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ABSTRACT 

In this paper, a new contact force control technique, based on the modified Takagi-Sugeno model and the 

parallel distributed compensation concept is developed to suppress vibrations between the pantograph and 

the catenary by regulating the contact force to a reference value, thereby achieving stable current 

collection. The proposed method uses simple and standard PID and modified Takagi-Sugeno fuzzy 

controllers. The two controllers guarantee the designed system's robust stability. Furthermore, based on a 

simplified pantograph–catenary system model, the comparative simulation results show that variations of 

the contact force can be almost attenuated. As a result, the system stability is guaranteed, and the 

performance robustness is verified.  

Keywords-Takagi-Sugeno; pantograph; catenary; stability; modified T-S-Fuzzy 

I. INTRODUCTION 

Improving the current collection quality from the overhead 
line is one of the most challenging difficulties in high-speed 
rails. The pantograph, an articulated suspension device, ensures 
the overhead line's current collection, but its interaction with 
the contact wire results in oscillations. This system must 
guarantee a good quality of the existing collection, it must thus 
be compensated. This issue mainly affects expensive railroads 
because poor current collection results in performance 
constraints, high maintenance cost, and inconsistent service. 
The pantograph-catenary system, a dynamic couple system 
formed by the interactions of the pantograph and catenary, is 
often responsible for directly affecting the quality of electric 
transmission (PCS). Through contact forces, the pantograph 
and the catenary are impacted by one another. The overhead 

wire's varying stiffness along the span [1-4] is a significant 
cause of vibration. The pantograph will vibrate and the contact 
force will fluctuate as it moves along the overhead wire due to 
the stiffness change those results in a periodic excitation. 
Additionally, while a moving panhead travels along the 
overhead wire, a flexural wave motion is created in the wire, 
affecting the contact force and motion pantograph. An actuator, 
an essential component of the PCS, applies the dynamic uplift 
force to the pantograph frame within the context of the active 
vibration control of a railway pantograph to significantly 
reduce the contact force's unpredictable fluctuation. Many 
control algorithms have been developed (simple PI controllers 
[5], robust controllers [6], adaptive controllers [7], 
backstepping controllers [8], predictive model controllers [9], 
intelligent controllers [10–12], and fuzzy controllers [13]) for 
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producing adequate uplift force to regulate the fluctuation of 
the contact force. To manage the oscillations brought on by the 
unpredictable stiffness and to regulate the contact force taken 
into account as a pre-specified reference value, an intelligent 
contact force regulator, including MZL algorithms [14-15], is 
given in [10]. The vibration of the contact force caused by the 
catenary's time-varying stiffness can be successfully 
suppressed, and the comparative simulation results demonstrate 
that the suggested method is more effective than the previous 
fuzzy algorithms. However, although intelligent or fuzzy 
control are promising techniques, there are still issues with 
constructing ambiguous regulations and ensuring system 
stability. The Parallel Distributed Compensation (PDC) idea 
and the modified Takagi-Sugeno (T-S) model are the 
foundations of the contact force control approach proposed in 
this work. Furthermore, the devised technique enables the 
execution of straightforward and joint PID controllers to ensure 
the robust stability of the proposed system. 

II. PROBLEM FORMULATION  

The model of the pantograph – catenary system is exhibited 
in Figure 1. It is represented by a 2-degree of freedom 
mechanical system as shown in Figure 2. The motion equation 
of the PCS model can be written as [12]: 

.. . .

.. . . .

( ) ( ) ( ) 0

( ) 0

( ) ( )

h h h h f h h f pan h cat

pan cat h cat cat

f f h h f f f h h f
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where: 
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By taking the Laplace transformation of (2), one gets: 

2

0
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where the term s is defined as: 
( )

( )h

F s
X s

k
 . For that, the plant 

transfer function P(s) can be computed as follows: 
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where: 
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 (6) 

It should be noted that the dynamic uplift force u(t) is 
designed to regulate the contact force F(t) for the prescribed 
constant value Fr(t)=100N. If the time-varying stiffness of the 
catenary influenced by the stiffness variation coefficient a, the 
operational speed of the train V, and the length in a span L are 

considered, the contact force ( ) ( )hf t kx t  will be rewritten as: 

0

2
( ) 1 cos( ) ( )h

V
f t k t x t

L


   

 
   (7) 

where: 

0

2
1 cos( )

V
k k t

L


   

 
    (8) 

Clearly, the term of k can be considered as an uncertain 

interval parameter  max
,mink k k , which can be expressed as:  

0 0(1 ),  (1 )min maxk k k k       (9) 

where hm  is the head mass, mf  the frame mass, hx  and xf  the 

head displacement, hk  the head stiffness of suspension, hc the 

head viscous damping coefficient, cf the frame viscous 

damping coefficient, 
pank  the pantograph shoe stiffness of 

suspension, catk  the catenary stiffness of suspension, and u the 

uplift force. 
 

 
Fig. 1.  Pantograph–catenary system components. 

 
Fig. 2.  The PCS 4th order model. 

In this paper, stable robust controllers are developed to 
suppress the vibration resulting from parameters (the stiffness-
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variation coefficient a, the operational speed of train V and the 
length in a span L). The first solution is the robust PI controller, 
and the second one is the T-S fuzzy controller. Both solutions 
are based on the most common industrial controller, the PID 
controller. The parameters of the PCS used in the simulation 

[12] are: 9.1kg,hm    17.2kg,fm   3
7 10 N/m,hk x  hc   

130Ns/m, 30Ns/m,fc  61.535 10 N/m,catk x 0.3, 
48.23 10 N/m,pank    70km/h,  80mV L  , and for the 

given parameters, the following values are respectively 

computed: 
min max54678, 101550k k  .   

III. PARTITION METHOD 

The PI controller is given as: 

( ) I
P

K
C s K

s
      (10) 

Then the closed loop transfer functions of (5) and (10) can 
be written as: 

( )( )( ) ( )
W( )

1 ( ) ( ) ( ) ( )( )

P I h h

P I h h

k K s K c s kC s P s
s

C s P s sM s k K s K c s k

 
 

   
 (11) 

where  max
,mink k k . 

The closed loop system characteristic equation is defined 
as: 

( ) ( ) ( )( )P I h hH s sM s k K s K c s k      (12) 

where: 

( ) ( ) ( )M MM j R jI       (13) 

Based on the robust D-partition technique [15], it can be 

seen that the stability region boundary in the P IK K space is 

the solution of the following equation: 

 
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Equation (14) is equivalent to: 

2 ( )h P h I Mkc K kk K I        (15) 

where the functions are respectively expressed as: 

2 2 2

2 2 2

( ) ( )

( )

[ ( ) ( )]

( )

h M h M
P

h h

h M h M
I

h h

c I k R
K

k c k

c R k I
K

k c k

  


   
 


 




 



  (16) 

In (16), when ω varies from 0 to  , the obtained values of 
Kp and KI  are considered as the stability region boundary in the 
form of the single curve for a specific value of k. This 
boundary will be the group of curves when k varies within the 

interval  max,mink k k . The robust stability region for the 

given PCS is shown in Figure 3. 

 
Fig. 3.  Robust stability region of the PI controller. 

IV. MODIFIED T-S-FUZZY CONTROLLER 

The T-S model is one of the most well-liked modeling 
frameworks among the different fuzzy modeling topics [16-
17]. Since it can approximate any smooth nonlinear control 
system, the T-S fuzzy model is considered a universal 
approximator. Additionally, several feedback control strategies 
may be used with T-S fuzzy models. The PDC idea is the 
foundation for the control law that is most frequently 
employed, and for this concept, the fuzzy controller and T-S 
fuzzy model share the same fuzzy rules and sets [18]. A linear 
controller is created for each local linear plant by the PDC 
principle to provide stability and the desired performance of the 
local linear closed loop system, compensating a corresponding 
conclusion in the rules of the T-S plant model. The final 
nonlinear control is an amorphous amalgamation of the many 
regulations and control operations. Finding a combined 
Lyapunov function that can satisfy all fuzzy subsystems results 
in a sufficient condition that guarantees the entire system's 
stability. To determine the well-known Lyapunov role, Linear 
Matrix Inequalities (LMIs) must be solved numerically. The 
primary downsides of the PDC design technique are the 
complexity of the computations without a solution guarantee 
and the difficulty in locating the combined Lyapunov function 
for the numerous fuzzy subsystems. To address these problems, 
a novel fuzzy logic controller with two consequents in each 
rule—a numerator component and a denominator part—is 
presented in [19]. 

Additionally, the numerator and denominator coefficients 
are calculated so that the total closed-loop system acts as a 
linear system. Further, the notion above is expanded for 
continuous systems in the suggested method in [14]. The 
closed-loop T-S fuzzy control system acts as a polytope of 
linear systems based on the recently developed technique. 
Instead of employing a problematic method to find a joint 
Lyapunov function as in the previous approaches, the system 
stability may be readily tested using simple, graphical solid 
stability criteria. 

First of all, the interval [kmin, kmax] is divided into r 
overlapping subintervals. The linear subintervals are defined as 
the fuzzy sets and form the universe of discourse. The r+2 
triangular membership functions corresponding to the 
subintervals of the following form are presented in Figure 4. 
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For each i-th interval, a represented value ki is chosen. For that, 

a fuzzy variable Mi with the related membership functions i is 

defined. Furthermore, the two interval boundaries of kmin and 
kmax are also added. For the correspondence of the i-th interval, 
the local plant transfer function can be obtained. 

( )( )
( )

( ) ( )

i h h
i

k c s kF s
P s

U s M s


  , 1,..., 2i r    (17) 

where the function M(s) is defined as: 
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We also have: 
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The local transfer function in (17) will be then expressed as: 

1 0

4 3 2

3 2 1 0
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( )
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c s cF s
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or in the form of the following differential equation: 

(5) (4) (3)

3 2

'' ' '' '
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For each above local plant, the local PI controller is used: 
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( )

( )

i i i
i I P I

i P

K K s KU s
C s K

E s s s


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or, in the form of the following differential equation: 
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The local PI controller parameters can be finally chosen by 
using the proposed robust D-partition and some optimal 
performance criterions. By using the modified fuzzy T-S model 
[14-15], the i-th fuzzy IF-THEN rule for the describing plant is 
presented as follows: 

1) Plant Model Rule iR : 1,..., 2i r   

IF k(t) is Mi THEN  

(5) (4) (3)

3 2

'' ' '' '

1 0 1 0

( ) ( ) ( )
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i i

i i i i
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  

   
  (24) 

where 
iR  is denoted as the i-th fuzzy inference rule, r is the 

number of inference rules, and 
iM (

ri ) is the fuzzy set. 

The PDC design approach creates a control rule based on 
the same presumption with each rule in the T-S fuzzy plant 
model. A numerator component and a denominator part of the 
control signal are the two consequents each control rule of the 
fuzzy logic controller has in its consequent section [19] part 
and a denominator part of the control signal [20-21].   

2) Control Rule Ri, i = 1, ….r+2 

IF k(t) is Mi THEN  

' '' '

1 0 1

''

0 0 1

'

0
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( )

i i i i i i
P P I

i i i i i
I I r

i

numu t K c f t K c K c f t

K c f t K c f c u t

denu t c

   

  
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  (25) 

where ' ( )numu t is the numerator of ' ( )u t  and ' ( )denu t is the 

denominator of '
( )u t . 

The closed loop system characteristic function is:  

5 4 3
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   (26) 

where ( )ih k is the normalized membership function. It should 

be noted that the normalized membership functions satisfy the 
following convex sum property: 

0 ( ) 1,  1,..., 2ih k i r    , 
2

1

( ) 1
r

i
i

h k




   (27) 

The left-hand side of (27) is the characteristic polynomial, 
and it is actually the polytope of polynomials: 

2

1

( ) ( ) ( ),
r

i i
i

H s h z H s




     (28) 

0 ( ) 1, 1,..., 2ih z i r    ,  
2

1

( ) 1
r

i
i

h k




  

where: 

5 4 3 2

3 2 1 1

0 0 1 0
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i i i i i
i P

i i i i i i i
P I I

H s s d s d s d K c s

d K c K c s K c

    
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  (29) 

Therefore, system stability analysis can be conducted by 
using the robust stability criteria [18-19], derived in [14]. 
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3) Theorem 

The fuzzy closed loop system (21), (22) is stable if and only 
if: 

 The polynomials ( ), 1,..., 2iH s i r  are stable. 

 All 

( 1)( 2)

2

r r 

plots, 
( )

( ) , , 1,..., 2,
( )

i
ij

j

H j
z i j r i j

H j





     do 

not intersect the negative real semi axis. 

V. SIMULATION RESULTS 

The system simulation model simulated in MATLAB 
R2019a includes three parts, i.e. the open-loop system (no 
control), one system using the robust PI controller, and one 
using the new T-S fuzzy controller. The control construct of 
contact force regulation of the pantograph catenary based on 
modified T-S Fuzzy models is shown in Figure 4. 

1) Case 1. Robust PI Controller 

For an example of the given PCS, the robust stability region 
of PI controller is found in Figure 3. The typical PI controller 

parameters in this region can be determined as:

0.8, 4P IK K   

2) Case 2. Modified T-S Fuzzy Controller 

First, the interval  max,mink k  is divided into 4r   

overlapping subintervals with triangular membership functions 
as pointed out in Figure 5. 

By using the proposed D-partition method, the robust 
stability regions for each subinterval can be constructed, and 
the local PI controller parameters can be chosen inside those 
regions: 

1 2 3 4 5 6

1 2 3 4 5 6

0.1

4.968, 4.241, 3.7, 3,281, 2.947, 2.675.

P P P P P P

I I I P I I

K K K K K K

K K K K K K

     

     
 

Next, the two conditions in the given theorem are verified 

by using 6 Mikhailov’s graphs ( )iH j  (Figure 6) and 15 

( )ijz j  graphs as shown in Figure 7. 

 

 
Fig. 4.  The control construct of contact force regulation of pantograph catenary based on modified Takagi-Sugeno Fuzzy model.

 

Fig. 5.  The triangular membership functions.  

Fig. 6.  Mikhailov’s graphs. 
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Fig. 7.  Graphs ( )ijz j . 

(a) 

 

(b) 

 

Fig. 8.  Contact force regulation performance of the robust PI algorithm. 

Now let us consider a closed-loop control system, which 
consists of the plant described by (5) and the fuzzy controller 
of (25). In order to verify the regulation performance, the two 
control algorithms proposed in this paper have been analyzed 
and compared with passive control and MZL algorithm in [12], 
or each with other using the vibration suppression efficiency 
(VSE) [12]: 

0

1 100%VSE
 
  

≜     (27) 

where   is the amplitude of the steady contact force value and 

0 2 ( )rf t  is the amplitude of the contact force by the 

traditional passive control. 

 

By applying the robust PI controller, the graph of contact 
force shown in Figure 8 is defined with VSE=65.6617%. When 
using the proposed modified T-S fuzzy controller, the graph of 
contact force presented in Figure 9 is determined with 
VSE=97.68%. 

 

(a) 

 

(b) 

 

Fig. 9.  The contact force regulation performance for the T-S fuzzy 

algorithm. 

By comparing with the best MZL algorithm in [12], where 
VSE=83.59%, it can be found that the contact force regulation 
performance of the robust PI algorithm is the lowest one, and 
the contact force regulation performance of the modified T-S 
fuzzy algorithm is the best one. It should be noted that the time 
to obtain the steady state is the same, about 1.7s for all three 
control algorithms. The vertical position of the pantograph 

head ( )hx t  and uplift force u(t) are illustrated in Figures 10-11. 

 

 

Fig. 10.  Vertical position of the pantograph head ( )hx t . 

 

Fig. 11.  Uplift force u(t). 
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It can be seen that the T-S fuzzy algorithm uses a little 
larger uplift force than the robust PI algorithm. Some 
simulations were carried out to test the robustness of the 
proposed control algorithms. The cases in Figures 12-16 are 
first considered for the variations of the speed of train V, and 
the length in a span L.  

 

(a) 

 

(b) 

 

Fig. 12.  Contact force relation performance for V=70, L=60: (a) Robust PI 

controller, (b) modified T-S fuzzy controller. 

(a) 

 

(b) 

 

Fig. 13.  Contact force regulation performance for V=70, L=40: (a) Robust 

PI controller, (b) modified T-S fuzzy controller. 

(a) 

 

(b) 

 

Fig. 14.  Contact force relation performance for V=60, L=80: (a) Robust PI 

controller, (b) modified T-S fuzzy controller. 

(a) 

 

(b) 

 

Fig. 15.  Contact force regulation performance for V=60, L=60: (a) Robust 

PI controller, (b) modified T-S fuzzy controller. 

The obtained results are given in Table I. They show that 
when the speed V and the length L vary, the vibration 
suppression efficiency for the modified T-S fuzzy controller is 
very high and stable. The reason is that although these 

parameters can vary, the boundary of  max,mink k k  is not 

changed. 
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(a) 

 

(b) 

 

Fig. 16.  Contact force regulation performance for V=60, L=40: (a) Robust 

PI controller, (b) modified T-S fuzzy controller. 

 

Fig. 17.  Simulated parameters of 70,  80,  20%,  20%h fV L c c    . 

The performance of vibration suppression and contact force 
regulation, the stiffness of the viscous damping of the pan-head 
suspension ch, and the frame suspension cf were transformed by 

80% to 120% of their nominal values given in the above 
simulation. The results are given in Figures 17-20. 

 

 

Fig. 18.  Simulated parameters of 70,  80,  20%,  20%h fV L c c    . 

 

Fig. 19.  Simulated parameters of 70,  40,  20%,  20%h fV L c c    . 

 

Fig. 20.  Simulated parameters of 70,  40,  20%,  20%h fV L c c    . 

TABLE I.  COMPARATIVE RESULTS OF THE VIBRATION SUPPRESSION EFFICIENCY FOR a=0.3 

Time 

varying 

stiffness 

a 0.3 

V 60 70 

L 40 60 80 40 60 80 

PI VSE (%) 55.39 63.01 68.80 53.16 59.80 65.66 

MZL VSE (%) 78.93 82.31 84.85 75.95 81.22 83.59 

TS-PI VSE (%) 97.35 98.36 97.74 96.58 98.25 97.68 

TABLE II.  TEST OF PERFORMANCE ROBUSTNESS 

Item   VSE (a = 0.3, V = 70, L = 80) VSE (a = 0.3, V = 70, L = 40) 

Viscous damping 

coefficient ch, cf 

TS-PI 
+20% 98.0967% 96.8567% 

-20% 97.5241% 96.2175% 

PI 
+20% 65.6442% 53.0810% 

-20% 65.6805% 53.2043% 
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VI. CONCLUSION 

In this paper, a new robust intelligent control scheme has 
been successfully presented to suppress the vibration between 
the pantograph and the catenary by regulating the contact force 
to a reference value, hence, achieving a stable current 
collection. The proposed control method has some advantages. 
The T-S fuzzy model [15] used in this paper has some 
differences in comparison with the traditional T-S fuzzy model: 
differential equations are applied instead of the state model, 
and the consequents of the control rule have two parts, the 
numerator and the denominator of the control signal. This 
allows the description of the closed-loop T-S fuzzy control 
system as a polytope of linear systems so that the system 
stability analysis can be done, which is the main difficulty in 
many intelligent control methods, including fuzzy control. 

Furthermore, the simple PID controllers are combined with 
fuzzy logic rules using the PDC design concept. The 
comparative simulation results have shown that the vibration of 
the contact force resulting from the time-varying stiffness of 
the catenary can be effectively suppressed. In particular, the 
proposed modified T-S fuzzy control algorithm is more 
efficient than the new intelligent control algorithm represented 
in [12] and the simple PI structure algorithm. Moreover, once 
the system stability is guaranteed, the proposed fuzzy controller 
is robust against possible changes in many system parameters: 
operational speed of train V, the length in a span L, and the 
stiffness of the viscous damping. 
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