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Abstract—The aim of this work is to propose a mathematical 
model in terms of an exact analytical solution that may be used in 
numerical simulation and prediction of oscillatory dynamics of a 
one-dimensional viscoelastic system experiencing large 
deformations response. The model is represented with the use of 
a mechanical oscillator consisting of an inertial body attached to 
a nonlinear viscoelastic spring. As a result, a second-order first-
degree Painlevé equation has been obtained as a law, governing 
the nonlinear oscillatory dynamics of the viscoelastic system. 
Analytical resolution of the evolution equation predicts the 
existence of three solutions and hence three damping modes of 
free vibration well known in dynamics of viscoelastically damped 
oscillating systems. Following the specific values of damping 
strength, over-damped, critically-damped and under-damped 
solutions have been obtained. It is observed that the rate of decay 
is not only governed by the damping degree but, also by the 
magnitude of the stiffness nonlinearity controlling parameter. 
Computational simulations demonstrated that numerical 
solutions match analytical results very well. It is found that the 
developed mathematical model includes a nonlinear extension of 
the classical damped linear harmonic oscillator and incorporates 
the Lambert nonlinear oscillatory equation with well-known 
solutions as special case. Finally, the three damped responses of 
the current mathematical model devoted for representing 
mechanical systems undergoing large deformations and 
viscoelastic behavior are found to be asymptotically stable.  

Keywords-mathematical modeling; nonlinear oscillations; 
viscoelastic oscillator; Painlevé equation; exact solution; numerical 
simulation   

I. INTRODUCTION  

In this work the dynamics of mechanical systems 
undergoing large deformations and viscoelastic response is 
investigated. A major topic in the dynamics of viscoelastic 
systems is the problem of vibration. Vibration phenomenon 
arises in all rigid or deformable systems, such as machines and 
engineering structures subjected to dynamic loading.  So, the 
vibration problem is of vital importance for many fields of 
science and technology. Vibration experiments are widely used 
in the characterization of dynamical mechanical properties of 
engineering materials. Vibration is also desired for machines 
under working conditions.  However, for most structures in 
mechanical, biomechanical, civil, aeronautical and automotive 
engineering, oscillatory events prediction and control is 
intensively required in order to reduce noise, and to prevent 

non-allowable or excessive deformations, self-excited 
deformations, material fatigue and failure [1].  

The one-dimensional dynamics of continuous viscoelastic 
media idealized as a bar is described formally by the Cauchy's 
wave equation. However, when only homogenous deformation 
is considered in longitudinal forced vibration experiment for a 
bar carrying a tip mass at the free end, under the condition that 
the mass of the bar may be neglected compared to that of the 
attached mass at the end point, the bar may be assumed to 
behave as a simple viscoelastic spring. So, the Cauchy's 
equation may be reduced, based on the second Newton's law,  
if u  denotes the time history of displacement response, then in 
the concise form [2, 3]: 

2

int2

( )
ext

d u t
m F F

dt
= -   (1) 

where 
2

2

d

dt
denotes the ordinary second time derivative 

applied to the attached mass displacement )(tu depending only 
on the time t, m is the mass of the attached body, Fext designates 
an applied exciting force, and intF  notes the internal axial force 
due to the viscoelastic stress induced in the considered 
mechanical system. In this context the question of viscoelastic 
systems vibration transforms into that of finding an appropriate 
constitutive equation for structural materials.   

Viscoelastic behavior is widely mathematically analyzed 
through the use of rheological approach which discretizes a 
viscoelastic body in its elementary elastic and viscous 
components represented in terms of mechanical analogs. So, 
the rheodynamical approach models the motion of a 
viscoelastic system in terms of ordinary differential equations 
[3, 4]. According to Laroze [5], internal damping can be 
schematized for most structural materials in practice as viscous 
damping. In this perspective, if it is assumed that the 
viscoelastic spring behaves as a Kelvin-Voigt medium, that is, 
if: 

int
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F k u b
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f
f= +               (2) 
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where φ(u)=u, then the basic evolution equation governing the 
forced viscoelastically damped linear vibrating mechanical 
system may be written in the form: 

2

2

( ) ( )
( )

ext

d u d u
m b k u F

dt dt

f f
f+ + =  (3) 

or in terms of only )(tu  under free vibration: 

2

2

2
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o

d u du
u

dt dt
l w+ + =   (4) 

in which 
b

m
l = , and 2

o

k

m
w = .  

The quantity ωο is defined as the angular or undamped 
natural frequency of the physical system, and λ  is a damping 
factor [5, 6].  Equation (4) is a classical prototype of second-
order ordinary differential equations used to describe the 
damped linear oscillation of a single degree of freedom 
oscillator. It represents the dynamics of the motion of a one-
dimensional viscoelastic system in terms of Kelvin-Voigt 
element with the addition of a mass in the range of linear 
deformation. Equation (4) is the simplest differential equation 
that may reproduce all different types of behavior exhibited by 
a damped second order oscillation system in the range of linear 
deformation. The type of response given by (4) representing a 
damping linear oscillation system depends, in effect, on the 
strength of damping degree. In other words, the response of a 
damped oscillatory system is very sensitive to changes in 
specific value of damping.  

It has been observed that the oscillatory response of a real 
system is nonlinearly damped and geometrically nonlinear, 
leading to the dependence of the stiffness on the induced 
deformation or stress. This phenomenon is known as stiffening 
or softening and terminates often by failure, following the 
stiffness increases or decreases. Such a phenomenon could not 
be predicted and explained by any linear model equation [6-
11]. Many systems in engineering applications are designed to 
behave not only viscoelastically but also nonlinearly, to say, to 
undergo large deformations exceeding the limiting value 
predicted by linear theory in loading environment [2, 6, 7, 11]. 
Viscoelastic systems have the specific ability to experience 
large deformations even for moderate force levels. Hence, the 
linear theory becomes quite unable to explain the dynamics of 
viscoelastic systems experiencing finite deformations [6, 7, 12-
15] .  

Geometrical, damping and material nonlinearities are 
fundamental causes for the viscoelastic behavior of systems to 
be nonlinear [5]. If the stiffness or geometrical nonlinearities 
are relatively well captured in terms of polynomial expansion, 
the damping nonlinearity properties of mechanical systems are 
very difficult to be known [4, 7, 8]. According to [7, 8], another 
non-negligible source contributing to nonlinear response of a 
mechanical system is the inertia properties. Inertia produces, to 
a certain extent, a force which is essentially nonlinear. 
Nonlinear inertia forces are generally proportional to higher 
powers of velocity and acceleration of the mechanical system 

[7, 8]. The above show that an oscillatory viscoelastic system is 
intrinsically characterized at least by its stiffness, damping and 
inertia nonlinearities. Therefore, a reliable representation of the 
nonlinear oscillatory dynamics of a viscoelastic system should 
have the ability to mathematically incorporate in the governing 
equation these basic nonlinearity principles [7]. From the above 
analysis, the most general second order ordinary differential 
equation that can model the nonlinear oscillatory dynamics of a 
single degree of freedom viscoelastic system under unforced 
conditions may take the form: 

0)(),(),(  uufuuuguuuh     (5) 

where the dot over a symbol designates the time derivative, 
),( uuh  and ( , ),g u u are function of the displacement )(tu  and 

first time derivative ( ),u t and f(u) is function of  the 

displacement )(tu . These functions lead to the inertia, damping 
and stiffness nonlinearity properties, respectively, so that for 
the function 0h , and hg /  and 2/ ohf  , (5) gives (4) 
modeling a damped linear harmonic oscillator. It is interesting 
to note that in the majority of existing evolution models of 
mechanical systems, only one of these nonlinearities is often 
considered (see for example [16] for more details). This shows 
that, due to the mathematical complication arising quickly in 
governing equations, the enhancement, for example, of 
stiffness nonlinearity is often performed in models to the 
detriment of system damping nonlinearity and, inversely, the 
improvement of damping nonlinearity is made in a prejudicial 
fashion to that of stiffness nonlinearity [1]. Moreover, very few 
of proposed mathematical models for studying the dynamics of 
viscoelastic systems with a single degree of freedom have been 
performed to enclose on the one hand the inertia nonlinearity, 
and simultaneously combined inertia, damping and stiffness 
nonlinearities governing the viscoelastic  response as indicated 
by (5) on the other hand [7].  

It is well known again that nonlinear problems having 
explicit exact solutions in terms of elementary standard 
functions are very limited in physical and engineering fields. 
So, a large part of nonlinear analysis has only been performed 
on the basis of qualitative theory or particular solutions derived 
from analytical approximate or numerical integration methods. 
In particular, homotopy perturbation analysis is intensively 
used to investigate nonlinear vibration problems in mechanical 
structures [17].   In mechanical system design calculations, for 
example, the accurate determination of dynamical 
characteristics from observations requires mathematical models 
having appropriate analytical solutions. In this context, the 
design of mathematical models capable of representing the 
nonlinear dynamics of viscoelastic systems satisfactorily in 
terms of analytical exact solutions, capturing also 
simultaneously the combined nonlinear phenomena, becomes a 
major necessity. In that, the Bauer’s rheological-dynamical 
theory [7] consists of a notable progress in the field of the 
dynamics of continuous viscoelastic media, since it meets the 
essential of preceding criteria about the necessity to handle 
simultaneously and in combined fashion, in mathematical 
modeling of viscoelastic systems, the nonlinearity properties.  
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Although the Bauer's method [7] seems to be simple in 
formulation, it is in reality a powerful approach for solving 
dynamical nonlinear problems arising in viscoelastic 
continuum mechanics successfully. This theory [7] entails a 
significant mathematical modification and extension of the 
classical Kelvin-Voigt viscoelastic solid law for capturing 
simultaneously the combined inertia, damping and stiffness 
nonlinearities characterizing the dynamics of real viscoelastic 
systems. The Bauer’s approach [7] was originally developed 
for modeling the dynamics of nonlinear viscoelastic response 
of soft biological tissues, arterial walls in particular. The basic 
idea underlying this theory consists in developing the total 
stress within a material system as the sum of three basic 
stresses: elastic, viscous and inertial stresses, operating in 
parallel. Very recently, the Bauer’s rheological-dynamical 
theory was formulated in a simple mathematical expression 
that may be described by a single second order evolution 
equation within the framework of continuum mechanics for 
investigating the dynamics of viscoelastic material systems [12, 
13]. This formulation has successfully been applied in several 
papers to model creep deformation [13], creep relaxation [6] 
and deformation restoration process under stress relaxation 
conditions [14, 15] of a variety of viscoelastic solid bodies.  

The objective of this research work is to develop a 
mathematical model expressed in terms of an exact analytical 
solution that may be useful in numerical simulations of the 
oscillatory dynamics of a one-dimensional viscoelastic system 
exhibiting large deformations.  The physical properties of the 
mathematical model are represented by a single degree of 
freedom oscillator consisting of a mass attached to a 
viscoelastic spring that behaves as a nonlinear Kelvin-Voigt 
continuum medium. More precisely, given a stiffness 
nonlinearity function, it is proposed to develop the evolution 
equation of the time dependent displacement response of a 
mechanical system experiencing viscoelastic response and 
large deformations by applying the Bauer's theory as 
formulated mathematically by Monsia [12, 13]. In this sense, 
exact analytical solutions in terms of elementary standard 
functions have been determined, following various types of 
response able to exhibit the evolution equation under unforced 
regime. Numerical applications are carried out for illustrating 
the ability of the mathematical model to be used for numerical 
simulations. Graphs of numerical and exact analytical results 
are compared to prove the validity of the current model.  

It is also shown that the developed model incorporates as 
special cases some oscillatory equations with well known 
solutions by passing to special limiting values of the model 
parameters. Time-asymptotic system response is investigated to 
check the stability character of the long time behavior of the 
proposed model. So, in the next section, the evolution equation 
governing the nonlinear oscillatory dynamics of the 
investigated viscoelastic system will be developed. Section 3 is 
devoted to solve the obtained second-order first-degree 
Painlevé evolution equation in closed form exact solution 
following various types of damping modes of oscillation. 
Numerical applications of the model are presented in Section 4, 
and a discussion of the results is performed in Section 5. The 
final section gives a brief conclusion of the work.  

II. THE ONE-DIMENSIONAL NONLINEAR THEORY OF 

VISCOELASTIC SYSTEMS 

A. Continuum mechanical nonlinear evolution equation 

In this part, the Monsia’s formulation [12, 13] of the 
Bauer’s theory [7] will be briefly reviewed to make the 
transition from its continuum version to a constitutive 
expression in terms of displacement and force. The advanced 
procedure for modeling the dynamics of real mechanical 
systems, to say, viscoelastic systems,  developed by Bauer [7] 
was expressed within the framework of continuous mechanics, 
in other words, in terms of stresses and strains experienced by 
the mechanical system. The Monsia’s formulation [12, 13] of 
the Bauer’s theory [7] enables us to describe this theory, for a 
given stiffness nonlinearity function f , by a single second 
order evolution equation, with only few system parameters to 
be determined through fitting procedure,  of the form:  

2 2
( ) ( ) ( ) ( ) (1 / ) ( )

o
c tf e e f e e lf e e w f e s¢ ¢¢ ¢+ + + =     (6) 

where ( )ts  is the scalar stress function and ( )te  the scalar 
strain function , the prime denotes a differentiation with respect 
to response variable, that is, here, the strain ( )te , and 0c ¹ , is 
the inertia coefficient. The constants λ and o continue to have 
the preceding definitions of damping factor and natural 
frequency, respectively. For some convenience, (6) may be 
written, by using a differential operator B  as: 

 ( ( )) (1 / ) ( )B t c te s=  (7)  
with:  

2 2 2 2
( / ) ( / ) ( / )

o
B d dt d dt d dtf f lf w f¢ ¢¢ ¢= + + +    (8) 

At the present time, the function   that captures the 
system stiffness nonlinearity is not explicitly known, but it 
must be specified before any further use of the theory. In the 
following section, an explicit expression for   will be given as 
function of the deformation response.  

B. Nonlinear constitutive force-displacement equation 

In this section the constitutive equation in terms of force 
and displacement governing the dynamics of the one-
dimensional viscoelastic system under investigation is 
formulated. For a time history of displacement response 

)(tu and an external exciting function ),,,( uuutF  , the 

operator B  allows the equation of motion to be represented 
by: 

( ( )) (1 / ) ( , , , )B u t m F t u u u=                 (9) 

or by the equation written in the developed form:  

),,,()/1()()()()( 22 uuutFmuuuuuuu o       (10) 

where the prime denotes the differentiation with respect to 
displacement variable u(t). The constants m, λ and ωο are time 



Engineering, Technology & Applied Science Research Vol. 4, No. 6, 2014, 714-723 717  
  

www.etasr.com Monsia and Kpomahou: Simulating Nonlinear Oscillations of Viscoelastically Damped Mechanical Systems 
 

independent and continue to have the preceding definitions. 
Equation (10) is a second-order first-degree Painlevé equation 
with a forcing function [18-20] known to be subject of many 
studies in mathematics. According to Roth [21], Painlevé 
equations have found several applications in physics, 
particularly in the field of circuit oscillations. So, the 
perspective to model the mechanical behavior of viscoelastic 
systems using the second-order first-degree Painlevé equation 
may provide a great insight on their dynamics. Equation (10) 
gives the differential relationship between the exciting function 

),,,( uuutF  and the resulting time displacement response u(t) 
for a given function φ(u) capturing the purely nonlinear elastic 
response of the system under consideration. This equation 
enters in the perspective of the general second order evolution 
equation of a mechanical system represented by (5) and 
consists of a general formulation requiring the specification of 
the nonlinear elastic spring force function φ(u) for any 
subsequent development. Mathematically, all nonlinear 
function φ(u) that tends towards u, when the displacement u  
tends to zero, may be selected as a possible restoring force 
function. In other words, at small deformations, the nonlinear 
model under question should reduce to the associated linear 
law. Therefore, an infinite number of functions φ may be 
designed. In doing so, various types of mathematical 
expressions for the function φ have been proposed in recent 
papers [6, 12-15, 22]. In general, as performed by Bauer [7], 
the stiffness nonlinearity function φ(u) may be expanded in a 
power series as:  

......)( 3
3

2
21  n

nuauauauau  

In this perception, for mathematical reasons of simplicity, 
the nonlinear stiffness function φ will be expressed, in this 
work, basically as a power law in the form: [22]  

( )φ lu u=   (11) 

where the hardening exponent, that is the stiffness nonlinearity 
controlling  parameter 0l ¹ . Following this point of view, the 
equation of motion takes the form: 

1 2 2 1 2( 1) ( / ) (1 / ) ( , , , ) (12)l l l l
ou u l u u u u l u lm F t u u ul w- - -+ - + + =      

with the mass 0m ¹ . Equation (12) models then the nonlinear 
dynamics of the viscoelastic system with single degree of 
freedom for 1l ¹ under an external exciting function 

),,,( uuutF  . It can be solved analytically and numerically to 
investigate various types of oscillatory response of the system 
under study. In the sequel of this work, (12) will be studied in 
the case of unforced regime, to say, for the external exciting 
function ),,,( uuutF  equal to zero. 

III. EXACT ANALYTICAL SOLUTION FOR THE NONLINEAR  

OSCILLATIONS EQUATION 

This part determines for the unforced oscillatory regime, 
that is to say, 0),,,( uuutF  , the exact analytical solution for 
the equation of motion following the under-damped, critical 

damped, and over-damped responses of the mechanical system 
under question. In doing so, (12) becomes for unforced motion:  

2 2 2( 1) ( / ) 0
o

uu l u uu l ul w+ - + + =    

As can be seen easily, the preceding Painlevé  equation has 
0)( tu as trivial solution. In the usual standard form, this 

equation becomes: 

[ ] 2( 1) / ( / ) 0
o

u l u u u l ul w+ - + + =            (13) 

with 0)( tu .      

This second order autonomous differential equation can be 
viewed as a nonlinearly damped equation. The damping force 
is a nonlinear function in both the time history of response 

( )u t  and the velocity ( )u t . The dependence on the variable 

response ( )u t introduces a nonlinear Newtonian singularity at 
the origin as noted in central forces. The dependence on the 
velocity includes a combination of linear and quadratic 
damping terms. In this perspective (13) consists of an attractive 
problem to be investigated to learn more about the qualitative 
oscillatory dynamics of the system around the singular point 
origin from a viewpoint of phase plane analysis which is not 
the topic of the following research work. So, only a quantitative 
analysis of (13) will be performed concerned in this study. The 
graph in Figure 1 illustrates the oscillatory behavior of (13) 
subject to arbitrary initial conditions u(t=0)=5, and 

1)0( tu , from t=0 to t=20, obtained by numerical 
integration. The simulation is run by using Matlab's routine 
ode45 which exploits Runge-Kutta methods. The parameter 
values are fixed at 987.0l , 01.0 , and 1o .  

 

 
Fig. 1.  A typical behavior of  (13) illustrating the oscillatory nature of the 
mathematical model. 

In the following section, the ability of the developed 
theoretical model to mathematically exhibit various responses 
of the damped nonlinear oscillatory dynamics of the system 
under investigation is proved. To do so, (13) will be solved in 
closed form exact solution by using suitable initial conditions 
that satisfy the dynamics of the nonlinear viscoelastic system of 
interest. 
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A. Reduction of the nonlinear oscillatory equation to the 
damped linear harmonic equation 

It is well known in mathematics that the range of nonlinear 
evolution equations that can be analytically solved in the form 
of elementary standard functions is very limited [23]. So, the 
objective to find exact solutions of nonlinear evolution 
equation leads often to the question about the explicit 
integration of this equation [23-25]. In this perspective, the 
Painlevé analysis may be performed in order to conclude on the 
integration of this equation [23-25]. However, following 
Kudryashov [25], the determination of exact solutions of 
nonlinear evolution equation can be investigated without 
having to apply successfully the Painlevé test. Here, the 
governing equation (13) under question is a typical equation of 
Painlevé which has been, according to Keckic [18, 19], 
integrated by quadratures . Hence, the problem of integrability 
of (13) in terms of elementary standard functions is 
unnecessary to be considered again in this paper. Some 
equations similar to (13) in terms of elementary functions have 
recently been solved on the basis of mathematical 
transformations leading to a Riccati equation or a damped 
linear harmonic equation [12-15, 22]. In the present work, (13) 
will be turned in the damped linear harmonic oscillatory 
equation. Hence, to solve (13) in the form of standard 
functions, a change of variable is required for the expected 
oscillatory solutions. Performing the following suitable 
substitution: 

ly u=           

Equation (13) transforms after a few algebraic 
manipulations, into:  

2 0oy y yl w+ + =   (14) 

Equation (14) is the well known classical linear second 
order evolution equation previously noted as (4). Therefore, the 
general solution of (13) becomes: [19]   

1/( ) ( ) lu t y t=   (15) 

where )(ty designates the general solution of (14) 

A mathematical analysis of (14) indicates that the nature of 
(15) solution depends on the relative magnitudes of the 
damping factor λ and the stiffness module, to say, the natural 
frequency ωο. In other words, the nature of solution depends on 
the roots of characteristic equation:  

2 2 0
o

r rl w+ + =  

associated with (14), that can be real or complex numbers. So, 
three damping modes of vibration should be distinguished. 

B. Exact analytical  solution for over-damped nonlinear 
response 

This case corresponds to a strong damping [6, 26], that is, a 

relative large damping where 2
o

l w> . The roots 1r  and 2r  of 

the characteristic equation are real, distinct and negative. The 
solution of (14) becomes: 

1 1 2 2( ) exp( ) exp( )y t A r t A r t= +  

where:  

1
(1 ) / 2r l d= - +  and 

2
(1 ) / 2r l d= - -  

with:  

2 2
1 4

o
d w l= -   

1A and 2A  are two constants of integration defined by the 
initial conditions. Assuming that the conditions  

( ) ou t u= , and ( ) ou t v= , when 0t =  

satisfy the past history of the displacement, and taking into 
consideration (15), the time history of the displacement can be 
written in the explicit analytical expression: 

( ) exp( / 2 )
o

u t u t ll= - ⋅
1/

2 2

2 2
2 2

2 2

42
( ) sinh( )

1 2
( ) (16)

4 4
4 cosh( )

2

l

oo

o

o
o

o

tlv

u

t

l w
l

l w l w
l w

-
+ +

- -
-

é é ùù
ê ê ú ú
ê ê ú ú
ê ê ú ú
ê ê ú ú
ê ê ú ú
ê ê ú ú
ê ê ú úë ë û û

 

 

C. Exact analytical solution for critically-damped nonlinear 
response 

In this case 2 ,
o

l w=  the two solutions of the characteristic 

equation coincide and then, the solution of (14) is given by: 

1 2( ) ( ) exp( / 2)y t B t B tl= + -   

where 1B and 2B are real constants determined by initial 
conditions. Proceeding in the same way for the initial 
conditions: 

( ) ou t u= , and ( ) ou t v= , when 0t =  

and using (15), the solution of the equation of motion becomes 

[ ]1/
(17)( ) exp( / 2 ) 1 ( / / 2)

l

o o o
u t u t l lv u tl l= - + +  

D. Exact analytical  solution for under-damped nonlinear 
oscillations 

This case assumes a relative weak damping, to say, 

2
o

l w< . Here, the roots of the characteristic equation are 

complex numbers. Therefore, the time history of the response 
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of the vibrating viscoelastic system, under the same initial 
conditions taking into account the past history of the 
displacement: 

( ) ou t u= , and ( ) ou t v= , when 0t =  

 can, for: 

1 2( ) ( cos sin ) exp( / 2)y t C t C t tw w l= + -  

where 
2 2

/ 4
o

w w l= - , and, 1C and 2C are two constants of 

integration fixed by the initial conditions, take the explicit 
analytical form: 

( ) exp( / 2 )ou t u t ll= - ⋅  
1/

2 2 2 2

2 2

1
( )( )sin( / 4 ) cos( / 4 ) (18)

2/ 4

l

o
o o

oo

lv
t t

u
l w l w l

w l

é ù
ê ú
ê ú
ê úë û

+ - + -
-

 

IV. NUMERICAL APPLICATIONS OF THE MODEL 

The aim of this part is to develop numerical solutions in 
order to demonstrate the ability of the mathematical model to 
be used in numerical simulations. In doing so, analytical 
solutions are validated against numerical results. Numerical 
integration solutions have been obtained by using the ordinary 
differential equation solver ode45 and ode15s available in 
Matlab Package. Matlab routine ode45 uses the fourth-order 
Runge-Kutta explicit procedure. The integration function uses a 
variable integration step size to provide the needed accuracy as 
minimizing computation time. The Matlab ordinary differential 
equation solver ode15s is based on an implicit method. It is a 
multistep solver that needs the solutions at numerous previous 
time points in order to estimate the current solution. In this 
perspective, (13) should be written in state-space 
representation, to say, represented in terms of a set of first-
order differential equations. Therefore, defining the state 
variables:  

1 ( ) ( )x t u t= , 
2 ( ) ( )x t u t=   

the following system of two first-order differential 
equations may be obtained: 

21

2 2

2 2 1 2 1

( ) ( )

( ) ( 1) / ( / )o

x t x t

x t l x x x l xl w

=

=- - - -




 (19) 

In this form, numerical integration of (13) becomes more 
appropriate to be implemented as m-files in Matlab. Figures 
below show the results of numerical simulation of (13). 
Numerical solution is plotted on the same graph as the 
analytical solution. Whereas the exact analytical solution is 
plotted in solid line, the numerical result is graphed in circles. 
The mean squared error is calculated with Matlab mse function 
to quantify the discrepancy between model predictions and 
numerical results. 

A. Numerical results for over- damped nonlinear response 

The graph of the numerical solution for over-damped 
nonlinear regime is compared to that of the exact analytical 
solution (16) in Figure 2 over the time range from 0t  to 

20t  under the initial conditions (0) 5u =  and 1)0( u . 
Numerical results are obtained by using the Matlab function 
ode45 for reasonable values of model parameters fixed at  

1.999,l = 3 , and 9998.0o  to produce the  expected 
response. The calculated value of the mean squared error 
provided by Matlab mse function is mse=6.5189e-010 . 

 

 
Fig. 2.  Comparison between analytical (solid line) and numerical (circles) 
solutions for over-damped nonlinear response 

B. Numerical results for critically- damped nonlinear 
response 

Figure 3 shows the comparison of the numerical solution 
with the exact analytical solution (17) of (13) subject to the 
initial conditions 1.0)0( u  and 5.0)0(  ovu , over the time 
range from 0t , to 20t . Reasonable model parameter 
values for this simulation are  5.1l , 2 , and then 1o . 
Matlab routine ode45 has been used for the simulation. The 
mean squared error calculated is   mse=7.3336e-010 . 

 

 
Fig. 3.  Simulation results of the numerical solution compared with the 
exact analytical solution for critically-damped regime. 
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C. Numerical results for under- damped nonlinear 
oscillations 

Figure 4 compares the numerical solution to the exact 
analytical solution (18) of (13) under the initial conditions that 

01.1)0( u , and 94.0)0( u , over the time interval [ ]0, 20 . 

Here, Matlab routine ode15s has been used to run the 
numerical simulation. Reasonable system parameters that 
generate the expected system response are: 3/1l , 5.0 , 
and 7.0o . The mean squared error computed using the 
Matlab mse function is mse=8.6863e-008 . Matlab intrinsic 
function ode15s has been used here since ode45 becomes very 
inefficient. It may be suspected that, for some values of the 
stiffness rising parameter l , as the damping factor  becomes 
more small compared with the frequency o2 , (13) becomes 
more stiff.  

 
Fig. 4.  Comparison of analytical and numerical solutions for under-
damped oscillation 

V. DISCUSSIONS 

This section is devoted for analyzing model predictions and 
demonstrating the validity of the current mathematical model. 
The stability character of solutions predicted by the model is 
also analyzed. The model predictions are discussed on the basis 
of numerical results presented in the preceding section.  

A. Analysis of model predictions 

Vibrating material systems in real operating situation 
experience, as it is well mentioned previously, large 
deformations and viscoelastic behavior. So, their dynamics is 
characterized by a damped nonlinear oscillation. In this 
context, a reliable theory devoted for modeling the damped 
nonlinear oscillatory dynamics of these systems should, at 
least, have the ability to handle some fundamental nonlinearity 
problems, and predict all of three damping modes of 
oscillation known for a real damped oscillatory system. 
Consequently, the following subsections investigate the 
aptitude of the proposed mathematical model to satisfactorily 
reflect these three damped oscillation responses.          

1) Over-damped Response Analysis  
The graphs in Figure 2 illustrate the over-damped behavior 

of the proposed model. It can be seen, as expected, that after 

attaining its maximum value, the time history of the 
displacement u(t) declines gradually without oscillations to 
approach asymptotically equilibrium zero value with time. The 
time history of response u(t) of the system presents only, as 
expected again, one maximum value. Analytical result, to say, 
solution (16) shows that the system response has a hyperbolic 
behavior modulated by decay exponential, similarly to the 
over-damped linear harmonic oscillator response, but raised to 
the l/1 th power. Equation (16) shows that the rate of decay is 
not only proportional to the damping factor λ, but depends also 
on the stiffness nonlinearity rising parameter l . So, it may be 
possible to use this parameter to control the oscillatory 
response amplitude of the system concurrently with the 
damping factor λ.  

2) Critically-damped Response Analysis 
The curves in Figure 3 show that the time dependent 

displacement )(tu increases during the first time period to reach 
a single maximum, followed by an exponential decaying to 
asymptotically approach equilibrium zero value with time. 
Here again, the rate of decay depends not only on the damping 
coefficient λ, but also on the stiffness nonlinearity parameter l , 
and the same preceding remark is again valid .   

3) Under-damped Response Analysis 
Equation (18) shows that the under-damped response 

predicted by the mathematical model consists of a product of 
sinusoidal oscillations with a decaying exponential behavior, 
raised to the l/1 th power. This prediction is illustrated by the 
curves in Figure 4 showing qualitatively the dynamic behavior 
of under-damped mechanical systems. The curves display a 
decaying sinusoidal response in which the amplitude of 
successive peaks decreases to finally stabilize asymptotically to 
equilibrium zero value with time. It may be noted that 
following the parameter values selected the oscillations are 
only occurred over a brief time range. As mentioned 
previously, the decaying rate of the displacement is not only 
proportional to the damping factor λ, but depends also on the 
stiffness nonlinearity parameter l . This demonstrates that the 
damped oscillatory dynamics of the mechanical system under 
investigation can be again controlled from the magnitude of the 
stiffness rising parameter .l  This again means that an 

assessment of the time constant 2l lt = characterizing the 
time displacement exponential decay may provide more info 
not only about the damping degree, but also on the stiffness 
strength of the investigated mechanical system.  Moreover, the 
formula of  t  shows that the stiffness nonlinearity increases or 
decreases as the damping factor λ respectively increases or 
decreases. So, the current model allows simultaneously the 
enhancement of stiffness nonlinearity and damping of the 
mechanical system under question.  

B. Stability analysis of damped responses 

The above numerical simulations have shown that the 
system behavior relative to all of three damping modes of 
oscillation previously studied converges in the case where the 
oscillatory solution (18) is globally defined for 0t , 
asymptotically to equilibrium zero value at an exponential rate 
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of decay. Exact analytical results, that is to say (16), (17) and 
(18), determining the system response for over-damped, 
critically-damped and under-damped regimes respectively, 
indicate moreover that the system response tends to zero when 
the time t . Therefore, it may be concluded that the 
damped nonlinear dynamics response of the system under 
study has an asymptotic stability character. This exponential 
asymptotic stability is not significantly sensitive to the initial 
conditions. As a consequence, for the long time system 
behavior, a determination of initial conditions is not necessary 
to be known with accuracy. It is worth to note that this stability 
character depends not only on the damping factor  as 
suggested by the classical second order damped linear 
oscillatory equation, but also on the hardening parameter l . 
The positive value of l  is secured by the definition of the 
nonlinear restoring force function luu )( that should obey in 
the Bauer's theory [7] to the linear Hooke's law when 

0)( tu . Next, special limits of (13) governing the nonlinear 
oscillatory dynamics of the one-dimensional viscoelastic 
system of interest will be established in order to demonstrate 
the ability of the developed mathematical model to capture 
some well known linear and nonlinear oscillatory dynamics 
models.  

C.  Limiting oscillatory equations 

The objective of this section is to develop some special 
limits for (13) to demonstrate that the proposed mathematical 
model captures the classical damped linear harmonic 
oscillatory equation and the Lambert nonlinear oscillatory 
equation with well-known analytical exact solutions as special 
cases. One special limit of the current mathematical model may 
be obtained by substituting the specific value 1l  of the 
stiffness nonlinearity parameter into (13). In doing so, (13) 
becomes: 

2 0ou u ul w+ + =      (20) 

It is easy to note that (20) is identical to the well known 
classical damped linear harmonic oscillator (4) previously 
noted, which is extensively studied in academic textbooks [26] 
and widely used in engineering design calculations. The 
damped linear harmonic oscillator (20) has a well-known exact 
analytical solution showing all of three damping modes of 
vibration following the magnitude of the damping compared to 
that of the natural frequency [6, 26]. Another special limit of 
(13) is achieved by setting the damping factor 0 . As a 
result, (13) transforms into:  

0)1(
22

 u
lu

u
lu o       (21) 

Equation (21) is the second order Lambert oscillatory 
equation with well-known exact analytical solution [27]. 
Equation (21) is explored by He [27] as a strongly nonlinear 
oscillatory equation from Lambert. Following Pellicer and 
Solà-Morales [28], this limiting case has a significant interest 
for the investigated physical problem, since the special limit 

0
m

b  means that the system mass m is large relative to 

the damping coefficient b. Substituting 0  directly into 
(18), modeling the under-damped nonlinear oscillatory system 
response, it becomes possible to obtain as exact analytical 
solution for the Lambert oscillatory equation the following 
explicit expression: 

[ ]1/
(22)( ) cos( ) (1 / )( / ) sin( )

l

o o o o o o
u t u t lv u tw w w= +  

or  

  l
oo tDtCtu /1)sin()cos()(     (23) 

by setting l
ouC   and  

o

o
l
o vlu

D


1

  

The formula (23) is the same analytical solution found by 
He [27] using a variational approach. Putting moreover 1l , 
directly into (22) or (23), the well-known sinusoidal response 
for the second order undamped harmonic oscillator is found. 
Therefore, the above proves mathematically the aptitude of the 
developed model to capture the Lambert oscillatory equation as 
special case.    

It is worth noting that, compared to solutions of the 
classical damped linear harmonic equation, the argument of 
exponential functions in the developed nonlinear solutions 
differs by a factor of l  which represents the stiffness rising 
parameter. Thus, the factor l  appeared to be the fundamental 
parameter controlling the nonlinearity of the oscillatory 
dynamics of the system under study. From the above, it can be 
concluded that the proposed nonlinear oscillatory viscoelastic 
model captures in mathematical fashion the classical damped 
linear harmonic oscillator as a special case. The current 
mathematical model captures not only the classical second 
order damped linear harmonic equation as a subcase, but it has 
the ability to incorporate also the Lambert nonlinear oscillatory 
equation as a special case. 

D. Validation of  the mathematical model 

The validity of the current mathematical model for 
predicting and numerically simulating the damped oscillatory 
response of a one-dimensional mechanical system exhibiting 
large deformations and viscoelastic properties is analyzed in 
this section. According to [26, 29, 30], exact analytical 
solutions found for the developed model are validated against 
numerical results. In this regard, exact analytical solutions 
determined for over-damped, critically-damped and under-
damped regimes are compared in Figures (2), (3) and (4) with 
corresponding solutions carried out by numerical integration, 
respectively. So, Figure (2) shows that the exact analytical 
solution (16) matches associated numerical solution very well. 
This is confirmed by the low value of the mean squared error, 
6.5189 010,e-  measuring the existing discrepancy between 
these two results. Figure 3 leads to the conclusion that both 
exact analytical solution (17) and numerical result for 
critically-damped system response are in very good agreement 
as underlined by the mean squared error 
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7.3336 010.mse e= -  A very good agreement is also 
observed regarding the comparison of exact analytical solution 
(18) with numerical result for under-damped response of the 
studied system, as can be noted by the value 0086863.8 e for 
the mean squared error. Besides, (15) is the exact solution, 
according to Keckic [18], found by Painlevé. The above 
confirms the reliability and accuracy of determined exact 
analytical solution of (13) and as a consequence, the ability of 
the developed mathematical model to numerically simulate the 
results of possible experiments [26]. On the other hand, the 
preceding study on special limits of the proposed model 
demonstrates its powerfulness to be a nonlinear extension of 
the well known classical damped linear harmonic oscillator 
extensively used in engineering design calculations and to 
incorporate the Lambert oscillatory equation as special case. In 
doing so, the developed model offers its mathematical ability to 
be applied for simulating all of three damped oscillatory 
responses of a one-dimensional viscoelastic system under large 
deformations.  

V. CONCLUSIONS 

The viscoelastically damped linear harmonic equation is 
well known to be only applicable for a small range of 
deformation of mechanical systems. In these conditions, its use 
to characterize flexible mechanical systems in engineering 
applications may be the cause of catastrophe. In real working 
situations, mechanical systems undergo large deformations and 
show viscoelastic behavior. This involves the necessity to build 
reliable and satisfactory models for predicting, simulating and 
analyzing their response to an excitation. The present work was 
intended to develop a mathematical model that may be used in 
numerical simulations of the oscillatory dynamics of a one-
dimensional viscoelastic system experiencing finite 
deformations. The reliability of the proposed model is secured 
in the regard that it takes into consideration the nonlinearity 
properties of a mechanical system undergoing large 
deformations and viscoelastic behavior. In this perspective, a 
second-order first-degree Painlevé equation was developed 
from the application of Bauer's theory to model the nonlinear 
oscillatory dynamics of the system of interest. This equation is 
an extension of the damped linear harmonic oscillator equation 
widely employed in engineering design calculations for the 
nonlinear regime of behavior of real mechanical systems. The 
developed mathematical model captures also the Lambert 
nonlinear oscillatory equation as a special case. It is found that 
the obtained Painlevé evolution equation successfully models 
the dynamics of over-damped, critically-damped and under-
damped nonlinear behaviors of a mechanical system under 
large deformations and viscoelastic behavior. The presented 
mathematical model provides the ability to control the damped 
oscillatory dynamics of the system under investigation 
concurrently from the damping coefficient or stiffness 
nonlinearity parameter. An estimation of the time constant 
characterizing the exponential decay of the time history of the 
displacement can, as shown by the current mathematical 
model, give knowledge not only on the damping strength, but 
also regarding the stiffness degree of the mechanical system of 
interest. Numerical and analytical results demonstrated that the 
proposed damped nonlinear oscillatory equation may be 

satisfactorily used in numerical simulations of viscoelastic 
oscillators. In this sense, the Bauer's theory significantly 
contributes to a better understanding of mathematical modeling 
of viscoelastic systems. This theory represents the nonlinear 
dynamics of viscoelastic systems in the form of Painlevé 
equation which is subject of intensive investigation in 
mathematics. Hence, the research work developed in this paper 
confirms the nature of the Bauer's theory to be a powerful 
mathematical tool to model satisfactorily the nonlinear 
dynamics of mechanical systems. Monsia's formulation of 
Bauer's theory may permit also to formulate Painlevé equation 
of the third order or in general of the nth order to describe 
mechanical systems by considering, instead of the linear 
Kelvin-Voigt constitutive law, the general setting of the linear 
viscoelastic constitutive law expressed as a single linear 
ordinary differential equation of the nth order relating the total 
strain and its time derivatives with the total stress.  
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