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Abstract— The problem of chaos synchronization is to design a 
coupling between two chaotic systems (master-slave/drive-
response systems configuration) such that the chaotic time 
evaluation becomes ideal and the output of the slave (response) 
system asymptotically follows the output of the master (drive) 
system. This paper has addressed the chaos synchronization 
problem of two chaotic systems using the Nonlinear Control 
Techniques, based on Lyapunov stability theory. It has been 
shown that the proposed schemes have outstanding transient 
performances and that analytically as well as graphically, 
synchronization is asymptotically globally stable. Suitable 
feedback controllers are designed to stabilize the closed-loop 
system at the origin. All simulation results are carried out to 
corroborate the effectiveness of the proposed methodologies by 
using Mathematica 9. 
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I. INTRODUCTION  

Synchronization of chaotic systems is a process where two 
(or many) chaotic systems eventually progress identically for 
different initial conditions in all future states. This means that 
the dynamical state of one of the system is completely dictated 
by the dynamical state of the other system [1]. Chaos 
Synchronization between two chaotic systems is one of the 
most primary procedures in complex systems’ control and has 
wide potential applications in different fields [2-6]. After a 
pioneering work on chaos synchronization [1], synchronization 
of chaotic dynamical systems has received a great interest 
among researchers in nonlinear sciences for more than two 
decades [7]. Until now, diverse techniques have been proposed 
and applied successfully to synchronize two identical (or nearly 
identical) as well as nonidentical chaotic systems [8-13]. 
Notable among those, the Nonlinear control algorithm [7, 9] is 
one of the effectual techniques for synchronizing two chaotic 
systems [7]. Nonlinear control techniques take the advantage of 
the given nonlinear system dynamics to produce high-
performance designs. No Lyapunov exponents or gain matrix 

are required for its execution. These qualities allow the 
designer to focus on the synchronization problem, leaving 
troublesome model manipulations [9].  

       Edward Lorenz, a meteorologist and mathematician, is 
known to be the pioneer of chaos theory. In the 1960s, Lorenz 
made his historical discovery by observing weather phenomena 
particularly in convections of fluids [14]. Lorenz took different 
mathematical models of fluid convection and simplified them 
into a system of ordinary differential equations and came up 
with a 3-D chaotic attractor for the first time, what is now 
known as the popular Lorenz equations [14]. After the 
exceptional discovery of E. Lorenz on chaotic attractor, chaos 
has become an interesting topic for many researchers. During 
the last three decades, remarkable research has been done on 
chaos which explored its different applications, features and 
fundamental properties [15].  

     The significance of the 3-D differential equations is that 
relatively simple systems could exhibit rather complex or 
specifically chaotic behavior. The 3-dimensional chaotic 
systems have many potential applications in different scientific 
fields such as chemical reactions, secure communications, 
biological systems and nonlinear circuits [15]. Due to a wide 
range of applications of 3-D chaotic systems, various systems 
such as the Chen system, Rossler system, Liu system, Qi 
system, Tigan system and Lu system [16-19]  have been 
proposed and applied successfully to many practical systems 
and have shown some effective outcomes.   

Recently, a new 3-D autonomous chaotic system based on a 
quadratic exponential nonlinear term and a quadratic cross 
product term has been proposed and studied [20]. A quadratic 
exponential nonlinear term was added to the third equation 
while eliminating the second term from the second equation 
and a nonlinear term from the third equation of the 
Lorenz System [20]. The new 3-D chaotic system is 
topologically different from the Lorenz System. The two-scroll 
attractor from the new system exhibits multiplex chaotic 
dynamics. The nonlinear dynamical properties of the new 
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chaotic system such as Equilibrium points, Phase portraits, 
Lyapunov Exponents, Bifurcation diagram, and Poincare 
mapping was also extensively studied [20]. 

A new three dimensional chaotic system on the same 
construction patterns of Chen, Liu and Qi chaotic systems was 
proposed in [21]. An exponential term was added, the quadratic 
nonlinear term to the third equation of the Liu system was 
eliminated and a new 3-D chaotic system was proposed, 
topologically different from those of Chen, Liu and Qi systems 
and with more complex dynamics. 

The main objective of this research work is to utilize the 
non-linear active control technique to synchronize two new 
chaotic systems introduced in [20, 21]. Based on the Lyapunov 
stability theory [22] and using the non-linear active control 
technique, a class of appropriate feedback controllers are 
designed to achieve globally asymptotic synchronization. 
Numerical simulations and graphs are furnished to show the 
performance and effectiveness of the proposed schemes. 

The remainder of the paper is organized as follows: section 
II discusses the problem statement and the proposed 
methodology. In section III global chaos synchronization of 
two novel 3-D chaotic systems is investigated. In section IV 
numerical results are imparted and finally, the summary and the 
concluding remarks are provided in section V. 

II. DESIGIN OF NONLINEAR ACTIVE CONTROL 

Certain synchronization algorithms belong to the drive-
response systems arrangement. The drive-response systems 
arrangement means that the two chaotic systems are coupled in 
such a manner in which the output of the response system 
asymptotically follows the output of the drive system and the 
drive system is not influenced by the exertion of the response 
system. Thus let us consider a drive-response systems 
configuration for a chaotic system given as: 

1 1 ( )x A x B g x          (Drive system)          (1) 

and 

1 2 (y) ( )y A y B h t        (Response system)          (2) 

where, 1
1 1 1 1[ ,  ,...., ] , [ ,  ,...., ]T T n

n nx x x x y y y y R     are 

the corresponding state vectors,
1 2, n nA A R    are the matrices 

and 
1 2, nB B R are the vectors, , : n ng h R R are the nonlinear 

continuous functions of the drive and response systems 
respectively and 1

1 2( ) [ ( ), ( ),...., ( )]T n
nt t t t R       is an 

injected additive nonlinear controller to the controlled system.  

If 
1 2 1 2( ) ( )  /   ,and og h r A A B B   , then x and y are 

the states of two identical (nearly identical) chaotic systems. 

If 
1 2 1 2( ) ( )  /   ,and og h r A A B B   , then x and y are the 

states of two nonidentical chaotic systems.  
The error dynamics for the synchronization of (1) and (2) 

can be described as: 

                      ( ) ( , , ) ( )e t H x y e t              (3) 

where ( , , )H x y e  that contains linear terms and nonlinear terms 

of the drive and response systems, and ( ) ( ) ( )i i ie t y t x t   is 

the errors dynamics. For the two           (identical or 
nonidentical) chaotic systems in the absence of a proper 

controller
i

(μ =0) if the initial 

conditions,  1 2 1 2(0), (0),...., (0) (0), (0),...., (0)d d nd r r nrx x x y y y , 

then the trajectories of the two chaotic systems will quickly 
bifurcate from each other in all future states and will become 
uncorrelated. Hence, the role of a proper feedback controller 
for the synchronization problem is to restrict the error 
dynamics converges to zero for all initial conditions [7], 

i.e.,   lim ( ) lim ( ) ( ) 0i i i
t t

e t y t x t
 

   ,   for all (0) n
ie R , 

then the two chaotic systems (1) and (2) are said to be 
synchronized.  Let us assume the following theorem. 

Theorem 1[9]. The trajectories of the two (identical or 
nonidentical) chaotic systems (1) and (2) for any initial 
conditions  1d 2d nd 1r 2r nrx (0),x (0),....,x (0)¹y (0),y (0),....,y (0)   will be 

synchronized asymptotically globally with appropriate 
nonlinear regular stabilizing feedback controller, 

1
1 2( ) [ ( ), ( ),...., ( )]T n

nt t t t R       

Proof: Let us define a candidate Lyapunov errors function 
as 

( ) TV t e Ae            (4) 

where the matrix 1 2( , ,......., )nA diag a a a is a positive 

definite matrix [9]. Further it is assumed that all the variables 
and parameters of the drive and response systems are available 
and measureable. 

It may be noticed that  : n nV R R  is a positive definite 
function by construction. It may achieve the synchronization by 
selecting a suitable non-linear controller ' ( )t ' to make 

(t) TV e Be  ,  a positive definite function (i.e., the matrix B is 
also a positive definite matrix), then by the Lyapunov stability 
theory [21], the states of both drive and response systems will 
be asymptotically globally synchronized.  

III. SYNCHRONIZATION 

A. Identical synchronization of a new chaotic system [20] 

System Description: Fey Yu, et.al, [20] proposed and 
studied a new 3D autonomous chaotic system. The differential 
equations describing the new chaotic systems are given as: 
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( )

xy

x a y x

y b x cxz

z e d z

 
  
  





   (5) 

where , , nx y z R  are the state variables and , ,a b c  and d 
are the system parameters. The new system exhibits chaotic 
attractor for a = 10, b = 40, c = 2 and d = 2.5 with initial 
condition (2.2, 2.4, 28). 

For the dynamics properties such as equilibrium points, 
Lyapunov exponents, phase portraits, bifurcation diagram etc 
for the system (5), one may refer to [20]. To achieve identical 
synchronization for chaotic system (5), let us consider the 
drive-response systems arrangement is described as: 

1 1

1 1 1

1 1 1 1

1 1

( )

x y

x a y x

y bx cx z

z e dz

 


  
  





       (Drive system)          (6) 

and 

2 2

2 2 2 1

2 2 2 2 2

2 2 3

( )

x y

x a y x

y bx cx z

z e dz






  


   
   





    (Response system)          (7) 

where 
1 1 1, , nx y z R  are the state variables of the drive 

system with , ,a b c  and d as the system parameters and  

2 2 2, , nx y z R  as the state variables of the corresponding 

response system and 
1 2 3( ) [ ( ), ( ), ( )]Tt t t t     as the non-

linear stabilizing feedback controller that yet to be designed. 

From (6) and (7), the error dynamics can be described as: 

2 2 1 1

2 1 1 1 2 2 2

3 3 3

1 2 1 1

( )

( )

x y x y

e be c x z x z

e de e

a e

e

e e






  





   

    





            (8) 

where    1 2 1 2 2 1 3 2 1 , ,   e x x e y y e z z       

The aim of the synchronization problem is to design a 
feedback controller ' μ(t)  ' such that: 

lim ( ) 0, (0    )   n
i i

t
e t for all e R


  . 

The main focus of this section is to investigate and study 
the synchronization problem of (6) and (7) by designing a 
suitable feedback controller that when synchronizing the two 
chaotic systems, the effect of nonlinearity of chaotic systems 
does not neglect and the error signals of the two identical 
chaotic systems converges to the equilibrium point 

asymptotically globally with less control effort and sufficient 
transient speed.  For these motivations, we assume the 
following theorem. 

Theorem 2. The two controlled chaotic systems (6) and (7) 
will achieve asymptotically globally synchronization for all 
initial conditions  ( (0), (0), (0)) ( (0), (0), (0))d d d r r rx y z x y z  

with the following nonlinear feedback controllers: 

1 1 2 2

1

2 1 2 2 2 1 1

3

( ) 0

( ) 2 ( )

( ) x y x y

t

t be ae c x z x z

t e e







    

 







           (9)  

Proof:   Replacing (9) in (8), we have: 

  2

1 2 1

1 2

3 3

( )

    e be ae

e de

e a e e

  
  




 





 

Let us construct a Lyapunov errors function candidate as: 

    ( ) ,      1,2,3T
i iV e e Ae for i                         (10)  

where:  

1 0 0

0 0.125 0

0 0 0.5

A

 
   
 
 

 

is a positive definite matrix with  ( ) 0V e   and considering 

a=0, b=40, c=2 and d=2.5. Now the time derivative of the 
Lyapunov errors function (10)  is given as:       

( ) 2V e Aee      ( ) 2 ( ),    1,2,3i iV e Ae e for i    

1 1 2 2 3 3( ) 2 [ ( ) ( ) ( )]V e A e e e e e e        

1 2 2 1 2 3 31

1 0 0

( ) 2 0 0.125 0 [ ( ) ( ) ( )]

0 0

)

0.5

(V e e e be ae ea e ee d

 
       
 
 

                    

2 2 2
1 2 3

2 0 0

( ) 2 0.5 0 0.5 0 0

0 0

T

a

V e ae ae de e a e

d

 
        
 
 

  

i.e., ( ) 0V e  . Therefore,  ( ) TV e e Be    and the matrix: 

20 0 0

0 10 0

0 0 2.5

B

 
   
 
 
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is also a positive definite matrix. 

Hence, based on Lyapunov stability theory, the error 
dynamics (8) of the two identical chaotic systems converges to 
the origin asymptotically. Thus, the two chaotic systems (6) 
and (7) are asymptotically globally synchronized. 

B. Nonidentical synchronization of [20] and Lu systems 

To analyze the switching synchronization between two 
nonidentical chaotic systems [20] and Lu [19] using the 
Nonlinear Control Algorithm, it is assumed that the new 
chaotic system [20] drives the Lu Chaotic system [19]. 
Therefore, the drive-response systems arrangement is given as: 

1 1

1 1 1

1 1 1 1

1 1

( )

x y

x a y x

y bx cx z

z e dz

 


  
  





    (Drive system)         (11) 

and  

2 2 2 1

2 2 2 2 2

2 2 2 2 3

( )x y x

y y x z

z z x y

 
 
 

   
   
    





 (Response system)        (12) 

where  1 1 1, ,x y z  ϵ Rn and 2 2 2, ,x y z  ϵ Rn are the 

corresponding state vectors of drive and response systems 
respectively, a, b, c, d are the system parameters of the drive 
system and α, β and γ are the system parameters of the response 
system respectively and 1

1 2 3( ) [ ( ), ( ), ( )]T nt t t t R      is the 

non-linear controllers. The Lu system describes a chaotic 
attractor for the parameters value, α = 36, β = 3 and γ = 20.  

From (11) and (12), the error dynamics can be described as: 

1 1

1

2 2 1 1 2 2 1 1 2

3 3 1 2 2

1 1 1 2 1

3(

( )

) x y

e e y bx x z cx z

e e d z x y e

e e a x y ay

 

 

   




      
     

      










        (13) 

The main objective of this part is to investigate and study 
the switching synchronization between (11) and (12) by 
designing such a feedback controller that when synchronizing 
the two chaotic systems, the effect of nonlinearity of chaotic 
systems should not be neglected and the error signal of the two 
nonidentical chaotic systems converges to the equilibrium point 
asymptotically globally with less control effort and sufficient 
transient speed.  To achieve these goals, we presume the 
following theorem. 

Theorem 3. The trajectories of the two chaotic systems 
(11) and (12) will achieve asymptotically globally 
synchronization  for all initial conditions 
( (0), (0), (0)) ( (0), (0), (0))d d d r r rx y z x y z  with the following 

control law: 

1 1

1

2 2 1 1 2 2 1 1

3

1 1

1 2

2

2

( )

( ) 2

(

(

) (

)

) x y

t

t y y bx x z c

a x

x z

t d z x y e

y ay  




 






    
  

 
    

                       (14) 

Proof:  Let us construct a Lyapunov errors function 

candidate as:   1
( ) ( ),      1,2,3

2
T

i iV e e e for i   

Now the time derivative of the Lyapunov errors function is, 
 

2 2 2 2 2 2
1 2 3 1 2 3( ) ( ) 0V e e e e e e e               

Therefore,  ( ) 0V e   . Hence based on Lyapunov stability 

theory, the error dynamics of two nonidentical chaotic systems 
(11) and (12) converges to the origin asymptotically. Thus the 
two chaotic systems (11) and (12) are asymptotically globally 
synchronized. 

 

C. Identical synchronization of a new chaotic system [21] 

System Description: Recently, Chunlai Li et.al, [21] 
proposed and investigated a new three dimensional 
autonomous chaotic systems. The dynamics of the new chaotic 
systems is given by the following system of nonlinear 
differential equations, 

2

( )

( )

x p y x yz

y r p x xz ry

z qz sy

  
    
   





                         (15) 

where , , nx y z R  are the state variables and 

  ,, aq ndp r s are the parameters of the new system. The new 

system exhibits a chaotic attractor for parameter 
values,    [0,140, 5, 30 0]ar n sp q d     with the Lyapunov 

exponents
1 2 33.88, 0.00, 25.52L L L    .  

In this section, the aim of the study is to achieve 
asymptotically globally synchronization between two identical 
chaotic systems using a nonlinear active controller.  To achieve 
this objective, let us consider the drive-response systems 
arrangement for the new chaotic system [21] which is 
described as: 

1 1 1 1 1

1 1 1 1 1

2
1 1 1

( )

( )

x p y x y z

y r p x x z ry

z qz sy

  
    
   





(Drive System)      (16) 

and 
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2 2 2 2 2 1

2 2 2 2 2 2

2
2 2 2 3

( )

( )

x p y x y z

y r p x x z ry

z qz sy






   


     
    





 (Response System)  (17) 

where 1 1 1, , nx y z R the state variables of the drive system 

with    ,  , aq ndp r s as the system parameters and  

2 2 2, , nx y z R  the state variables of the corresponding 

response system and 1
1 2 3( ) [ ( ), ( ), ( )]T nt t t t R       the 

nonlinear active feedback controller. 

From (17) and (18), the error dynamics can be described as: 

1

2 1 2 1 1 2 2

1 2 1 2 2 1

2

2 2
3 3 2 1

1

3

( ) (

( )

)

( )

e r p e re x z x z

e qe

e p e e y

y

z

s y

y z 




 


  





    

    





       (18) 

where 
1 2 1 2 2 1 3 2 1

  and   ,e x x e y y e z z      . 

The theme of this section is to investigate and study the 
synchronization of (16) and (17).  To accomplish this goal, let 
us presume the following theorem. 

Theorem 4. The trajectories of the two chaotic Systems 
(16) and (17) will achieve asymptotic global synchronization 
for any initial values ( (0), (0), (0)) ( (0), (0), (0))d d d r r rx y z x y z   

with the following control law: 

1 1 1 2 2

2 2 2

2

1

2
13 2

1 2

( )

(

( )

2)

) (

x z x z

t y z y z

t

t s y y

re




 
  





 

 

Proof: It is assumed that all the variables and parameters of 
the drive and response systems are available and measurable. 
Let us construct the same Lyapunov errors function as in (10) 
and selecting the positive definite matrix A as, 

1
0 0

20
1

0 0
5

0 0 1

A

 
 
 
   
 
  
 

 

Now the time derivative of the Lyapunov errors function is, 

2 2 2
1 2 3

4 0 0

( ) 4 12 10 0 12 0 0

0 0 10

TV e e e e e e

 
        
 
 

  

Therefore,  ( ) TV e e Be   and: 

4 0 0

0 12 0

0 0 10

B

 
   
 
 

 

is also a positive definite matrix. 

Hence, based on Lyapunov stability theory, the origin of the 
error dynamics of the two identical chaotic systems converge to 
the origin asymptotically. Thus the two chaotic systems (16) 
and (17) are asymptotically globally synchronized. 

D. Nonidentical synchronization of [21] and Lu systems 

To achieve nonidentical synchronization for [21] using 
nonlinear active control strategy, it is assumed that [21] drives 
the Lu chaotic system [19]. Therefore, the drive-response 
systems configuration is given as; 

1 1 1 1 1

1 1 1 1 1

2
1 1 1

( )

( )

x p y x y z

y r p x x z ry

z qz sy

  
    
   





(Drive system)      (19) 

and 

2 2 2 1

2 2 2 2 2

2 2 2 2 3

( )x y x

y y x z

z z x y

 
 
 

   
   
    





  (Response system)       (20) 

where  1 1 1, ,x y z , 2 2 2, ,x y z  ϵ Rn are the corresponding state 

vectors of drive and response systems respectively, , ,p q r and 

s are the system parameters of the drive system and a, β and γ 
are the system parameters of the response system respectively 
and 1

1 2 3( ) [ ( ), ( ), ( )]T nt t t t R      is the nonlinear 

controller that yet to be designed. 

From systems of equations (19) and (20), the error 
dynamics can be described as; 

1

2 2 1 1 2 2

1

1 1 2

2
3 3 2 2 2 2

1 2

1

2

3

1 1 1

( ) ( )

( )

e e r y r p

e pe p a

x x z x z

x y

e qe qz z x

py y

y sy

z 
  

 

       

 

     

  






 








      (21)  

The main contribution of this section is to achieve 
asymptotically globally synchronization between (19) and (20) 
by designing such a feedback controller that [21] is forced to 
track the Lu system [19] and the two systems show similar 
behavior for all future states. To achieve this objective let us 
assume the following theorem.  

Theorem 5. The two chaotic systems (19) and (20) will 
achieve asymptotically globally synchronization for any initial 
values ( (0), (0), (0)) ( (0), (0), (0))d d d r r rx y z x y z   with the 

following control law: 
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21

2 2 1 1 2 2 1 1

2
3 2

1

1

2 1

2

1

2

( )

( ) 2 (

( )

) ( )

( ) ( )

t

t y r y p r x x z x z

t q z x

p a

y s

x y py

y

y z
  

 

 


    
   

   
    

              (22) 

Proof: Let us assume that the parameters of the drive and 
response systems are known and the states of both chaotic 
systems are measurable. Substituting the proposed controllers 
(22) in (21), we have: 

                  

1 1

2 2

3 3

e pe

e e

e qe


  

  
  





                        (23) 

    

1 1

2 2

3 3

0 0

0 0

0 0

e p e

e e

e q e


    

         
        





   

   

It can be seen that the error system (23) is a linear system of 
the form, e Ae . Thus by linear control theory, the system 
matrix A is Hurwitz [23], and so the all the eigenvalues of the 
system matrix A has negative real parts. 

 

i.e.,      
40 0 0

0 20 0

0 0 5

A

 
   
  

is Hurwitz.   

 
Hence, the above system (23) is asymptotically stable, 

which implies that the two nonidentical chaotic systems (19) 
and (21) are synchronized asymptotically globally. 

IV. NUMERICAL SIMULATIONS 

Numerical results are provided to justify the effectiveness 
of the proposed approaches. The parameters for [20] are taken 
as, 10,  40,  2   2.5a b c and d    , with initial conditions: 

1 1 1( (0), (0), (0)) (1.2,1.2,29)x y z   

and  

2 2 2( (0), (0), (0)) (2.2, 2.4, 28)x y z  . 

The parameters for [21] are selected as, 
40, 5, 3 [0,10]0, sp q r    , with initial conditions (3, -3, 3) 

and (-4, -7, 4). For the Lu system, the parameters are taken as, 
36, 3, 20     , with initial conditions (6, 3, 4) and    (5, 2, 

2).  For the above chosen values, the time series of states 
variables for identical systems [20] and [21] is shown in 
Figures 1-3 & 9-11 and for nonidentical systems [19] and ([20], 
[21]) in Figures 5-7 & Figures 13-15. 

    Figures 4 & 12 illustrate the synchronization errors of 
two identical new chaotic systems [20, 21] and Figures 8 & 16 

show the synchronization errors of two completely different 
chaotic systems ([20, 21]) and Lu) respectively.  For the two 
different chaotic systems ([20, 21] and Lu systems), that 
contain parameters mismatches and different structures, the 
controllers were used to synchronize the states of drive and 
response systems asymptotically globally when the controls are 
switched on at t = 0 s. It has been shown that the new systems 
are forced to track the Lu systems and the states of two 
different systems show similar behavior, which shows that the 
error systems (Figures 8 & 16) are feedback stabilized and the 
investigated controllers are more robust to accidental 
mismatches in the transmitter and receiver. Figure 17 illustrates 
the derivative of Lyapunov errors functions of identical chaotic 
systems [20 & 21] and nonidentical [20] and Lu Chaotic 
systems.  

 

 
Fig. 1.  Time series of states x1[t] and x2[t] (identical systems [20]) 

 

 
Fig. 2.  Time series of states y1[t] and y2[t] (identical systems [20]) 

 

 
Fig. 3.  Time series of states z1[t] and z2[t] (identical systems [20]) 
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Fig. 4.  Time series of error states (identical systems [20]) 

 

 
Fig. 5.  Time series of x1[t] and x2[t] (non-identical systems [19, 20]) 

 

 
Fig. 6.  Time series of y1[t] and y2[t] (non-identical systems [19, 20]) 

 

 
Fig. 7.  Time series of z1[t] and z2[t] (non-identical systems [19, 20]) 

 
Fig. 8.  Time series of error states (non-identical systems [19, 20]) 

 

 
Fig. 9.  Time series of x1[t] and x2[t] (identical systems [21]) 

 

 
Fig. 10.  Time series of y1[t] and y2[t] (identical systems [21]) 

 

 
Fig. 11.  Time series of z1[t] and z2[t] (identical systems [21]) 
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Fig. 12.  Time series of error states (identical systems [21]) 

 

 
Fig. 13.  Time series of x1[t] and x2[t] (non-identical systems [19, 21]) 

 

 
Fig. 14.  Time series of y1[t] and y2[t] (non-identical systems [19, 21]) 

 

 
Fig. 15.  Time series of z1[t] and z2[t] (non-identical systems [19, 21]) 

 
Fig. 16.  Time series of error states (non-identical systems [19, 21]) 

 

 

Fig. 17.  Time series of V(t)   

V. CONCLUSION 

This paper investigated the global chaos synchronization of 
two novel chaotic systems. Based on the Lyapunov stability 
theory and using the Nonlinear Control Algorithm with 
different approaches, a class of nonlinear controllers was 
designed to achieve the global stability of the error dynamics. 
Since the Lyapunov exponents or gain matrix are not required 
for its execution, nonlinear control algorithm is an efficient 
technique to synchronize identical as well as nonidentical 
chaotic systems. All graphical as well as analytical results 
showed that the proposed schemes have excellent transient 
performances and that the synchronization is asymptotically 
globally stable. This study focused on selecting a suitable 
Lyapunov errors functions candidate that ensured 
asymptotically global stability. It was also shown that the error 
signals converge to the origin very smoothly with minimum 
rate of decay and sufficient transient speed. In addition, the 
synchronization with negative derivative of the Lyapunov 
errors functions allows large synchronizable intervals, which is 
significant especially for engineering applications. It should be 
mentioned however that in practice environmental or internal 
noise may provide disturbances. Hence, future work should 
focus on the effect of noise present on practical 
implementations. 
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