet Quality of Service (QoS)
standards and insure best resource utilization, proper resource
management mechanisms should be used in deferent levels
such as management of memory, disk space, CPU’s, cores,
threads, VM images, I/O devices etc. Resource provisioning
can be defined as allocation and management of resources to
provide desired level of services. Job scheduling is an essential
process in resource provisioning where the order of the job
execution is established in order to optimize performance
parameters such as response time, processing time, waiting
time etc. [4]. One of the most important issues in job
scheduling is load balancing which is the interest of this work.

III. LOAD BALANCING

The scale up in demands make load balancing a major
concern in cloud computing. It is defined as a method to
distribute workload across one or more servers, network
interfaces, hard drives, or other computing resources. Load
balancing is used to make sure that none of the existing
resources are idle while others are being utilized [2].

Basically there are 2 types of load balancing algorithm
depending on their implementation method:

1) Static Algorithms
In this type, the load is divided equivalently between nodes.

This algorithm depend on prior knowledge of the system, it
does not consider the current state of the node and will degrade
the performance of the system. This type of algorithms is
referred to as round robin algorithms [2, 6].

2) Dynamic Algorithms
Dynamic algorithms make decisions based on current state

of the system. No prior knowledge is needed [2]. So workloads
can be distributed efficiently over nodes. Dynamic load
balancing can be done in two ways: [7]

 Distributed dynamic load balancing:

In the distributed one, all nodes in the system execute the
dynamic load balancing algorithm and the task of load
balancing is shared among them. Its advantage is that if one or
more nodes in the system fail, the system performance will be
affected to some extent, but it will not cause the total load
balancing process to halt.

 Non-distributed dynamic load balancing:
In the non-distributed one, the load balancing algorithm is

executed by a single node of the system and the task of load
balancing is dependent only on that node. A failure in this one
node will cause the total load balancing process to halt.

Static (round robin) algorithms are based on a simple rule in
dividing the loads among nodes but this leads to more loads
conceived on servers and thus imbalanced traffic discovered as
a result. However; dynamic algorithm predicated on a query
that can be made frequently on servers, but sometimes
prevailed traffic will prevent these queries to be answered, and
correspondingly more added overhead can be distinguished on
the network [6].

IV. BURSTY WORKLOAD

One of the most challenging problems that dramatically
degrade the performance of load balancing process is
burstiness in workloads. Bursty traffic refers to an uneven
pattern of data transmission: sometime very high and other
times very low [3]. Burstiness occurs in workloads in which
bursts of requests aggregate together during short periods of
time and create periods of peak system utilization. Figure 1
shows three different levels: strong, week, and no burstiness.

This problem is often observed in large systems including
web based applications [8], grid services [9], multitier
architectures [10], and large storage systems [11]. It can
dramatically degrade system performance, make the system
unavailable and lead to a total failure. Burstiness considered as
one of the most complex problem nowadays in cloud
computing, as the number of users that uses cloud services
increases day by day, so load balancer must consider the
performance of each instance under both bursty and non-bursty
workloads for efficient resource utilization.

Fig. 1. Different levels of burstness

V. RELATED WORKS

Several approaches had been proposed to handle the load
balancing issues in cloud computing systems. All these works

aimed to improve the process of distributing the workload
among cloud nodes and try to achieve optimal resource
utilization, minimum data processing time, minimum average
response time, and overload avoidance. However most of these

Engineering, Technology & Applied Science Research Vol. 5, No. 3, 2015, 795-800 797

www.etasr.com Issawi et al.: Efficient Adaptive Load Balancing Algorithm for Cloud Computing Under Bursty Workload

approaches neglected the effect of burstiness on the load
balancing process. Sethi, et al in [12] designed a new load
balancing technique using fuzzy logic based on a Round Robin
(RR) algorithm to obtain measurable improvements in resource
utilization and availability of cloud-computing environment.
The proposed technique uses a fuzzifier to perform the
fuzzification process that converts two types of inputs which
are the processor speed and the assigned load of the Virtual
Machine (VM), and one output which is the balanced load to
create an inference system. The Fuzzy based Round Robin
(FRR) load balancer compared to the conventional Round
Robin (RR) load balancer minimizes the data center processing
time and overall response time. The problem with Round
Robin algorithms in general however, is that they are not able
to handle bursty workloads. Even with the proposed
enhancement on RR by using fuzzy logic, burstiness is not
considered.

In [13], a fuzzy logic load balance algorithm focused on a
public cloud was proposed. The main idea of the algorithms
was to partition the Cloud to several cloud partitions with each
partition having its own load balancer, and a main controller to
manage all these partition. Results showed enhancements in
resource utilization and availability in the cloud computing
environment. The drawback of this approach is the difficulty of
testing the technique in a real environment to make sure that it
has achieved good results. In [14], a smart burstiness-aware
algorithm (ARA) to balance bursty workloads across all
computing sites, and thus to improve overall system
performance, was proposed. The presented algorithm predicts
the beginning and the end of workload bursts and automatically
on-the-fly shift between two schemes: “greedy” (i.e., always
select the best site) which has better response time under the
case of no burstiness and “random” (i.e., randomly select one)
which has better response time under burstiness. Both
simulation and real experimental results show that this
algorithm improves the performance of the cloud system under
both bursty and non-bursty workloads. Although this algorithm
gives good results, it does not consider an important factor in
load balancing, which is the current utilization of available
resources.

In [7], a dynamic load balancing model that considers
utilizing resources under burstiness cases was proposed. The
suggested architecture consists of four parts: Cloud controller
server, Node controller server, Agents, and Virtual machines.
All requests first go to the cloud controller server and then they
are transferred to the load balancer. Finally a virtual instance is
selected by the load balancer based on the information supplied
by the monitoring agent about CPU usage, memory and storage
space usage. The researchers claimed that this algorithm should
ensure the optimum utilization of cloud resources, faster
response time, and cut the economic cost for an organization.
However they did not do any experiments or evaluations for
their work.

In [15], load balancing under bursty environment for Cloud
Computing was also investigated. A dynamic load balancing
algorithm which maintains the state of all virtual machine
(VM) resources was proposed. The algorithm. based on CPU,
memory and storage space utilization, selects the less utilized

VM resource to handle the request. A monitoring agent was
used to continuously monitor CPU usage, memory and storage
space usage, and the current and the expected load for each
virtual machine. Based on this information a Pheromone (or
probability) was assigned for every VM. When a request
arrives to the datacenter, the load balancer transfers the request
to the VM which has the least Pheromone. Authors mentioned
that their algorithm improved the performance but they did not
provide any comparisons with other load balancing algorithms
and they did not share any experiments results.

In [16], an approach to overcome the un-utilized resource
provisioning and the power consumption problems under
bursty and fractal behavior workload was proposed. It consists
of two phases for resource utilization provisioning, called
“predictive and reactive provisioning”. Firstly the forecasting
module predicts the work load for the next control horizon, and
then the controller estimates the number of necessary
resources, such as processing cores, for the predictable part of
the incoming load. In order to avoid the consequences of
forecasting errors, the system allocates extra resources that can
be used to serve unpredictable loads. This allocation is made
based on the history of the system operation. The proposed
approach improves the resource utilization and the power
consumption. On the other hand, if some prediction error
happens beyond the estimation of the extra resources, it would
be subject to delay in getting the resource till the system
allocates available resources.

VI. ADAPTIVE LOAD BALANCING ALGORITHM

The request rates received by the datacenter are not
constant all the time. Sometimes large number of requests
aggregated in a small period of time creating a burst. This
affect the performance of the load balancing algorithm as it
increase the processing time and the repose time of the
datacenter. The performance of several load balancing
algorithms differs according to the users’ requests rate. For
example some algorithms work efficiently under low workload
while their performance is degraded under high workload and
vice versa. To overcome burst problem and benefit from
different load balancing algorithms advantages we propose a
new load balancing algorithm called Adaptive algorithm.

Adaptive algorithm is a load balancing algorithm used by
the datacenter to distribute the received tasks efficiently over
the virtual machine under bursty workload by swapping
between two policies depending on the requests rates. It
consists of three main components as follows:

1- Burst detector.
2- Load Balancing Algorithms.
3- Fuzzifier.

When the datacenter receives a request, the burst detector
determines the workload state (Normal or Burst). Depending
on the burst detector decision, the datacenter will select the
appropriate load balancing policy for that state. After that, the
selected load balancing algorithm will assign the received task
to a suitable VM depending on the information supplied by the
fuzzifier. When the VM complete its assigned task, it informs

Engineering, Technology & Applied Science Research Vol. 5, No. 3, 2015, 795-800 798

www.etasr.com Issawi et al.: Efficient Adaptive Load Balancing Algorithm for Cloud Computing Under Bursty Workload

the data center. The main steps of the adaptive algorithm are
shown in Figure 2.

A. Burst Detector

The burst detector is responsible for detecting the variation
in the workload, and determining whether the state of the
workload is burst or not, using a specific threshold. When a
request arrives, the burst detector checks the rate of the
requests in the last 15 minutes and if it exceeds the threshold it
indicates that the status is burst. Depending on experiments, we
found that 15 minutes is a suitable time interval. Depending on
the detector decision, the datacenter will select the proper load
balancing policy.

Fig. 2. Adaptive load balancing algorithm flow chart

B. Load Balancing Algorithm

The proposed approach uses two load balancing algorithms,
one efficient in normal cases and another efficient in burst
cases. According to experiments done on three load balancing
algorithms (RR, ESCE and Random), Random policy performs
the best in low workload and Round Robin performs best in
high workload.

1) Random Policy:

When the burst detector decides that the workload state is
normal, the random policy will be applied. The fuzzifier supply
the random policy with a candidate list of balanced VMs in the
data center, then the policy will select one of these VMs
randomly and assign the received task to it.

2) Round Robin Policy:

Round Robin will be used when workload state is burst.
The same as random, the fuzzifier will provide a candidate list
of the most balanced VMs for Round Robin policy. Then
Round Robin will use this list to allocate VMs in a cycle
manner.

C. Fuzzifier

The main function of the fuzzifier is to enhance the
decision of the load balancing algorithm by providing a list of
the most balanced VMs in the data center and deliver it to the
load balancer to allocate one VM from this list. The fuzzifier is
consisted of a Fuzzy Inference System (FIS) to simulate the
way of human decision making by using fuzzy control rules
and linguistic parameters. In our wok, the FIS uses two inputs
which are processor speed and the load in VM, and balanced
load as the output. Twelve IF-THEN rules are employed as
shown in Figure 3. For the FIS, an open source Java library
called jFuzzyLogic [17] was used. This library offers a fully
functional and complete implementation of a fuzzy inference
system, providing a programming interface and Eclipse plugin
to easily write and test code for fuzzy control applications [18,
19].

VII. EXPERMENTS AND RESULTS

In order to test and evaluate the performance of our new
proposed algorithm, the CloudAnalyst simulator was
employed. CloudAnalyst is a tool developed at the University
of Melbourne. It is a graphical simulation tool based on
Cloudsim for modeling and analyzing the behavior of a cloud
computing environment, which supports visual modeling and
simulation of large-scale applications that are deployed on
Cloud Infrastructures [20-22]. Experiments had been done to
test the efficiency of the proposed scheme. Two metrics were
measured in order to evaluate the performance: Response Time
and Processing Time. The results were compared with three of
the most popular load balancing algorithms: RR, ESCE, and
Random.

A. Configurations

In order to build the simulation environment, two main
components had to be configured: User Base (UB) and Data
Center (DC). For the three experiments the following
configurations was used.

1) User Base
The number of UBs used is 6. All UBs are in the same

region with DC to ignore the transmission delay. Number of
Requests per user per hour for every UB is 12 and the Data
Size per Request is 100 Byte. Table I illustrates the User Bases
characteristics.

2) Data Center
One Data Center was used in the experiments. The Data

Center had 5 Physical Hosts with different Processor Speeds.
Data Center configurations are shown in detail in Table II and
Table III. The simulation time was set to one day. Experiments
had been done with three different Instruction Lengths (250,
500 and 1000 Bytes).

Engineering, Technology & Applied Science Research Vol. 5, No. 3, 2015, 795-800 799

www.etasr.com Issawi et al.: Efficient Adaptive Load Balancing Algorithm for Cloud Computing Under Bursty Workload

TABLE I. USER BASE CONFIGRATIONS

Name Peak Hours
Start

(GMT)

Peak Hours
End (GMT)

Avg. Peak
Users

Avg. Off-
peak Users

UB1 1 2 100000 10000

UB2 4 5 200000 20000

UB3 6 7 700000 70000

UB4 9 10 400000 40000

UB5 13 14 500000 50000

UB6 20 21 800000 80000

TABLE II. DATA CENTER MAIN CONFIGRATIONS

Data
Center

#VMs Image Size Memory BW

DC1 50 10000 1024 1000

TABLE III. DATA CENTER HOSTS CONFIGRATIONS

ID
Memo

ry
(Mb)

Storage
(Mb)

Availabl
e

BW

Num.
of

Proces
sors

Proce
ssor

Speed

VM
Policy

0 204800 100000000 1000000 4 2000
TIME_SH

ARED

1 204800 100000000 1000000 5 5000
TIME_SH

ARED

2 204800 100000000 1000000 2 9000
TIME_SH

ARED

3 204800 100000000 1000000 2 1000
TIME_SH

ARED

4 204800 100000000 1000000 2 15000
TIME_SH

ARED

B. Results

The Data Center hourly loading during the simulation time
is shown in Figure 3. The experiment results showed that the
adaptive algorithm recorded the best response and processing
time compared to RR, ESCE, and Random algorithms. As
shown in Figures 4-6, when the Instruction Length is 250
Bytes, the adaptive algorithm has better response time than RR
(which is better than ESCE and Random) with a difference of 2
ms. This difference is remarkably increased when the
instruction size is increased to 500 Bytes and 1000 Bytes
(7ms).

Fig. 3. Data Center Hourly Loading.

The processing time results show a similar trend with the
response time results. As presented in Figures 4-6, the adaptive
algorithm has the best processing time compared to the others.
The improvement in processing time became clearer when the
Instruction Length was increased

Inst. Length 250 Bytes

280

300

320

340

360

380

400

1 2 3 4
Algorithms

 (1=RR, 2=ESCE, 3=Random, 4=Adaptive)

T
im

e
 (
m
s)

Response
Time
Processing
Time

Fig. 4. Experment results when inst. length is 250 Bytess

Inst. Length 500 Bytes

600

620

640

660

680

700

720

1 2 3 4
Algorithms

 (1=RR, 2=ESCE, 3=Random, 4=Adaptive)

Ti
m
e
 (
m
s)

Response
Time
Processing
Time

Fig. 5. Experment results when inst. length is 500 Bytes

Inst. Length 1000 Bytes

1260
1280
1300
1320
1340
1360
1380
1400

1 2 3 4
Algorithms

 (1=RR, 2=ESCE, 3=Random, 4=Adaptive)

Ti
m
e
 (
m
s)

Response
Time
Processing
Time

Fig. 6. Experiment results when inst. length is 1000 Bytes

VIII. CONCLUSION

Cloud computing nowadays has become a quite popular
model by offering a variety of resources shared over the

Engineering, Technology & Applied Science Research Vol. 5, No. 3, 2015, 795-800 800

www.etasr.com Issawi et al.: Efficient Adaptive Load Balancing Algorithm for Cloud Computing Under Bursty Workload

Internet. In such a complex system, the need for an efficient
load balancing scheme is essential in order to satisfy peak user
demands and provide high quality of services. One of the
challenging problems that degrade the performance of load
balancing process is bursty workloads. In this paper, we
proposed a load balancing algorithm called Adaptive
Algorithm. The proposed algorithm is based mainly on
swapping between two different algorithms (RR and Random)
according to the workload status. Selecting VM to handle the
received request is based on knowledge about CPU speed and
the current load of the VM provided by a fuzzifier.
Experiments were conducted using the CloudAnalyst
simulator. Results showed that the adaptive algorithm
decreased the response and the processing time and thus
improved the performance of the cloud system.

REFERENCES
[1] Q. Zhang, L. Cheng, R. Boutaba, "Cloud computing: state-of-the-art and

research challenges", Journal of Internet Services and Applications, Vol.
1, No. 1, pp. 7-18, 2010

[2] R. Mishra, A. Jaiswal, "Ant colony Optimization: A Solution of Load
Balancing in Cloud," International Journal of Web & Semantic
Technology, Vol. 3, No. 2, pp. 33-50, 2012

[3] J. Dong, Network Dictionary, Javvin Technologies Inc, 2007

[4] M. Sajid, Z. Raza, "Cloud Computing: Issues & Challenges,"
International Conference on Cloud, Big Data and Trust 2013, RGPV,
India, November 13-15, 2013

[5] J. Uma, V. Ramasamy, P. Vivekanandan, "Load Balancing Algorithms
in Cloud Computing Environment - A Methodical Comparison",
International Journal of Engineering Research and Technology, Vol. 3,
No. 2, pp. 272-275, 2014

[6] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, C. Mcdermid, "Availability
and Load Balancing in Cloud Computing", 2011 International
Conference on Computer and Software Modeling, Singapore, September
16, 2011

[7] M. Rutvik,, P. Yask, T. Harshal, "Architecture For Distributing Load
Dynamically In Cloud Using Server Performance Analysis Under Bursty
Workloads", International Journal of Engineering Research and
Technology , Vol. 1, No. 9, pp. 1-4, 2012

[8] M. L. Chin, C. E. Tan, M. I. Bandan, "Efficient DNS based Load
Balancing for Bursty Web Application Traffic", Vol. 1, No. 1, pp. 1-5,
2012

[9] H. Li, M. Muskulus, "Analysis and Modeling of Job Arrivals in a
Production Grid", ACM SIGMETRICS Performance Evaluation
Review, Vol. 34, No. 4, pp. 59-70, 2007

[10] N. Mi, Q. Zhang, A. Riska, E. Smirni, E. Riedel, "Performance impacts
of autocorrelated flows in multi-tiered systems", Performance
Evaluation, Vol. 64, No. 9-12, pp. 1082–1101, 2007

[11] A. Riska, E. Riedel, "Long-range dependence at the disk drive level",
Third International Conference on the Quantitative Evaluation of
Systems, QEST 06, pp. 41-50, USA, September 11-14, 2006

[12] S. Sethi, S. Anupama, S. K. Jena, "Efficient load Balancing in Cloud
Computing using Fuzzy Logic", IOSR Journal of Engineering, Vol. 2,
No. 7, pp. 65-71, 2012

[13] U. Singhal, S. Jain, "A New Fuzzy Logic and GSO based Load
balancing Mechanism for Public Cloud," International Journal of Grid
Distribution Computing, Vol. 7, No. 5, pp. 97-110, 2014

[14] J. Tai, J. Zhang, J. Li, W. Meleis, N. Mi, "ARA: Adaptive Resource
Allocation for Cloud Computing Environments under Bursty
Workloads", 2011 IEEE International Performance Computing and
Communications Conference, pp. 1-8, USA, November 17-19, 2011

[15] N. D. Naik, A. R. Patel, "Load Balancing Under Bursty Environment
For Cloud Computing", International Journal of Engineering Research
and Technology, Vol. 2, No. 6, pp. 17-26, 2013

[16] M. Ghorbani, Y. Wang, Y. Xue, M. Pedram, P. Bogdan, "Prediction and
Control of Bursty Cloud Workloads: A Fractal Framework", 2014
International Conference on Hardware/Software Codesign and System
Synthesis, pp. 1-9. New Delhi, October 12-17, 2014

[17] jFuzzyLogic, http://jfuzzylogic.sourceforge.net/html/index.html

[18] P. Cingolani, J. Alcalá-Fdez, "jFuzzyLogic: a Java Library to Design
Fuzzy Logic Controllers According to the Standard for Fuzzy Control
Programming", International Journal of Computational Intelligence
Systems, Vol. 6, Suppl. 1, pp. 61–75, 2013

[19] P. Cingolani, J. Alcalá-Fdez, "jFuzzyLogic: a robust and flexible Fuzzy-
Logic inference system language implementation", 2012 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), Australia,
June 10-15, 2012

[20] S. R. Pakize, S. M. Khademi, A. Gandomi, "Comparison Of CloudSim,
CloudAnalyst And CloudReports Simulator in Cloud Computing",
International Journal of Computer Science And Network Solutions, Vol.
2, No. 5, pp. 19-27, 2014

[21] B. Wickremasinghe, R. N. Calheiros, R. Buyya, "CloudAnalyst: A
CloudSim-based Visual Modeller for Analysing Cloud Computing
Environments and Applications", 2010 24th IEEE International
Conference on Advanced Information Networking and Applications
(AINA), pp. 446-452, Australia, April 20-23, 2010

[22] B. Wickremasinghe, "CloudAnalyst: A CloudSim-based Tool for
Modelling and Analysis of Large Scale Cloud Computing
Environments", 433-659 Distributed Computing Project, Csse Dept.,
University Of Melbourne, Australia, 2009

