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ABSTRACT 

In structural design standards, loads are often assumed to be random quantities to give load factors. This 

study deals with the Stochastic Isogeometric Analysis (SIGA) for a Functionally Graded Plate (FGP) 

subjected to random distribution loads. The spatial random variation of distribution loads is modeled as a 

homogeneous Gaussian random field in the plane of the functionally graded plate. The governing equation 

of the functional grade plate is derived using the NURBS-based isogeometric analysis and the refined plate 

theory. SIGA is developed based on standard NURBS-based isogeometric analysis in conjunction with the 

first-order perturbation expansions of random loads. This approach was verified with Monte Carlo 

simulation, and the numerical results showed the effect of random loads on the variation of displacements 

and stresses of the functionally graded plate. 

Keywords-SIGA; random loads; functionally graded plate; random field 

I. INTRODUCTION  

Functionally Graded Material (FGM) is a special composite 
material. Typical FGMs are made of metal and ceramic 
material components distributed to vary continuously with 
position along the thickness direction. FGMs are used in 
mechanical engineering and heavy industry [1-3]. In recent 
years, studies have investigated structures made from FGMs, 
such as functionally graded beams [4-8] and functionally 
graded plates [9-11]. In deterministic structure problems, such 
as the analysis of beams [12-15], frame structures [16, 17], and 
plates [18-21], the input data are deterministic, so it is easier to 
solve than stochastic problems. Several studies investigated the 

stochastic structure’s problem [22-24] and the stochastic finite 
element method [25]. In [26], the fluctuation of the eigenvalue 
of free vibration of non-uniform beams was studied using the 
stochastic finite element method, considering the randomness 
of the elastic modulus. In [27], the perturbation technique was 
applied to develop a stochastic finite element method for the 
buckling of a functionally graded plate with uncertain material 
properties in thermal environments. In [28-30], the static and 
dynamic responses of a beam resting on a foundation or elastic 
support were analyzed, considering various random 
parameters. In [31], a formulation was proposed to determine 
the response variability in a plate structure due to the 
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randomness of the Poisson ratio using the weighted integral 
method. 

Recently, in addition to the stochastic finite element 
method, several studies used stochastic isogeometric analysis at 
uncertain structures. In [32], the Karhunen–Loève expansion 
was used to develop the spectral stochastic isogeometric 
analysis for problems of linear elasticity. In [33], the Galerkin 
isogeometric method was used to solve the Fredholm integral 
eigenvalue problem. In [34, 35], stochastic isogeometric 
analysis was proposed for functionally graded plates 
considering the random field of material properties. This study 
focuses on developing the stochastic isogeometric analysis for 
the static bending problem of a functionally graded plate under 
random loads. 

II. FORMULATION OF STOCHASTIC 

ISOGEOMETRIC ANALYSIS 

A. The Non-Uniform Rational B-Spline (NURBS) Functions 

The Non-Uniform Rational B-Spline (NURBS) functions 
are defined via the B-spline basic functions [11, 36-37]. To 
construct a set of n B-spline basic functions of order p, a knot 
vector Ξ is defined as a set of coordinates in the parametric 
space in one-dimensional parametric domain � ∈ �0,1�: � = 
��, ��, … , �������    ξ� ≤ ����, � = 1,2, . . . , � + �    (1) 

where �� ∈ � is the i-th knot, i is the knot index, and p is the 
polynomial order. Given the knot vector, the B-spline basis 
functions are defined recursively starting with piecewise 
constants (p=0, 1, 2, 3..) as follows: 

For p = 0: 

��,���� =  1 if ξ� ⩽ � < ����,0 otherwise.    (2) 

For p = 1,2,3, . . . : 
��,��ξ� = /0/1/1230/1 ��,�0��ξ� + /123240//123240/124 ����,�0��ξ�  (3) 

Taking a linear combination of B-spline basis functions 
constructs B-spline curves where the coefficients of the basis 
functions are referred to as control points: 5��� = ∑ ��,����7���8�     (4) 

where Bi are the control points. The B-spline surfaces are 
defined by the tensor product of basis functions in two 
parametric dimensions � and η with two-knot vectors: 9��, :� = ∑ ∑ ��,����;<,=�:�>�,<?<8���8� =   ∑ �@A��, :�>@?×�@8�      (5) 

where �@A��, :� = ��,����;<,=�:� is the shape function 

associated with control point I. 

Non-Uniform Rational B-Splines are defined based on the 
B-splines by adding an individual weight C@: ��,���� = D1,3�E�F1∑ DG,3H �E�FGIGJ4     (6) 

The NURBS surface is constructed by combining the 
rational basis functions and the coefficient at control points Bi: S��, :� = ∑ �@��, :�B@ ?×�@8�    (7) 

with �@��, :� = DGHFG∑ DGH�E,M�N×IGJ4 FG 
B. NURBS-Based Isogeometric Formulations for a 

Functionally Graded Plate Based on Refined Plate Theory 

 

 

Fig. 1.  Random field of distribution loads on plate. 

Consider a functionally graded plate subjected to random 
loads, with the coordinate system placed at the mid-plane of the 
plate as shown in Figure 1. The plate displacement fields were 
calculated using the refined plate theory [38], which allows 
taking into account the shear deformation effect, and are used 
to formulate the governing equations as follows:  

O = P� − R SFHST + U�V R − WX R YZ[\� ] SF^ST   

 _ = `� − R SFHSa + U�V R − WX R YZ[\� ] SF^Sa    (8) 

b = CA + Cc  

The linear strains can be obtained by differentiating (8) as: 

deTeafTag =
⎩⎪⎨
⎪⎧ lmnlTlonlalmnla + lonlT ⎭⎪⎬

⎪⎫ + R
⎩⎪⎨
⎪⎧ − lsFHlTs− lsFHlas−2 lsFHlTla⎭⎪⎬

⎪⎫
  

+t
⎩⎪⎨
⎪⎧ − lsF^lTs− lsF^las−2 lsF^lTla⎭⎪⎬

⎪⎫     (9) 

 faZfTZ u = v dSF^SaSF^ST
g    (10) 

where: 
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t�R� = − �V R + WX R YZ
ℎ
\� , v�R� = 5 U�V − YZ

ℎ
\� ] (11) 

Young’s modulus E of the functionally graded plate is assumed 
as: 

x�R� = �xy − x?� YZ
ℎ

+ ��\� + x?   (12) 

The linear constitutive relation of a plate is given by 
formulation:  

⎩⎪⎨
⎪⎧zTzazaZzTZzTa⎭⎪⎬

⎪⎫ =
⎣⎢⎢
⎢⎡~�� ~�� 0 0 0~�� ~�� 0 0 00 0 ~VV 0 00 0 0 ~WW 00 0 0 0 ~��⎦⎥⎥

⎥⎤
⎩⎪⎨
⎪⎧eTeafaZfTZfTa⎭⎪⎬

⎪⎫
 (13) 

where:  ~�� = ��Z��0os  ~�� = ~��   ~�� = o��Z��0os      (14) ~VV = ��X   ~WW = ��X   ~�� = ���  

The displacement field O� of the plate is approximated via 
the NURBS basis functions: O���, :� = ∑ ����, :�O�?×��8�    (15) 

where O� is the vector of nodal degrees of freedom associated 
with the control point i:  

O�= � P�`�C�AC�c
�

�
     (16) 

The governing equation of the functionally graded plate is 
derived using the virtual work to be: � eA��A �eA��� + � f��c �f��� = � ��C���  (17) 

where the stiffness matrices As
 and Db

 are given as follows: �A =   

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡��� ��� 0��� ��� 00 0 ���

7�� 7�� 07�� 7�� 00 0 7��
7��c 7��c 07��c 7��c 00 0 7��c7�� 7�� 07�� 7�� 00 0 7��

��� ��� 0��� ��� 00 0 ���
���c ���c 0���c ���c 00 0 ���c7��c 7��c 07��c 7��c 00 0 7��c

���c ���c 0���c ���c 00 0 ���c
���c ���c 0���c ���c 00 0 ���c ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤
  (18) 

�c = U�VVc 00 �WWc ]    (19) 

where Aij, Bij etc are parameters of the plate stiffness, defined 
by: 


��< , 7�< , ��<� = � 
1, R, R� �ℎs
0ℎs ~�<�R,  �� = 1,2,6� 

7�<c = � �ℎ/�
0ℎ/� ~�<�R,  �� = 1,2,6� 

��<c = � Rℎ/�
0ℎ/� �~�<�R,  �� = 1,2,6� 

��<c = � ��ℎ/�
0ℎ/� ~�<�R,  �� = 1,2,6� 

��<c = � vℎ/�
0ℎ/� ~�<�R,  �� = 4,5� 

(20) 

The governing equation for bending the functionally graded 
plate is in the following form: �O = �     (21) 

where K, U, and F denote the stiffness matrix, generalized 
displacement, and force vector. The global stiffness matrix K is 
given by:  

� = � d�7� 7AA 7Ac��A � 7�7AA7Ac � + �7c ���c7cg ���  (22) 

and the load vector is given by: 

� = � ���, �� � 00����
� ���    (23) 

III. STOCHASTIC ISOGEOMETRIC ANALYSIS   

The random field of distribution loads is assumed as a 
homogeneous Gaussian random field in the plane of the plate:  ���, �� = ���1 +  ��, ���   (24) 

where f(x,y) is a homogeneous random field with zero mean. 
The auto-correlation function of the random field f(x,y) is 
assumed as: 

�¡�T , �a¢ = z� £�� Y− |E¥|�¦E§¦¨ \  (25) 

where �T , �a are components of the separation vector � between 

two points in the domain of the plate, and σ and d are the 
coefficient of variation and the correlation distance of the 
random field, respectively. In this study, the value of the 
random field in elastic modulus was discretized as a point 
method by approximation at Gauss points. The set of random 
variables follows the statistical properties of the random fields:   = � �,  �, . . .  D�    (26) 

Taking the Taylor series expansion at f=0 based on the 
assumption that all components of the random field f are small, 
gives: 
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�� � = �� + ∑ l©lª1  � + �� ∑ ls©lª1lª«  � <D�,<8� + ⋯D�8�   

O� � = O� + ∑ llª1  �D�8� + �� ∑ lslª1lª«  � <D�,<8� +. .. (27) 

For the zeroth perturbation equation:  ��O� = ��     (28) 

For the first-order perturbation equation: �� llª1 = l©lª1     (29) 

The first-order perturbation solutions are: ® = O�  5¯` = ∑ ∑ llª1 llª« ��<D<8�D�8�    (30) 

where: ® = °�O�   

Cov = °±�O − ®��O − ®�� ²  (31) 

denote the mean and variance of the displacement U, 
respectively, Rij is the covariance matrix of the random variable 
f, and N is the number of random variables. As U represents 
nodal parameters at control points, it is not the real 
displacements at the nodes. So, The mean vector and 

covariance matrix, using the relation between O and O� in (15) 
can be obtained as: ®� = ³®   5¯`� = ³5¯`³�    (32) 

where Φ is the transformation matrix between O and O�. The 
response variability is a ratio of the standard deviation of 
displacement to the absolute mean eigenvalue as: 

5´_ = µ¶·¸¹�¦º¹� ¦      (33) 

IV. NUMERICAL EXAMPLES   

A. Example 1: Numerical Tests 

To evaluate the proposed stochastic isogeometric analysis, 
this method is compared with the crude Monte Carlo 
simulation in [39] using the spectral representation method 
[40]. The random sample function of the Gaussian random 
fields in (24) can be represented by the cosine series as follows:  ��, �� =
√2 ∑ ∑ ¼��4�s��� ½¯¾¡¿�I4� + ¿�Is� + À�4�s��� ¢��4�s��� ½¯¾¡¿�I4� − ¿�Is� + À�4�s��� ¢ÁDs�s8�D4�48�    (34) 

The phase angles À�4�s��� , À�4�s���
 are uniformly distributed in 

the range of [0, 2π].  

The simply supported rectangular plate was considered 
subjected to random loads as shown in Figure 2. The elastic 
modulus and the Poisson ratio were set as E0=200×10

5
MPa and 

ν=0.30, respectively. The thickness of the plate was t=10mm,  

and the coefficient of variation of the random field σ was 0.1. 
The mean of random loads is unit distributed load. 

 

 
Fig. 2.  Simply supported rectangular plate.  

Figure 3 shows the response coefficient of the variation of 
displacement at the center point P of the plate, obtained by the 
present approach (SIGA) and Monte Carlo simulation [39] with 
10000 samples. 

 

 

Fig. 3.  Response COV of displacement at P as a function of correlation 

distanced d. 

Figure 3 shows a good agreement between the SIGA and 
the Monte Carlo simulation. The coefficient of variation of the 
displacement trends to the coefficient of variation of the 
random field of random loads. 

B. Example 2 

A simply supported square functionally graded plate, made 
of aluminum and alumina (Al/Al2O3), was considered. 
Material properties were similar to [41], Em=70MPa and 
Ec=380MPa and the Poisson ratio was set to 0.3. The plate was 
subjected to random loads. The mean of random loads was unit 
distributed load and the power index p was set to 1. Figure 4 
shows the COV response with various values of COV for the 
random fields of random loads obtained for the plane-normal 
displacement at the center point P of the plate. The response 
COV is bigger if the COV of the random field is larger. Also, 
the response COV increases when the coefficient of variation 
of the random field increases and approaches the coefficient of 
variation of the random field σ in all cases. 

 

P
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Fig. 4.  Response COV as a function of correlation distanced. 

V. CONCLUSION 

This study successfully developed the Stochastic 
Isogeometric Analysis (SIGA) for a functionally graded plate 
under random loads with the assumption that random loads are 
a homogeneous Gaussian random field in the plate plane. The 
coefficient of variation of the deflection in the center of the 
plate predicted by SIGA was validated with the results of 
Monte Carlo simulation. The numerical examples showed good 
agreement between the COV of displacement predicted by the 
present study and the Monte Carlo simulation. Also, the 
numerical examples clearly show that the randomness of load 
affects significantly the response of the plate. The effect of the 
correlation distance on the COV of displacement is clear, and 
the response COV increases when the correlation distances 
increase. 
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