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Abstract— An extended version of the well-known Gurson-
Tvergaard-Needleman (GTN) isotropic hardening model is 
presented in this paper. The yield function of the proposed 
constitutive model possesses the distinctiveness to explicitly 
depend upon the third stress invariant. The presented 
constitutive model is used to analyze the necking of a round 
tensile bar. As long as softening initiation of specimen is not 
reached, the obtained numerical results highlight similarities and 
good agreement with those provided by the use of the GTN 
model. However, discrepancy shows up as soon as specimen 
failure starts. 
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I. INTRODUCTION  

Regarding the mechanical behavior of porous plastic 
materials, the first micromechanical model which introduces a 
strong coupling between deformation and damage is the 
Gurson-Tvergaard-Needleman (GTN) model [1, 2]. The void 
volume fraction (vvf)  f of the material at hand affects the yield 
function of this model and subsequently the ductile fracture 
behavior of this material. Indeed, when f  increases, the 
material softens and loses its capability to carry loads An 
extension of the GTN’s plastic potential ΦGT  is  proposed in [3] 
where the authors, investigating three arrangements of 
spherical voids over a wide range of  f, focused their study on 
the determination of yield surfaces for porous materials using a 
huge number of finite element simulations. For each of the 
considered three void arrangements, namely Simple Cubic 
(SC), Body-Centered Cubic (BCC) and Face-Centered Cubic 
(FCC) arrays, many thousand yield points were determined by 
monotonically increasing the arbitrarily-prescribed 
macroscopic strain. The obtained yield points were fitted by a 
new yield function  which turned out to be similar to ΦGT 
for f ranging between a very small value to the percolation 
threshold  fp  found to be equal to 0.89. Moreover, all 
introduced parameters may be expressed as functions of the 
parameters characterizing the GTN’s plastic potential ΦGT 
which, in addition, is retrieved from the plastic potential Φ 
when some of its parameters  are set to be equal to appropriate 
values (refer to  Section 2.). As a novelty, the yield function Φ 
was found to explicitly depend upon the third stress invariant  
I3. 

In this investigation, a constitutive model, referred to the 
present model in this paper, is used to describe the progressive 
damage in ductile solids resulting in material softening and, 
ultimately, loss of its stress carrying capacity. Numerical 
aspects were addressed concerning the integration of the 
proposed constitutive rate equations [4]. Based on the 
backward Euler integration scheme, a numerical algorithm 
implicit in all variables and a corresponding algorithmic 
operator was developed. In order to demonstrate the global 
accuracy and stability of the numerical solution, finite element 
damage simulations accounting for finite strain and using the 
proposed model are performed for the traditional ductile solid 
problems of necking of a round tensile bar [5]. 

II. THE PROPOSED RATE-INDEPENDENT PLASTICITY MODEL 

FOR POROUS MATERIALS 

The most popular model describing constitutive elastic-plastic 
equations that account for the effect of ductile damage 
development is that suggested by Gurson and 
phenomenologically improved by Tvergaard [1, 2]. For a 
material containing a volume fraction  of voids the proposed 
approximate yield condition reads 

2
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where σ is the effective flow stress of the damage-free matrix 
material which is a function of the effective plastic strain pε , 
(q1, q2) are the Tvergaard parameters, and H=(H1, H2) is a 
vector comprising the scalar state variables p

1H =ε

 

and 
2H =f . In 

yield condition (1), the macroscopic Cauchy stress tensor is 
resolved as 

2 3 '
p I q n with n

3 2 q
   


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with p= -1 /(3 tr σ )  representing the hydrostatic pressure, 
tr refers to the trace of a tensor, I is the second order identity 
tensor, I is the deviatoric stress tensor, and 1/ 2q= (3 /2σ ':σ ') is 
the von Mises stress. An extension of the GTN’s plastic 
potential ΦGT  with no extra parameters which fits the 
numerical data well and is valid for all void volume fractions 
and triaxial stress states has recently been proposed in [3]. For 
more detailed explanations of the subject, we refer the reader to 
this paper. 
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The porous ductile materials studied in [3] contain spherical 
empty voids arranged in cubic arrays, namely, simple cubic 
(SC), Body-Centered Cubic (BCC) and Face-Centered Cubic 
(FCC) arrays. FCA was used to simulate unit cells and the 
macroscopic yield surfaces of the porous materials were 
obtained using the probing technique which goal is to obtain a 
yield function in an analytical expression that can be used in 
continuum studies. The matrix material is almost rigid, 
perfectly plastic and unit cells were meshed with cubes. 
Depending on the unit cell at hand, the void volume 
fractions considered range from 0.02 to around 0.89 
corresponding to the percolation threshold of the matrix 
material. 

Let I3 and J3 be the determinant of the stress tensor σ and 
the third stress invariant of the deviatoric stress tensor σ΄ 

respectively: 
3I detσ  and 3

3
1

J trσ '
3

   are related by 

2 3
3 3I = J + pq /3 -p . In stress space (p, q, I3), yield points were 

found by monotonically increasing macroscopic strain with 
fixed ratios until the macroscopic equivalent stress reaches a 
maximum. For each of the three cubic unit cells, a least-squares 
fit with an extension of the GTN’s yield function (1) was found 
only approximately with deviations becoming more 
pronounced as pressure or void volume fraction were 
increased. To account for the observed tri-lobed numerical data 
pattern, the Gurson-Tvergaard-like yield criterion proposed in 
[3] can be expressed as 
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Note that for the extended yield function Φ, the q-like 
parameters α1 and α2 depend on f for the three considered 
microstructures, that is α1=α1(f)  and α2=α2(f). The yield 
function Φ is linear with respect to I3, with coefficient 
proportional to the hydrostatic pressure p. The parameter s also 
depending on f, determines the influence of the new term in the 
yield condition (3) which reduces to that of the GTN model (1) 
for s=0, α1=q1 and α2=q2. Whenever the constant s is non-zero, 
there is an effect of the third stress invariant I3 on the plastic 
flow. 

Clearly the yield function contains three functions 
depending upon f  which are slightly different for each of the 
three cubic microstructures. In [3], the authors stated that their 
finite element data were well-fit by expressing the parameters 
α1 and α2 as 
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where n, m, A, Y and Z are constant parameters. Note that (1) 
for f=0 and α1=0, the yield condition (3) is nothing else than the 
classical Von Mises one; and (2) when f=fp and α1=1, the 
material becomes plastic under any applied load since the 
matrix material is no longer connected. Regarding the 
parameter s, if its value is too large, the tri-lobed pattern of the 
macroscopic yield surface almost degenerates into an 
equilateral triangle at some values of pressure p. 

In non-linear solid mechanics, the material behavior is often 
described by a rate-form constitutive equation. In the particular 
case of the proposed rate-independent plasticity model, it is 
assumed that the macroscopic rate of strain tensor ε  is written 

as the sum of an elastic part eε and a plastic part pε , and the 
stress rate σ   depends linearly on the elastic strain rate tensor 

eε . Subsequently, the corresponding constitutive equations can 
be written in a rate format as: 

e p e p

p p

ε= ε + ε , σ= C : (ε-ε )

ε =λ r(σ ;H ), H =λh(ε ;H )

    
  

    

(5) 

 

where 
eC  is the elastic moduli tensor which can depend on the 

current stress state, r is the direction of the plastic flow which 
depends on the current stress and on a finite set of plastic 
internal variables H accounting for history effects and h is the 
direction of the rate of these plastic internal variables. As 
previously mentioned, H characterizing the current state of the 
ductile porous material includes the void volume fraction   f 

and the effective plastic strain pε  

In associated plasticity, r is the gradient of the yield 
function, that is: 
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Then the plastic strain rate  p , is given by: 
. .
p ' 2

ij
3

1 2
I q I

3 p ' 9 J

      
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  (7) 

The plastic strain rate pε is trivially decomposed into 

volumetric p

v
ε   and deviatoric 

p

q
ε  parts,  p p p

v q
ε =1/3ε I+ε ,    which 

facilitate development of the integration algorithm. Indeed, 
these two terms can be expressed in terms of the yield function, 
using (6), as: 

. .
p
v p

 
   

  

and  
. .
p 2
q
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2
q I
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 (8) 

It should be noted at this stage of calculation that, due to the 
presence of the third stress invariant in the expression of the 
yield function Φ, and in view of (2), the deviatoric component 
cannot be put in the form p p

q v
ε =ε n   where n is the deviatoric 
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strain rate tensor normal to the yield surface Φ=0 and which 
norm is unity. As a reminder, this form turned out to be very 
successful for applying the implicit integration scheme based 
on the Aravas’s method [6]. 

To determine the plastic multiplier, the loading-unloading 
conditions should be imposed in a Kuhn-Tucker forma: 

. .

3 30, (p, q, J ; H) 0, and (p, q, J ; H) 0      (9) 

implying that during plastic loading Φ=0,  
.

0  and Φ 0 . 
This condition, the consistency condition, allows the 
determination of the plastic multiplier λ which specifies the 
magnitude of the plastic strain rate [7]. Finally, the void 
fraction modification f* introduced in [1] was intended to 
simulate the rapid loss of strength accompanying void 
coalescence. 

The calculated porous plastic material response is strongly 
dependent on the computational procedure for stress 
calculation, usually called the stress integration. The presence 
of the third stress invariant in the yield function typically 
results in a high degree of non-linearity and complex 
numerical algorithms. For further details dealing with the 
description of various integration methods, the reader is 
referred to [7, 8] where more elaborate coverage of the Closest 
Point Projection Method may be found. The constitutive 
equations of the proposed model along with the coalescence 
criterion based on the effective porosity introduced in [5] are 
integrated using a fully implicit scheme which allows the 
calculation of the consistent tangent operator [7, 8, 4]. The 
final stress and hardening parameters are determined solving 
the non-linear equations iteratively so that the stress increment 
fulfills the consistency condition. The corresponding 
algorithm is programmed in appropriate user subroutines 
which are called by Abaqus, at each element integration point, 
for each increment, and during each load step. 

III. ONE NUMERICAL EXAMPLE: SMOOTH BAR TENSILE TEST 

This section illustrates the use of the present model through 
the analysis of damage and failure of smooth bar subject to 
axial tensile test. The traditional necking analysis of a round 
bar has been investigated. Uniaxial tensile test of a smooth bar 
is often used to study the ductile void growth in metals for 
which the formation of a neck triggers the material instability. 
A detailed finite element analysis of the formation of the crack 
at the center of the neck and its subsequent growth leading to 
cup-cone fracture can be found, for instance, in [5]. The 
formation of the neck results in a triaxial state of stress at the 
center of the specimen. Due to high hydrostatic tension, the 
growth of nucleated voids is accelerated and the material 
instability proceeds with the initiation of fracture at the center 
of the neck with linkage of adjacent voids. Numerical 
simulations of the behavior of a rounded smooth bar subject to 
tensile test have been performed. The rounded bar has an initial 

length of 
zo

2L 8L


 where the radius L


 is assumed to be 

equal to one unit. Due to symmetry about ρ=0 and z=0, only 

one quarter of the specimen needs to be analyzed. A slight 
conical imperfection is introduced near the center of the 

specimen such that z 0L 0.998L

 
 . The geometry of the 

studied specimen and the original used mesh are shown in 
Figure 1. The geometry is axisymmetric, and the deformation is 
assumed to be axisymmetric. 

 

 
Fig. 1.  Tensile test: geometry of the rounded smooth bar, original used 

mesh, boundary conditions, and loading. 

Reduced integration elements (CAX4R within Abaqus) 
were used for efficient computations. A refined mesh is 
generated near the center of the rounded bar where softening 
and intense deformation are expected, whereas a relatively 
coarse mesh is used in the rest of the specimen where a rather 
uniform deformation is expected. The kinematic boundary 
conditions are: symmetry about ρ=0, symmetry about z=0, and 

all the nodes on the edge z=
z

L


 of the specimen are given a 

prescribed velocity depending on time 
z z

v v (t)  in the z-

direction. The velocity zv increases rapidly from zero at the 

start of the analysis to its maximum 30 ms-1 in 0.0025 s and 
drops back linearly to zero in another 0.0025 s. It then remains 
at zero for the remainder of the analysis. 

The specimen is made of a steel alloy which work-
hardening characteristics are similar to those of a power law 
hardening material with Young’s modulus E, Poisson’s 
coefficient v, and initial yield stress σ0. Using the GTN model 
to simulate ductile failure, a proper choice of its eight micro-
mechanistic parameters proves to be crucial. Before loading the 
material is assumed to be fully dense, that is f0=0.0. The 
damage parameters N, s and fN related to void nucleation, 

as well as the Tvergaard constants q1 and q2 were fixed to 
typical values suggested in [1]. Hereafter are the material 

parameters used in the numerical simulations: 
0

0.00333   , 

0.3  , p 0.1

0 (1 0.033 )     , q1=1.5, q2=1.0, 0.3

  , 

0.1s

 , fN=0.04,  fc=0.15 and  ff =0.25. 

For the problem under consideration, it is well known that 
the material deforms homogeneously in the axial direction 
before the load becomes maximum, after which deformation 
becomes heterogeneous and necking starts. As a result of 
which the specimen softens due coalescence of voids and 
eventually fracture across the neck region. In this context, 
Figure 2 displays the deformed shape of the tensile bar showing 
necking occurs at the mid-section of the specimen. 
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Fig. 2.  Comparison of vvf contour plots predicted by the present models 

and the GTN model just before failure of the tensile specimen;  
 
. 

 
Fig. 3.  Simulation of tensile tests on smooth round bar. Predictions of 
overall nominal stress versus overall nominal strains based on the present 
models (SC, BCC and FCC microstructures) and GTN model.  

The global response of the specimen may be specified by 
the average states of strain and stress within it. The nominal 

elongation n

z z zo
L / L    and the relative diameter 

n

z
L / L

  
    are chosen to assess the average strains of the 

specimen. The nominal elongation is used to assess the average 

strain in sections perpendicular to the tensile direction. The 

overall nominal stress is given by  n 2

z
F / L


  where F is the 

resulting overall tensile load carried by the bar and determined 

from nodal forces. The evolution of n

z
  as functions of the 

nominal elongation and the relative diameter are shown in 
Figure 3, for both the present and the GTN models. First of all, 
these figures clearly show that up to failure initiation points 
which are indicated in Figure 3 using the dyadic  symbols, 
the agreements between predictions of considered models are 
quite good. In particular, maximum loads for the present 
model, regardless the considered microstructure, coincide with 
the maximum load provided by the GTN model which is 
reached at strains of about 11% for the nominal elongation and  
about 5.5%  for the relative diameter. 

It is worth noting that the practically coincidence of the 
numerical predictions also holds in the softening regime 
ranging from maximum load and the immediate vicinity of 
failure points. This fact is substantiated by the deformed 
configuration and the void volume fraction contours depicted in 
Figure 2 at the final edge displacements of the specimen which 
are very similar. As expected, the largest amount of softening 
localizes around the center of the mid-section of the specimen. 
It is implied, therefore, that failure initiation should be expected 
in that area. However, the onset of failure is reached at 
displacements of  1.12Lρο  for the GTN model and of 1.21Lρο 
for the present model with BCC microstructure, (Figure 2). The 
maximum loads along with the corresponding nominal strains 
predicted by both the present models and the GTN model are 
listed in Table I. 

TABLE I.  MAXIMUM LOADS AND CORRESPONDING NOMINAL STRAINS. 

 n

z (%)  
n
z

0

max


 
n (%)  

n

0

max


 

GTN model 8.67 1.301 4.87 1.302 
SC 10.27 1.302 4.87 1.303 

BCC 9.72 1.303 5.02 1.30 
FCC 9.45 1.30 4.86 1.301 

 

 
Deviations between predictions of the present models and 

the GTN model are observed as soon as failure of the 
considered specimen starts, that is when the sudden specimen 
capacity loss occurs (Figure 3). The numerical results seem to 
suggest that the present model based on SC microstructure is 
the closer one to the GTN model. The true fracture strain is the 
most physical experimental indicator for quantifying the 
resistance to damage and fracture of a material subjected to 
tensile loading conditions. An average true fracture strain 

measure 
f
ε  using the diameter reduction is usually used to 

quantify the ductility [9, 10]. It is defined as 

f
ε 2 log(L / L )

 
  It has been well-known that the 

dependence of  
f
ε  on the stress triaxialit τ can be approximated 
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using an exponential function 
f
ε exp( )   where α is a 

material constant.  

The stress triaxiality is the hydrostatic stress to equivalent 
stress ratio. The obtained failure strains are listed in Table ΙΙ. 
Specimen made up of GTN material has a little lower ductility 
than the specimen made upof present models material, 
regardless the considered microstructure (BCC, FCC or SC). 

TABLE II.  COMPARISON OF PREDICTED FAILURE STRAINS. 

DUCTILITY GTN SC BCC FCC 

n

z

f( ) (%)  
27.5 28.3 30.2 30.5 

n f( ) (%)  
36.2 37.2 42.4 42.3 

 

IV. CONCLUSION 

The main objective of this paper has been to address an 
extended version of the GTN model based on a pre-existing 
yield function for porous plastic materials proposed in [3] and 
its implementation within a finite element code. A fully 
implicit stress integration scheme is used to integrate the 
present model. As a numerical example, the present model is 
used to perform axisymmetric simulations of the ductile 
necking failure of a smooth round bar. Similar values for the 
damage parameters (nucleation and coalescence) have been 
used for both the present model and the GTN model in order to 
compare their ability to predict void growth to coalescence and 
the corresponding failure mechanism. The obtained numerical 
results are summarized as follows: 

• The present model has shown the potential to accurately 
predict all the major features of ductile failure of solids 
(stress triaxiality dependence …). 

• Up to the failure initiation of the specimen, the predictions 
based on the finite element analysis incorporating the 
present model are in a close agreement with those 
provided by the GTN model, confirming the potential of 
the former constitutive model to fulfill to the requirement 
of transferability between different loading conditions.  

• Noticeable disagreement has been observed between 
predictions of both models at and beyond failure points of 
specimen. The necking round bar problem has shown that 
during the sudden specimen capacity loss, the present 
model based on SC microstructure is the closer one to the 
GTN model. 
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