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Abstract—An evaluation technique of the KI stress intensity 
factors (SIF) by a numerical investigation using line strain 
method is presented in this paper. The main purpose of this 
research is to re-analyze experimental results of fracture loads 
from polymethyl-metacrylate (PMMA) specimens (fully finite 
plates). Stress intensity factor equation calculation is derived 
from the Williams stress asymptotic expansion. Possible error 
caused by strain gradients across the gage length is minimized by 
integrating the equation in the KI  calculation. Theoretical and 
computed values using finite element analysis of stress intensity 
factors are compared with experimental results. A good 
agreement is observed between the present approach and 
experimental values. It is shown that, in the case of a through-
plate crack, the stress intensity factor can be calculated with 
adequate accuracy using the proposed method.   
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I. INTRODUCTION  

All standard paper components have been specified for 
three reasons: The measurement of the stress intensity factor 
with strain gages was first suggested by Irwin in 1957 [1]. Due 
to the local yielding effect in the crack vicinity, little progress 
has been made in implementing Irwin's suggestion. A valid 
strain gage technique for calculating the stress intensity factor 
KI  was first presented in [2-4]. In this method, a valid region 
was specified for locating the gages to get rid of the elastic-
plastic crack-tip state caused by local yielding in the innermost 
region close to the crack tip. The error caused by strain gradient 
was minimized by placing the virtual strain gages sufficiently 
far from the crack tip. An extended over-deterministic 
approach was later proposed to significantly improve the 
accuracy [5].  

A specified strain gage pattern has been proposed to 
measure the stress intensity factors of mixed mode problems 
[6]. Moreover, different strain gage approaches have been 
introduced to measure the variation of stress intensity factor of 
a propagating crack [7-12]. It has long been acknowledged that 
in plates of finite thickness the stress field near the crack tip is 
three-dimensional in nature. From the finite element results of 
[13, 14, 26-30] and the experimental results of [15] it has been 
shown that the local yielding effect is only significant within a 
radial distance about one-half thickness from the crack tip. For 

the rest of the area, the plane stress condition is expected to 
dominate. 

The choice of the position and orientation of the point P for 
the calculation of KI  are studied by using virtual gages with 
two orientation angles (Ѳ, α), as shown in Figure 1, when 
considering a line segment in a strain field near the crack tip. A 
different load and geometry of specimen are also employed to 
visualize the geometry effect on the evaluated stress intensity 
factors.  

 

 
 

Fig. 1.  Deferent area delimiting the vicinity of a crack tip. 

In this work, we investigate the feasibility of the numerical 
determination of accurate opening mode of stress intensity 
factors using the Dally–Sanford method [2] for the cracked 
polymethyl-methacrylate (PMMA) specimens. In this 
procedure, gages can be placed at low strain gradient zones. In 
contrast with past research described in [2, 16-19] this work 
attempts to accurately calculate the SIF using a relative large 
strain points method (virtual strain gage) under monotonic 
increasing loads in fully finite edge-cracked plates subject. To 
validate the proposed method for the determination of SIFs, we 
compare experimental results [10] with our computer-
calculated values obtained using ABQUS finite-element 
software. 

II.  BASIC THEORY AND MATHEMATICAL FORMULATION OF 

THE MODEL 

The area adjacent to the crack tip was divided into three 
regions as shown in Figure 2. Region I very near the crack tip 
is invalid because of three-dimensional effects. Region III far 
from the crack tip is invalid because the truncated series 
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solution does not adequately describe the strain field. Region II 
located between regions I and III is a valid area where the 
truncated-series solution represents the strain field to a 
specified accuracy. The size and shape of region II is presented 
for the compact-tension geometry. To identify a valid location 
for the virtual strain gages, Region II was subdivided into 
regions IIa and IIb. Region lIb was discarded because the 
strains in this area are too low for accurate measurement [2, 
20]. 
 

 
Fig. 2.  Deferent area delimiting the vicinity of a crack tip. 

Dally and Sanford [7] adopted an approach to three parameters 
and assumed that the deformation field in region II can be 
represented with sufficient accuracy by the three terms of the 
William's series [20]. The deformation field in this region for a 
state of plane stress is then written in the following form [9]: 
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     Where A0, A1 and B0 are unknown coefficients which can be 
determined by using the specimen geometry and boundary 
conditions. Using the definition of  KI  one can easily show that 

it is related to A0  by: 
I 0

K 2 A  [2-11].
 
 

A single strain gage is sufficient to evaluate the constant A0 
(hence KI ) by placing and orienting the strain gage as given 
below.  
Using transformation equations of the deformation component 
xx at the point P located at r and θ (Figure 1) [2, 4, 10] is given 
by: 

 

1 / 2 1 / 2
xx 0 1

1 / 2
0

1 / 2 2
1 0

E (1- )[A r [cos( / 2 )] A r [cos( / 2 )]

-(1 ) [A r sin( 3 / 2 ) sin( / 2 )cos( / 2 )

A r sin ( / 2 ) cos( / 2  ) ] 2B                     4     

   

   

 

 





 



 

                                         
1

k   
1





 


                            (5) 

the B0 coefficient of (3) can be removed by selecting the angle 
α, so that 

1
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
                          (6) 

The coefficient A1, can also be made zero by replacing α 
using: 

tan( / 2 ) cot 2                                             (7) 

Deformation εx'x' is given by:                               

I
x' x'

K
2G (k cos sin / 2 sin 3 cos 2

2 22 r
1

          sin cos 3 sin 2 )
2 2
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              (8) 

The angles α and θ depend only on the Poisson's ratio of the 
material.  The location of the radius rp strain gauge is chosen 
taking into account the effects of strain gradient [2-10].  

III. NUMERICAL PROCEDURES 

A. Material constitutive model 

Specimens are made of polymer PMMA (Plexiglas sheet) 
[10]. Material properties  are E=2300 MPa, υ=0.37, KIC = 1.9 
MPam0.5 and GIc= 0.4 kJm-2. 

B. Finite element model 

Natural elements iso-parametric quadratic triangular (T6) 
and the singular point due to symmetry is used and only half 
of the plate was taken into account in the analysis. Figure 4 
shows a typical mesh used for determining the standard SIF. 
These meshes were used for all values of a/W and h/W.  When 
the mesh was refined significant improvements were noted in 
the values of SIF [25]. 

The SIF of a plate of finite width cracked edge is given by: 

 I 1
a h

K 2 F ,
w w

     
 

               (9) 

Where 1
a h

F ,
w w

 
 
 

 is the normalized function which shows 

the effect of the geometry of the specimen [10, 32].  

C. Loading and boundary conditions 

Fully finite edge-cracked plates specimen with key 
dimensions are shown in Figure 3b. The thickness was 6 mm 
in a plane strain state. The width of all samples was 
maintained at W = 150 mm, while the length of the crack and 
the height h of the sample were changed. For the simulation, 
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the values of a/W were 0.3 and 0.5, and the value of h/W was 
equal to 0.2 to 1.1 in step of 0.1. The load is pointed and semi 
distributed uniformly as shown in Figure 3c. 

 

 
a) Specimen 
studie 

 
     

b) Geometry of 
the specimen. 

 
 

c) Load and boundary conditions of 

half specimen. 
Figure.3 centrally notched rectangular specimen under uniaxial tension. 

D.  Computational code 

A finite element analysis using ABAQUS 6.11.1 [25] was 
conducted. The extrapolation method of integral J was used to 
calculate standardized SIF mode I opening [31]. We know that 
this method is consistent and profitable for a very specific SIF. 
Corresponding to the element the value of 0.25 was used [24]. 

 

 
Fig. 4.  A typical finite element mesh used for modeling the specimen, the 
Integration contours for evaluation of the M-integral and the line strain. 

θ and α in (4) and (5) are equal to 58.69° and 54.76° 
respectively. The radial position of the strain gage r=10 mm 
was chosen in all tests based on the stress gradient analysis 
presented in [12]. Some results of SIF calculated in digital 
studied samples are shown in Figures 5 and 6. 
 

 

 
 

 

 
 

Figure .5: A comparison between the Variations values of normalized and 
experimental SIF [10] and with different values of h/w; Parameters adopted: a 

/ w = 0, 3 
 (a)  h/w =0,3    et      (b)  h/w =0,5 
(c)  h/w = 0,7   et     (d)  h/w =1,0 

a)

b) 

c) 

d) 
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Figure.6: A comparison between the Variations values of normalized and 

experimental SIF [10] and with different values of h/w; Parameters  
adopted: a / w = 0, 5 

(a)  h/w =0,3    et      (b)  h/w =0,5 
(c)  h/w = 0,7   et     (d)  h/w =1,0 

IV.  RESULTS AND DISCUSSION 

Figures 5 and 6 show the deformation data measured 
experimentally [10] and the results obtained by the proposed 
model for a/w = 0.3 and 0, 5 with h/w = 0.3, 0.5, 0.7, 1.0.  

A very good linear relationship can be noted between the 
load and the deformation in all figures for the eight samples. 
From the linear equation presented in the literature, the 
deformations (measured) were calculated using the proposed 
model for different loads. Thereafter, SIF values were 
determined by finite elements analysis (Abaqus). Figures 5 
and 6 shows the dependence between SIF (KI) and the 
different loads. The figures show that the measured strains are 
linearly proportional with the applied load. 

V.  CONCLUSIONS  

 The results of this work allow us to draw the following 
conclusions: 
 The digital program that was used for the study of a 

PMMA's sample  applying a process of the single virtual 
strain gage, had showed that this latter is the most 
powerful tool for the measurement of the SIF (KI ) in the 
PMMA's  specimen as was demonstrated in the present 
study. 

 The latter conclusion is confirmed by the relative 
consistency between the FIC values calculated based on 
this approach, and those obtained experimentally.  

 That said, the proposed approach represents an alternative 
tool in the sense of quantitative and qualitative 
effectiveness for the accurate measurement of FIC in a 
polymer plate with finite dimensions. 

 The results obtained in this study show that the use of a 
single strain gage is very effective in the case of PMMA. 

The major interest of this technique is its ability to 
approach the problem in more complex configurations. 

A continuation of this work suggests a coupling between 
the T-Stress and KI, with more complicated loading. An 
extension will be proposed for different geometries, and of 
course, a validation on polymeric materials other than PMMA 
will be considered in order to make a conclusion on the 
generalization of the proposed approach. 
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