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Abstract—Steel arches are widely used in civil engineering and 

industrial structures. Their response depends on material 

properties, geometric dimensions, and boundary conditions. The 
objective of the current study is to perform global sensitivity 

analysis, and to assess the influence of random input parameters 

on the in-plane elastic buckling of steel arches. The in-plane 

elastic buckling load of steel arches under uniform compression 

proposed in previous studies is adopted. The influence of the 

random input variables of the structure is evaluated using 
Sobol’s global sensitivity analysis. Monte Carlo simulation is also 
employed to rank the influence of input random variables. 
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I. INTRODUCTION  

Global sensitivity consists of the individual sensitivity of 
each variable and its interaction with other variables. Sobol’s 
sensitivity index is widely applied in the structural engineering 
field [1-5]. Steel structures often present high durability while 
including slender components. Sensitivity and reliability 
analyses for steel structures have been conducted by many 
researchers [6-12]. Steel arches are widely used in civil 
engineering and industrial structures. Arches resist external 
loadings by a combination of predominant axial compression 
and bending actions. The geometry of circular steel arches is 
shown in Figure 1, and the uniform compression on the steel 
arches is shown in Figure 2. If the steel arches are adequately 
designed with lateral bracings so that their out-of-plane failure 
is fully prevented, in-plane buckling failure may occur [13, 14]. 
The in-plane elastic buckling is important in the stability design 
of metal arch structures [15]. The in-plane elastic buckling of 
shallow arches with an arbitrary cross-section was investigated 
and the in-plane elastic buckling load of shallow arches was 
found to be much lower than that given by the classical theory 
[16, 17]. Moreover, the classical in-plane buckling load should 
not be used as the reference load in the development of design 
methods for the in-plane strength of shallow steel arches.  

This paper studies the sensitivity assessment of the input 
random variables on the in-plane elastic buckling load of the 
steel arches under uniform compression. An algorithm using 
the global sensitivity method is proposed for utilization in 
analyses and assessments. The in-plane elastic buckling load of 
steel arches under uniform compression has been proposed in 

[14]. In addition, the effects of input random variables on the 
in-plane elastic buckling load of the steel arches under uniform 
compression are also examined. 

 

 
Fig. 1.  Geometry of the arches. 

 
Fig. 2.  Uniform compression. 

II. THEORETICAL FRAMEWORK 

A. In-plane Elastic Buckling of Steel Arches 

In this section, the buckling load of arches proposed in [14] 
is presented. Arches with an included angle Φ < 90o are 
considered as shallow arches and the dimensionless parameter 
λ is defined as: 
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gyration of the cross-section, I is the second moment of the 
area of the cross-section about its major principal axis, and A is 
the area of the cross-section. 
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The buckling load of the pin-ended shallow arch can be defined 
as in (2) and the buckling load of the fixed shallow arch is 
expressed as in (3): 
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When an arch has an included angle Φ > 90o, it is 
considered to be a deep arch, and its elastic buckling load is 
given by [14]: 

( )21 / ;   for pin-ended archesacr crN Nπ = − Φ      (4) 

( )21 /1.4304 ;   for fixed archesacr crN Nπ = − Φ      (5) 

where Ncr is the second mode elastic flexural buckling load of a 
corresponding fixed or pin-ended column with the same length. 
Ncr is determined as: 
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where E is the Young’s modulus and I is the second moment of 
the area of the cross-section about its major principal axis.  

B. Global Sensitivity Analysis 

Sensitivity presents the influence of input design 

parameters (i.e. variables) ( )1 2
, ,...,

m
X X X=X  on the output 

model ( )f=Y X . Here, ( )1 2
, ,...,

m
X X X=X

 
is the vector of 

design parameters in 
m
R  space and ( )1 2

, ,...,
n

Y Y Y=Y  is the 

vector of output value in 
n
R  space. Let us consider an integral 

function ( )f=Y X  which can be decomposed into 

elementary functions, expressed as [5]: 
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where iX  represents the input random variables with 

independent probability while the variance of the output 
variable can be expressed as [4, 5, 18]: 
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The first-order Sobol’s indices are determined by:  
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i
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The second-order Sobol’s indices are determined by: 
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The total-order Sobol’s indices are then determined by: 

...
...

Ti i ij ikl i n
S S S S S= + + + +     (11) 

The Sobol’s indices are commonly estimated with the 
Monte Carlo method [19, 20]. In this research, the Sobol’s 
indices of global sensitivity with Monte Carlo simulation are 
established with the use of Matlab, the flowchart of the 
procedure is shown in Figure 3. 

 

 

Fig. 3.  Flowchart of the Sobol’s indices sensitivity analysis by Monte 

Carlo simulation. 

III. METHODOLOGY 

A. Safe Condition 

According to [14], the safe condition of the in-plane elastic 
buckling load of steel arches, determined by (3)-(5), can be 
rewritten as follows: 

saf acrN N≤     (12) 

where saf
N is the external load, which can fluctuate randomly.  

B. Deterministic Model and Uncertainty Model 

Deterministic model is the above buckling analysis 
problem, in which the input parameters are those of geometry

( ), , , , , ,
w f

S B D t t L Φ  and the Young's modulus of elasticity of 
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steel ( )E . This model can be written in the form of

, , , , , , ,w fS B D t t E L = Φ X : 

( )acrN = ℑ X     (13) 

The uncertainty model is constructed based on the 
deterministic model by taking into account the randomness of 
input parameters. The parameters assumed to be random are 

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )w fS B D t t E Lω ω ω ω ω ω ω ω = Φ X , where ω  
represents the randomness of the parameters. This model can 
be written as: 

( )( ) ( )acrN ω ω= ℑ X     (14) 

C. Global Analysis by Monte Carlo Simulation 

Sensitivity analysis for in-plane elastic buckling load of the 
steel arches has been performed using the global sensitivity, 
which is based on Sobol’s sensitivity indices. Monte Carlo 
simulation is established with the use of Matlab. The flowchart 
is shown in Figure 4. 

 

 
Fig. 4.  Flowchart of the sensitivity analysis for in-plane elastic buckling 

load of steel arches based on the Sobol’s indices of global sensitivity by 
Monte Carlo simulation. 

IV. NUMERICAL RESULTS 

A. Validation of the Matlab Code of Sobol’s Indices 
Sensitivity Analysis 

In order to validate the Matlab code of the Sobol’s indices 
of global sensitivity by Monte Carlo simulation, a test function, 
namely Ishigami’s function was employed, defined as [21]: 

( ) 2 4

1 2 3 1

1
sin 7sin sin

10
Y X X X X X= + +     (15) 

where X1, X2, X3 are uniform distributions between -π and π. 
The numerical results are shown in Table I. A comparison with 
the results from [5] implies the reliability of the proposed 
program. 

TABLE I.  MEAN ESTIMATION WITH 10,000 MONTE CARLO SAMPLES 

OF FIRST AND TOTAL SOBOL’S INDICES 

Xi 

Proposed code Result in [5] Error (%) 

Si STi Si STi Si STi 

1 X1 0.315 0.577 0.313 0.576 0.63 0.17 

2 X2 0.432 0.440 0.434 0.438 0.46 0.45 

3 X3 0.001 0.258 0.001 0.254 0.00 1.55 

 

B. Sensitivity Analysis of In-plane Elastic Buckling Load of 
Steel Arches 

Global sensitivity based on Sobol’s sensitivity indices was 
applied to evaluate the influence of input random variables on 
the in-plane elastic buckling load of steel arches under uniform 
compression. The input parameters are divided in two cases: 

Case study 1: The in-plane elastic buckling load of the 
fixed steel arches under uniform compression with input 

parameters , , , , , , , .w fS B D t t E L Φ
  

Case study 2: The in-plane elastic buckling load of the pin-
ended steel arches under uniform compression with input 
parameters , , , , , , , .

w f
S B D t t E L Φ  

1) Case Study 1 

The fixed steel arch under uniform compression is shown in 
Figure 5. The input variables are shown in Table II. Global 
sensitivity based on Sobol’s sensitivity indices is applied to 
evaluate the influence of input random variables on the in-
plane elastic buckling load of the fixed steel arches under 
uniform compression. After 100,000 simulations in 67.0 
minutes, the results of Sobol’s sensitivity indices are shown in 
Table III and Figure 6. 

 

 
Fig. 5.  The fixed steel arches under uniform compression and the cross-

section of the arch. 

TABLE II.  STATISTICAL PROPERTIES OF RANDOM VARIABLES FOR 

SOBOL’S INDICES SENSITIVITY ANALYSIS 

Properties Variables Distribution Range Units 

Geometry 

S Uniform /6.283 – 7.679/ m 

L Uniform /9.00 – 10.00/ m 

Φ Uniform /0.628 – 0.768/ Rad 

Material E Uniform /18E5 – 22E5/ Mpa 

Cross-

section 

D Uniform /0.235 – 0.287/ m 

B Uniform /0.136 – 0.166/ m 

tw Uniform /0.007 – 0.008/ m 

tf Uniform /0.011 – 0.014/ m 
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TABLE III.  MEAN ESTIMATION WITH 100,000 MONTE CARLO 
SAMPLES OF FIRST AND TOTAL SOBOL’S INDICES 

 1st order effects Total effects 

X1 (S) 0.2942 0.2819 

X2 (E) 0.0795 0.0690 

X3 (D) 0.6577 0.6510 

X4 (B) 0.0425 - 

X5 (tw) 0.0425 - 

X6 (tf) 0.0425 - 

X7 (Φ) 0.0425 - 

X8 (L) 0.0425 - 

 

(a) 

 

(b) 

 

Fig. 6.  (a) First order and (b) total Sobol’s sensitivity indices of the fixed 

steel arches under uniform compression. 

Table III and Figure 6 show the influence of input random 
variables on the in-plane elastic buckling load of the fixed steel 
arches under uniform compression based on Sobol’s sensitivity 
indices. It can be seen that S, E and D are the most influential 
input random variables with proportions of 24.0%, 6.0%, and 
53.0% of the first-order Sobol’s sensitivity indices, respectively 
and the total order sensitivity indices are 28.0%, 7.0%, and 
65.0%, respectively. Meanwhile, the least influential input 

random variables are B, tw, tf, L and Φ with a proportion of 
3.0%. This is consistent with the qualitative concept and that 
means the importance of sensitivity analysis of the in-plane 
elastic buckling load of the fixed steel arches under uniform 
compression.   

2) Case Study 2 

The input variables are shown in Figure 7 and Table II. 
Global sensitivity based on Sobol’s sensitivity indices was 
applied to evaluate the influence of the input variables on the 
in-plane elastic buckling load of the pin-ended steel arches 
under uniform compression. The results after 100,000 
simulations in 69.0 minutes are shown in Table IV and Figure 
8. 

 
Fig. 7.  The pin-ended steel arches under uniform compression and the 

cross-section of the arch. 

(a) 

 

(b) 

 

Fig. 8.  (a) First order and (b) total Sobol’s sensitivity indices of the pin-

ended steel arches under uniform compression. 

TABLE IV.  MEAN ESTIMATION WITH 100,000 MONTE CARLO 

SAMPLES OF FIRST AND TOTAL SOBOL’S INDICES 

 1st order effects Total effects 

X1 (S) 0.2337 0.2788 

X2 (E) 0.0472 0.0738 

X3 (D) 0.6611 0.6844 

X4 (B) 0.2337 - 

X5 (tw) - - 

X6 (tf) - - 

X7 (Φ) - - 

X8 (L) - - 

 

Table IV and Figure 8 show the influence of the input 
variables on the in-plane elastic buckling load of the pin-ended 
steel arches under uniform compression based on Sobol’s 
sensitivity indices. It can be seen from Table IV and Figure 9 
that S, E and D are the most influential input random variables 
with proportions of 26.0%, 6.0% and 60.0% of the first order 
Sobol’s sensitivity indices, respectively and the total order 
sensitivity indices are 28.0%, 7.0% and 64.0% respectively. 
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Meanwhile, the least influential input random variables are B, 

tw, tf, L and Φ with a proportion of 2.0%.  

From the above case studies, it can be seen that Sobol’s 
sensitivity indices of random input variables on the in-plane 
elastic buckling load of steel arches condition of the fixed and 
pin-ended steel arches under uniform compression are not 
significant. The input random variables have a high sensitivity 
including S, E, and D. The obtained results show the 
significance of this research.  

V. CONCLUSIONS 

This paper proposed an algorithm to assess the structural 
sensitivity of the in-plane elastic buckling load of steel arches. 
The numerical process is developed based on Sobol’s 
sensitivity indices and Monte Carlo simulation. The in-plane 
elastic buckling load of steel arches condition of the fixed and 
pin-ended steel arches under uniform compression is 
considered in the structural sensitivity assessment. From the 
numerical analysis, the flowing conclusions can be drawn:  

• The algorithm is based on Sobol’s sensitivity indices and 
Monte Carlo simulation and is developed for the sensitivity 
analysis of steel arches. A verification of the proposed 
algorithm is conducted using the Ishigami’s test function. 

• The developed procedure can be applied for the in-plane 
elastic buckling load of steel arches as an important 
recommendation for the selection of the input random 
variables based on numerical analysis. 

• An extended application for other types of structures is 
highly feasible, however additional numerical tests and 
verifications are required. 
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