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Abstract—In this numerical investigation, the effect of the 
penetration of a crack in a matrix reinforced by aluminum silicon 
carbide particles in a composite is studied in order to determine 
the thermo-mechanical behavior under the effect of different 
temperature gradients during cooling. To realize this, the 
thermal residual stresses are calculated by considering a wide 
range of cracks of different penetrations. The results of this 
investigation compared to a case without geometric discontinuity, 
have revealed no meaningful effect of the distribution of the 
stresses along a main direction perpendicular to the direction of 
the crack. On the other hand, regarding the distribution of the 
stresses along the plane of the crack and in vicinity of the 
particle, results show that the penetration of the crack in the 
matrix causes an asymmetry.  

Keywords- metal matrix composites; Al/SiC; thermal residual 
stress; penetration; crack   

I. INTRODUCTION  

Since the last decade, metal matrix composite (MMC) 
materials have become increasingly important in enormous 
applications in the aerospace, automotive and military 
industries, due to their high strength-to-density ratio and 
excellent wear resistances [1, 2]. The main concern about 
MMCs is related to relatively high states of residual stresses. 
During  cooling  down  from  the manufacturing  temperature  
to  room  temperature, due  to  the fact that the constituent 
materials have different coefficients of thermal expansion, 
thermal residual stresses are  produced,  and this  affects  the  
mechanical  behavior  of  MMCs [3].     

Several analyses of residual stresses have been carried out, 
both experimentally using neutron diffraction and X-ray 
diffraction and theoretically, by computer simulation [4]. 
Nowadays, there is a wide variety of modeling approaches to 
the behavior of MMC. Most of them are based on the distinct 
properties of the constituent materials – the matrix and the 
reinforcement materials. These models are micromechanical 
models and are based on the topology and geometrical 
distribution of the reinforcement components. 

 Moreover, the micromechanical analysis provides better 
understanding of formation and distribution of thermal residual 
stress within the MMCs. The distribution of these stresses in 
the MMCs depends on several parameters such as inclusion 

shape, particles volume fraction, cooling rate during 
manufacturing process, and fabrication temperature.   

A  spherical  symmetric model has been employed to  
calculate  thermal  residual  stresses  in  Al/SiC  particle metal  
matrix  composites [4]. The numerical analysis revealed that 
residual stresses within the matrix increases when the 
particulate volume fraction is enhanced. Meijer et al. [5] have 
studied the effects of inclusion shape on residual stresses of 
MMCs by finite element analysis. Results showed that the use 
of a cube shaped particle, with sharp corners and edges in the 
unit cell model, lead to much greater initial hardening behavior 
than the spherical inclusions and therefore to a greater 0.2% 
offset yield stress due to stress/strain localization at the particle 
corners and edges. 

The elastic behavior of materials is significantly affected by 
the presence of defects which can entail the weakening of the 
structure and cause its destruction. Strong stress concentrations 
arising from geometrical or metallurgical failings, may result in 
the appearance of microcracks. Indeed, fracture is the 
consequence of the various mechanisms related to the 
development of the damaged zones [6]. The presence of 
inclusions is also investigated, as they are responsible for stress 
concentration, crack initiation and propagation, and therefore 
for the fracture of the material [7]. Experimental observations 
on metal-matrix composites reinforced with particles have 
demonstrated that damage is always generated at the 
reinforcement space [8, 9]. 

According to [10], further improvements in the modeling of 
particle-reinforced composites should aim at including the 
damage effect, which is known to control many critical 
mechanical properties such as ductility and fracture toughness. 
From the above literature review and to the best of our 
knowledge the effect of the penetration of a crack on the 
thermo-mechanical behavior of a metal matrix composite is not 
clear. 

The present paper deals with the investigation and the 
analysis of the effect of the penetration of a micro-crack on the 
thermo-mechanical behavior of a microstructure of a composite 
of aluminum matrix reinforced with silicon carbide particles 
subjected to different temperature gradients (cooling process). 
This was done using the finite element method to numerically 
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predict the residual thermal stresses acting on the micro-
structure. Only the damage in the aluminum matrix was 
considered in the present investigation. The simulations were 
done with Abaqus [11]. 

II. MODELLING PROCEDURE   

Until now, it is still not practical to model a three 
dimensional random distribution of reinforcement particles, of 
various geometries in a matrix. Therefore, to overcome this 
difficulty, the unit cell analysis method is used.  In this study 
we use a special design of matrix (Al) and reinforced particles 
(SiC) [12] as it is shown in Figure 1a. The length, width and 
thickness of our micro-structure are respectively C=160 μm; 
C=160 μm and C/2=80 μm. The diameter of the reinforced 
particle (SiC) is equal to D=2R0=20 μm. The bonding 
between the inclusions and the matrix is assumed to be perfect; 
the debonding on the inclusion-matrix interface is not studied. 

The matrix (Al) was defined as an elastic–plastic material 
with a modulus of elasticity of 70 GPa, Poisson ratio of 0.3, 
yield strength of 275 MPa and a coefficient of thermal 
expansion of 23.410-6 °C-1. The particle (SiC) was considered 

as an isotropic elastic material. The particle was assumed to 
have a modulus of elasticity of 408 GPa and a Poisson ratio of 
0.2, corresponding to silicon carbide (SiC) properties. The 
coefficient of thermal expansion (hereafter CET) of SiC was 
considered as 5.1210-6 °C-1. Therefore, the CET of aluminum 
is about four times higher than SiC. 

This composite has been subjected to a thermal cycle of 
preheating to T0 followed by cooling to the ambient 
temperature. It is assumed that the absolute temperature field is 
homogeneous and that its evolution is given by: 

0( ) .T t T T t    (1) 

where  T0 is  the  initial  temperature,  t  is  time  and T
~

 is the  

temperature  rate,  which  is  considered  constant during 
cooling. Here, the initial temperature is considered for several 
cases T0 = 120°C, 220°C, 320°C, 420°C, 520°C and 620°C, 
whereas the final temperature is maintained equal to the 
ambient temperature (Tend = 20°C), and the constant cooling 

rate was considered T
~

=-100°K.s-1. 

 

 
(a)  (b)  (c) 

Fig. 1.  Modeling a particle-reinforced composite: (a) The assumed MMC model, (b) the boundary condistions used (c) the finite element mesh

On the other hand, the boundary conditions applied to the 
microstructure are as follows: a fixed boundary condition of the 
plane surface of the bottom, a tensile pressure force of 10MPa 
is applied on the upper surface plane, and a symmetric 
condition has been used for the vertical plane which passes 
through the inclusion. However, free conditions are applied to 
the other boundaries planes (see Figure 1b) 

The calculations were performed using ABAQUS version 
6.11 [11]. Due to stress concentration, the precision of 
numerical method is strongly related to the quality of the 
designed mesh surrounding the particles and also to the zone 
containing the crack. Therefore, a 4 node linear tetrahedron 
(C3D4) finite element was used for modeling. The  accuracy  
of  the  model  was  verified by comparing stress  results  with  
two  other  mesh densities, one with twice the number of 

elements and one with a coarse mesh having half the number of 
elements. The satisfactory model containing a spherical 
inclusion, shown in Figure 1c, consists of 52750 elements. All 
simulations with the meshes described above were performed 
with Al/SiC composites with 20 percent volume fraction of 
reinforcement material. 

III. RESULTS AND DISCUSSION  

A. Distribution of Residual Stress  

For the SiC/Al composite under investigation, the 
coefficient of thermal expansion of aluminum is about four 
times greater than that of SiC. Therefore, according to [12], the 
generations of thermal residual stresses are inevitable during 
cooling from the high operating temperature, resulting in 
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tensile stress in the matrix and compressive ones in the 
reinforcement particles. 

The micro-structure of the composite is subject to complex 
residual stresses. There are three "Principal Stresses" that can 
be calculated at any point, acting in the x, y, and z directions 
which are respectively xx, yy and zz. The Von Mises stress, 
VM, which is the combination of these three stresses into an 
equivalent stress, is used in this investigation. Figure 2 shows 
the three-dimensional distribution of the thermal residual 
stresses VM, xx, yy and zz  on the micro-structure of the 
composite for the case a=5 μm, d=2μm, T=300°C . 

It should be noted that the distribution of the von Mises 
stress is symmetrically spherical to the three planes from the 
center of the inclusion. It takes high values in the inclusion 
and at the vicinity of the matrix–particle interface. In addition, 
the considered stress decreases radically away from the center 
of the inclusion and tends to a negligible value to the 
extremity of the elementary volume. 

On the one hand, the distribution of the xx stress, is 
symmetric in the matrix relative to the x-axis and highly 
important on either side of the inclusion. This stress is 
negative due to the compression created on inclusion by the 
presence of the geometric discontinuity. On the other hand, the 

compressive stresses in the inclusion are twice higher than 
those obtained in the matrix. For this purpose, the plastic zone 
in the matrix surrounding the inclusion systematically 
generates the debonding of the interface matrix-inclusion 
along the x-axis. 

It should be noted that the yy residual stresses distribution 
is significantly asymmetric with respect to the vertical axis in 
the presence of the effect of the crack appeared with the 
creation of the tension zone in the vicinity of the inclusion in 
the opposite side of crack. The compressive stresses are twice 
higher on both sides of the inclusion on the ordinate axis. The 
compressive stresses located in the particle are comparable to 
those shown in Figure 2b (xx). The difference in tensile-
compressive stresses on the opposite side of the crack can 
produce the generation of cracks by debonding in the inclusion-
matrix.  

Figure 2d shows the evolution of the normal stresses along 
the z axis (zz). It is clear that the tensile stresses distribution in 
the matrix is homogeneous and spherical with respect to center 
of the inclusion whose values are comparable to the xx 
stresses. The compressive stresses are in the interior of the 
inclusion and are of the order of five times greater than those of 
the tensile. Far from the particle, this stress takes low values in 
the matrix. 

 

  
(a) (b) 

  

(c) (d) 

Fig. 2.  Von-Mises and normal residual stress distribution for d=2μm, a=5 μm,T=300°C:(a)vm; (b) xx;(c)yy and (d)zz. 
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B. Effect of the Temperature Gradient for the Micro-
structure without Crack Case  
The composite at high temperature can plasticize, and 

consequently, it is necessary to model and to analyze the effect 
of different reheating temperatures on the generated thermal 
residuals stresses. First, we analyze the case without geometric 
discontinuity, which is displayed in Figure 3, that describes the 
stresses distribution along the vertical path (mentioned in 
Figure 2a) that act on the microstructure namely VM, xx, yy 
and zz for different temperature gradients ranging from 100 °C 
to 600 °C. It should be noted that the shape of all these stresses 
is almost symmetrical about the center of the inclusion. The 
maximum stresses are proportional to the temperature gradient 
that replicates the difference in thermal expansion and 
mechanical properties of radically different materials. Thus, 
regardless of the different temperature gradients, the 
magnitudes of the stresses are insignificant away from the 
inclusion. It should be noted that these stresses are maximum at 
the interface between the inclusion and the matrix, and that 
they are very small or reaching zero when the distance is 
greater than 0.3 μm. It is clear that the temperature gradient has 
a direct and significant effect on the stresses in the vicinity 
close to the inclusion. 

The Von Mises stresses decrease significantly within the 
particle to a value close to zero at the center of the particle 
which shows that the effect of the temperature gradient is 

negligible within the inclusion. An inverse behavior occurs for 
the xx, yy and zz, stresses as they are practically constant 
within the particle and comparable to the maximum value 
obtained in the vicinity of the interface. It should be noted that 
the temperature gradient affects considerably on the stresses 
within the inclusion.  

The same behavior is found for the VM , xx , yy and zz 

stresses distribution along the horizontal path (as mentioned in 
Figure 2a) that act on the microstructure, for the same different 
temperature gradients as it is found for the case of vertical path  
(not shown here). 

C. Interaction fissure-inclusion 

The effect of crack-inclusion interaction is highlighted in 
the present study. It should be noted that in the case of a 
vertical patch, the profiles of the stresses are identical with and 
without the presence of geometrical discontinuity (crack). A 
slight difference of the stresses should be reported near the 
vicinity of the matrix-inclusion interface. Concerning the 
stresses evolution along the horizontal direction, iare found to 
be significantly affected by the presence of crack. The stress 
values are higher compared to those obtained in the no-cracks 
case. This means that a crack generates aditional residual 
stresses caused by the stresses at the crack tip and the plastic 
strain in the matrix in the vicinity very close to the inclusion. 
An increase in stresses at the surroundings of the matrix-
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Fig. 3.  Von-Mises and normal residual stress distribution along the vertical path (case without crack) 
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inclusion interface is noticed with the presence of the crack (as 
shown in Figure 4). This increase is inversely proportional to 
the crack-inclusion gap. The simultaneous effect of the 
plasticity zone at the tip of the crack near the interaface and the 
strong stresses on the inclusion provoke an increase of the 
residual stresses  under the effect of the temperature gradient. 

Figure 5 displays the distribution of residual stresses in the 
vertical direction through the centre of the inclusion, in the 
presence of a longitudinal plane crack of width 'a = 5 m’.  

 

The gap between the tip of the crack and the particle (in the 
horizontal plane passing through the centre of the particle, see 
Figure 1a) is noted as "d",. Three gap values are considered 
namely d= 0.2, 0.5 and 2m. It should be noted that whatever 
the gap "d", the paces of the stresses VM, xx, yy and zz are 
almost similar under the effect of the temperature gradient with 
those without the presence of crack. The effect of the presence 
of the crack is negligible on the magnitude of stresses. 
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Fig. 4.  Normal residual stress distribution along the vertical path in the case a=5 μm and for d=0.2, 0.5 ,2μm 
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Fig. 5.  Interaction Crack-particle(Crack tip region) in the case (a=5µm, 

d=0.2 µm, T=300°C) 

Concerning the effect the crack in the longitudinal 
direction, Figure 6 shows the distribution of residual stresses 
along such direction (path) passing through the centre of the 
particle, in the presence of a longitudinal plane crack of width 
"a = 5μm" and for different temperature gradients (from 100°C 
to 600°C). As previously noted, "d" is the gap of crack-
inclusion (see Figure 1a). 

We have considered three values of the gap (d=0.2, 0.5 and 
2 μm). For the three cases of Figure 6, we see that the four 
stresses VM, xx, yy , zz have the same shape, and variation 
under the effect of temperature gradient, but are invariable in 
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Fig. 6.  Normal residual stress distribution along the longitudinal path in the case  a=5 μm and for  d=0.2, 0.5 ,2μm 
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comparison with the no-cracks case. In contrast, in the vicinity 
close to the particle, we notice that the penetration of the crack 
in the matrix causes an asymmetry of the stresses distribution 
due to the presence of the geometric discontinuity (crack). It is 
noted that the effect of the gap is more dominant for small and 
medium values and thus, a more significant asymmetry in the 
distribution of stresses VM and xx. Concerning the extreme 
values of stresses, it is noted that the reduction of the gap 
affects only the stress zz which it falls slightly with the 
reduction of the "d" gap (or the increase penetration crack) 

IV. CONCLUSION 

The objective of this investigation is to determine the 
influence of crack penetration and gradient temperature on the  
generation  of  residual  thermal stresses  and  the subsequent  
mechanical  behaviour  for the Al–SiC composite. The present 
stuy is purely numeric and uses a three dimensional finite 
element method. The following conclusions are drawn from the 
results presented above: 

 The thermal residual stresses have high values in the 
inclusion and in close vicinity to the particle-matrix 
interface and decrease gradually as we move away from 
the centre of the inclusion until they vanish to the limit of 
the microstructure. 

 For the distribution of the stresses VM, xx, yy, zz along 
the vertical path, it is noted that whatever the gap "d", the 
profiles of the stresses are almost identical under the effect 
of temperature gradient with those found in a no-cracks 
case, and also the temperature gradient increases 
significantly the intensity of stresses specially for xx, yy, 
zz. 

 For the distribution of the four stresses (VM, xx, yy, zz) 
along the longitudinal direction belonging to the plane of 
the crack, we notice that they have the same shape and 
variation under the effect of the temperature gradient and 
similar to those found for the no-cracks case. On the other 
hand, in the vicinity of the particle we notice that the 
penetration of the crack in the matrix causes an 
asymmetry. Furthermore, the values of these stresses are 
significantly higher compared with those obtainedfor the 
no-cracks case. This means that the crack generates an 
additional residual stress caused by stresses at the crack tip 
and the plastic strain in the matrix at close vicinity of the 
inclusion.  
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