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ABSTRACT 

This paper deals with the dynamic response of Functionally Graded Material (FGM) plates resting on a 

viscoelastic foundation under dynamic loads. The governing equations are derived by using Hamilton’s 

principle using the classical plate theory and the higher-order shear deformation plate theory. Using state-

space methods to find the closed-form solution of the dynamic response of functionally graded rectangular 

plates resting on a viscoelastic foundation. Numerical examples are given for displacement and stresses in 

the plates with various structural parameters and the effects of these parameters are discussed. The result 

of the numerical example shows a marked decrease in displacement and stresses as the coefficient of 

viscous damping is increased.  

Keywords-dynamic; FGM plate; viscoelastic; viscoelastic foundation; analytical method   

I. INTRODUCTION  

Structural engineering problems such as in beams, frames, 
plates, and shells can be solved by experimental methods [1-3], 
analytical methods [4, 5], and numerical methods such as finite 
elements [6-11]. The dynamic problem of beams or plates on 
foundations has been investigated by many researchers [12-17]. 
When using analytical and semi-analytical methods, we depend 
on the boundary condition to choose the approximation 
function of the displacement fields. Usually, the Navier 
approach [18] and the Ritz method [19] are used for simple 
rectangular plates, and the Ritz method [20] and Fourier-Bessel 
series [21] for circular plates. The dynamic stability of the 
orthotropic plates subjected to an arbitrary dynamic load was 
studied with the Galerkin method in [22]. The dynamic 
response of plates [23] on an elastic foundation is subjected to 

moving loads using the strip method. An asymptotic theory 
was used in [24] to study the dynamic response of anisotropic 
inhomogeneous and laminated plates. The Galerkin method 
was used to deal with the analysis of the nonlinear dynamic 
response of a laminated composite plate subjected to blast 
loading in [25]. The wave propagation of the rectangular FGM 
plates [26] with clamped supports under impulse load using the 
dispersion relation and integral transforms. The dynamic 
behavior of fiber-reinforced plastic sandwich plates with PVC 
foam core was analytically studied in [27]. The dynamic 
stiffness matrix was constructed in [28] for an infinite or semi-
finite Timoshenko beam on the viscoelastic foundation to the 
harmonic moving load. The stochastic finite element method 
was utilized for the calculation of the variability of the 
eigenvalue coefficient of the function of the graded beam.  
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In this paper, the governing equation of the functionally 
graded plates resting on viscoelastic foundation is solved by 
Hamilton’s principle. The sinusoidal function and the Navier 
approach are used to find the dynamic solution of functionally 
graded simply supported rectangular plates subjected to step 
loading.   

II. GOVERNING EQUATION OF THE FGM PLATE 

We consider an FGM plate resting on a viscoelastic 
foundation. The geometry of the plate and the coordinate 
system is shown in Figure 1. 

 

 

Fig. 1.  The geometry of the FG plate. 

The viscoelastic foundation is modeled as a Winkler model 
with stiffness coefficient K and damping coefficient C. The 
displacement fields at an arbitrary point (x,y,z) in the plate are 
shown below. Using the classical plate theory we have: 
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Using higher-order shear deformation plate theory proposed 
by Shimpi [30] we have: 
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The mechanical properties of FGM, such as Young’s 
modulus E and mass density ρ are assumed as: 
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where the subscripts m and c represent the metallic and ceramic 
constituents, respectively, and n is the power index of the 
volume fraction. The linear constitutive relations of plate can 
be written as: 
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where: 
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Using Hamilton’s principle we obtain the equations of 
motion of a plate as follows: 

 Using the Classical Plate Theory (CPT): 
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 Using the Higher-order Shear Deformation Plate Theory 
(HSDT): 
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where: 
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The force and moment resultants of the plate are defined 
by: 
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III. ANALYTICAL SOLUTION FOR ΤΗΕ DYNAMIC 

RESPONSE OF ΤΗΕ FGM PLATE 

The sinusoidal function based on the Navier approach is 
chosen to satisfy all boundary conditions, as follows: 
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where ,
m n

a b

 
   . 

Substituting (8) into (5) and (6) the forced vibration of the 
functionally graded plate can be written as follows: 

 Using the CPT: 
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 Using the HSDT: 
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where: 
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We consider uniformly distribution loads as follows: 

 0q q F t
⌢

     (12) 

The function of time  F t
⌢

 of dynamic loadings is 

considered as step loading: 
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In this work, we use the state-space method to solve (9) and 
(10), which must be rewritten in order to find a solution, as 
follows: 
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The solution of (14) is obtained as: 
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where t0 is the initial time,  0tZ  is the initial response, and 

 0t t
e

A
 is the exponential matrix. This exponential matrix can 

be formulated in terms of the matrix of eigenvectors and 
eigenvalues associated with matrix A. 

IV. NUMERICAL EXAMPLES 

We consider a simply supported rectangular FGM plate 
with side-to-thickness ratio a/h=10, rectangular dimensions of 
a=0.3m, b=0.5m, and power index p=3. The elastic moduli and 
mass density are chosen to be the same as in [31]:  
ρm = 2707kg/m

3
, Em = 70GPa, Ec = 380GPa, ρc = 3800kg/m

3
, 

with Poisson’s ratio being 0.3. The uniform load is written as 

 20
kN100

m
q   and the duration of load application time is 

t1 = 0.002s. We note the normalized stiffness coefficient and 
the normalized damping coefficient of the foundation as 
follows: 
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 is the flexural rigidity of a full-metal 

plate. 

The first two mode shapes are shown in Figure 2. 
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(a) 

 

(b) 

 

Fig. 2.  (a) First and (b) second mode shapes of the simply supported 

rectangular FGM plate. 

We consider two cases of viscoelastic foundation to 
investigate the effect of the damping coefficient of the 
viscoelastic foundation:  
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Case 2: 5,   0.1
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Fig. 3.  The deflection response at the central plate. Cases (a) 1, (b) 2. 

(a) 

 

(b) 

 

Fig. 4.  The normal stress σx at the top of the central plate (z=h/2). Cases 

(a) 1, (b) 2. 

(a) 

 

(b) 

 

Fig. 5.  The normal stress σy at the top of the central plate (z=h/2). Cases 

(a) 1, (b) 2. 

Figure 2 illustrates the transverse deflection due to step 
loading as functions of time. Figures 3–4 show the transient 
response of stress at the center of the plate for the two 
considered cases. The amplitude of dynamic responses 
decreases due to the influence of viscous damping. The 
displacements computed by HSDT are clearly larger than those 
using the CPT because the plate modeled by CPT is relatively 
stiffer. However, the deviation of stresses σx, σy between CPT 
and higher order plate theories is small. So, the effect of shear 
deformation is more significant in predicting displacement than 
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predicting stresses. In the forced vibration regime, it can be 
seen in Figures 2–4 that the deflection and stresses predicted 
for functionally grade plates with c=0.05 are moderately larger 
than for the plate with c=0.1. It is observed that when the 
damping coefficient increases, the deflection and stresses 
become smaller, as expected.  

V. CONCLUSIONS 

This research computed the vibration of the functionally 
graded plate resting on the viscoelastic foundation by the 
analytical method, using both classical plate theory and higher-
order shear deformation plate theory. The analytical solution 
for the dynamic functionally graded plate was solved to be a 
double sine series based on the Navier approach. Dynamic 
responses are considered for both forced and free vibrations. 
The results show that the damping coefficient of the foundation 
has a significant influence on the dynamic response of the 
functionally graded plate. The damping factor of the foundation 
dissipates energy, reducing the ambient vibrations in forced 
and free vibrations. This work is significant to structural 
engineering, and the results can be used in practical design 
structures. 
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