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Abstract—Undesirable operation of a distant relay at the 

occurrence of stressed conditions is a reason for blackouts. There 

are a few computational intelligent methods available in the 

literature for avoiding relay maloperations. However, because of 

variations in the system parameters and expansions of the 

network, the performance of these techniques can be degraded. 

To solve this issue, data mining approaches have been 

introduced. The existing data mining approaches need 

improvement in terms of accuracy and error rate while 

discriminating fault and stressed conditions. In this paper, a 
Convolutional Neural Network (CNN) based classifier is 

proposed for identifying various faults and differentiating fault 

and power swing situations. The data are collected from the 

IEEE-9 bus system by Phasor Measurement Units (PMU) and the 

proposed CNN classifier model classifies system conditions like 

normal, fault, and power swing. The outcome shows that the 

classifier has high accuracy and low error rate compared to other 
classification models such as Naïve Bayes, Decision Tree, and K-

Nearest Neighbor. Furthermore, the proposed CNN model is 

validated with the use of TensorFlow framework to demonstrate 
its superior performance. 

Keywords-convolutional neural networks; distance relay; 

phasor measurement units; power swing 

I. INTRODUCTION  

Increasing power demand leads to the development of 
proper infrastructure to transmit power from generation centers 
to areas located at large distances with long distance 
transmission lines. The main objective of all power systems is 
to maintain continuous power supply and minimize power 
transmission losses. However, natural events or equipment 
failure may lead to faults. If the fault persists, it may lead to 
long term power loss, blackouts, and permanent damage to 
some equipment. To prevent such undesirable situations, 
temporary isolation of the live system has to be done as soon as 
possible. Distance relays are generally used for primary and 
back-up protection of transmission lines. A distant relay takes a 
decision based on local voltage and current measurements. 
Under stressed conditions, the relay finds it difficult to 
differentiate a fault and a stress condition and consequently 
there is a possibility it maloperates. Power system networks are 
recently equipped with synchro phasor based Wide Area 

Monitoring Systems (WAMSs). Issues like growing input data 
size, uncertainty associated with them, complex and nonlinear 
behavior of power systems, required support in the decision 
making process of the distance relay, and the complexity of the 
network led to revisions in the transmission line protection. 
One of the major reasons for power system instabilities is the 
lack of the protective relay’s ability to discriminate faults from 
other stressed conditions [1]. Outages like generator outage, 
planned line outage, line faults, and relay maloperations are 
some of the factors that cause stress in the system [2]. The 
malfunction and stress caused in the system leads to power 
system outages [3, 4]. Algorithms depending on the rate of 
progress of voltage and high-frequency substance of signals are 
proposed to recognize faults from other stressed occasions [5, 
6]. Such methodologies require exceptional observations for 
the approximation of the high-frequency substance of waves. 
Hence, it becomes a necessity to be able to discriminate 
between fault and stressed conditions occurring in the 
transmission lines, which is a major challenge in the domain of 
power system protection. In this research, one of the stressed 
conditions is addressed. 

To perceive the power swing situation and avoid 
undesirable tripping of lines, Power Swing Blocking (PSB) is 
mostly used [7-9]. Several algorithms based on PMU synchro 
phasor data to accomplish backup protection have been 
proposed [10-16]. However, these methods have been 
furnished with PMUs on both sides. Numerous power swing 
detection schemes have been addressed by observing the 
instantaneous change and the rate of progress of power and 
current waveforms [17-20]. Authors in [21] introduced a 
method for discriminating fault occasions and stressed 
conditions based on an examination of voltage in various ways. 
An algorithm to reduce the quantity of synchronized devices in 
the system is discussed in [22]. Authors in [23] exhibited a 
method for the back-up protection of transmission lines by 
utilizing synchro phasor estimations with a smaller number of 
PMUs contrasted with conventional wide-area protection 
methods [23]. Various techniques to discriminate stressed 
events from fault occasions and avoid zone-3 maloperation by 
using PMUs are presented in [24-32]. 
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Based on parameters like voltage, angle, frequency, and 
damping data from WAMS, fuzzy logic and ground-breaking 
techniques have been presented for avoiding relay malfunctions 
at the time of a power swing [31-35]. However, the drawback 
of the fuzzy logic based method is that it utilizes explicit 
knowledge base fuzzy rules and gives insufficient details about 
the fault-symptom relationship. Although the above mentioned 
methodologies are able to accomplish backup protection, the 
complex nonlinear behavior of a power system demands 
computationally efficient methods. This can be accomplished 
by data mining techniques. Data-mining is a non-parametrical 
statistics-based method [36] which is well suitable for 
analyzing power systems’ behavior. Data mining approaches 
for classifying fault and stressed conditions based on the DC 
offset attributes, the fundamental component of the current 
signal, and differential features [34, 39] and on various 
parameters for classifying fault and stressed conditions [38, 39] 
have been proposed. Data mining algorithms addressed in the 
literature are Random Forest, Support Vector Machine (SVM) 
and Decision Tree. Random Forest algorithm is more complex, 
requires more computational resources, and is time- 
consuming. SVM is efficient but not suitable for large datasets 
and also it may underperform if the target classes overlap. The 
Decision Tree gives higher accuracy, however its value is less 
than 100% for the specified application. This shows the 
necessity of testing the suitability of other data mining 
algorithms for the identification of faults and the discrimination 
of faults and stressed conditions. 

CNNs are very powerful and efficient in terms of memory, 
complexity, accuracy, minimum error rate, and efficiency in 
handling large datasets. Therefore, a data mining approach 
using a CNN-based classifier for the identification of faults and 
differentiation of faults and power swings is proposed in this 
paper. Also, an attempt has been made to observe how a 
statistical-based classifier (Naive Bayes), a distance-based 
classifier (K-Nearest Neighbor) and tree-based classifier 
(Decision Tree) are suitable for the above-mentioned research 
problem. 

II. MODELING OF SYSTEM COMPONENTS 

The system considered for study is the IEEE 9-bus system, 
which comprises of 9 buses, 3 generators, 3 loads and 3 
transformers. Figure 1 shows the single line diagram of the 
IEEE 9-bus system. The bus data of are represented in Table I. 

TABLE I.  IEEE 9-BUS SYSTEM BUS DATA 

S.No. 
Gen 

(MW) 

Gen 

(Mvar) 

Load 

(MW) 

Load 

(Mvar) 

Nom 

(kV) 

Volt 

(kV) 

P.U 

(V) 

Angle 

(deg) 

1 247.5 27.91   16.5 17.16 1.04 0 

2 192 4.9   18 18.45 1.03 9.173 

3 128 11.45   13.8 14.15 1.03 5.14 

4     230 235.8 1.03 -2.22 

5   125 50 230 229.9 1 -3.68 

6   90 30 230 232.8 1.01 -3.57 

7     230 236.2 1.03 3.8 

8   100 35 230 234 1.02 1.34 

9     230 237.5 1.03 2.44 
 

 
Fig. 1.  Single line diagram of the IEEE 9-bus system 

PMU is an ideal measurement system for protecting, 
monitoring, and controlling a power system. Discrete Fourier 
Transform (DFT) based PMU is modelled/designed in this 
work. DFT-based PMU is employed to extract the fundamental 
frequency components from the complex form of the signals. 
DFT evaluates the Fourier coefficients for the given data 
sequence [40]. In the system under study, 6 PMUs are 
positioned in the buses 4, 5, 6, 7, 8 and 9 and full observability 
is considered. Voltage and current are obtained from PMUs at 
the specified busses and are used to calculate the required 
information at all buses and lines. The data from the PMU are 
received at 20kHz sampling frequency. 

III. PROPOSED METHODOLOGY 

The proposed methodology is presented in Figure 2. 
Voltage and current at the buses are measured using the PMUs 
placed at the IEEE 9-bus system. These measurements are used 
to calculate information at all the buses. This information is 
nothing but the dataset which is preprocessed and given to the 
CNN classifier (for training and testing). This in turn classifies 
the system parameters into Normal, Fault, or Power Swing 
conditions. If the condition is a fault condition, then the CNN 
will identify the fault type. 

 

 
Fig. 2.  Block diagram of the proposed methodology 
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A. Dataset 

The data are collected for system conditions like Normal, 
Fault and Power Swing. The PMUs placed at the respective 
buses provide the information of voltage and current of each 
bus. From these values, eight attributes/parameters, namely the 
voltage magnitude, the phase angle of the voltage, the current 
magnitude, the phase angle of the current, the impedance 
magnitude, the phase angle of impedance, the real and the 
reactive power are calculated for each bus. A total of 6 buses 
are selected for PMU placement and a total of 8 parameters are 
calculated for each bus. Therefore, a total of 48 (6×8) attributes 
are obtained in this process contributing to 48 columns of 
stored data. The rows of the dataset depend on the simulation 
time and roughly range around 40000 for a simulation time of 
2s for 20kHz sampling frequency. This shows that the dataset 
collected is very large and it cannot be considered directly for 
classification. Therefore, it needs to be preprocessed. 

B. Data Preprocessing 

The dataset collected is preprocessed using Probabilistic 
Principal Component Analysis (PPCA) technique combined 
with Partial Least Squares Regression (PLSR) algorithm, for 
data reduction where the size of the data is reduced. In the 
PPCA model, every piece of data is stated with probabilistic 
distribution and a new model is reconstructed followed by the 
linear combination among the principal component and the 
data. Then, the dimension of the new model is reduced from 

the original data. Finally, the output from the PPCA is further 
reduced in dimension by using PLSR algorithm. This 
preprocessed dataset is split into two sub-datasets: training and 
testing. The training dataset along with its corresponding labels 
is fed to the CNN network for training. Then the test dataset is 
sent as input to the fully trained CNN network for 
classification. 

C. CNN Based Classifier 

A CNN is a very powerful data mining machine learning 
algorithm for classification problems. The main benefit of 
using CNN is that it can function on large datasets with higher 
classification accuracy. A CNN is a neural network including a 
feed-forward structure which comprises of three kinds of 
layers: Convolutional Layer (CL), Sub-sampling Layer (SL), 
and the Fully-linked Layer (FL). CL convolves the 
contribution. The SL is connected directly after every CL. SL 
diminishes the dimension of information input features and the 
total parameters in the system. FL is a conventional feed-
forward neural system that utilizes soft-max function as a 
stimulation function in the outcome [41, 42]. 

After preprocessing, the values extracted from the 
simulation are labeled as Normal, Fault, Power Swing and are 
given for training to the CNN. The trained CNN classifier then 
is called to classify the system condition fed with the test 
samples. 

 

 

Fig. 3.  Modeling of IEEE 9 bus system in SIMULINK 
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IV. RESULTS AND DISCUSSION 

A. Dataset Collection 

The proposed system is modeled and simulated with 
MATLAB/SIMULINK. The SIMULINK Model is presented in 
Figure 3 which shows the modeling of the IEEE 9-bus system 
with six PMUs placed at the buses 4, 5, 6, 7, 8 and 9. Initially, 
the system is simulated under normal condition and data for 
Normal state are collected and labeled accordingly. Then data 
for the following fault conditions are collected: at time 
durations of 0-0.5s, 0.5 to 1s, 1-1.5s and 1.5 to 2s. The fault 
conditions are: 

• Single line to ground fault, i.e. A-G, B-G, and C-G. 

• Double line to ground fault, i.e. AB-G, BC-G, and AC-G. 

• Line to line fault, i.e. A-B, B-C, and C-A. 

• Three phase fault, i.e. A-B-C and A-B-C-G fault. 

The above faults are applied between the 7th and 8th buses 
for each mentioned time interval and the required parameters 
are calculated. The total simulation time is 2s. 

Similarly, to simulate power swings between two buses, 
each fault is applied in the line 7-8 with a fault impedance. The 
fault is cleared by operating the breakers of the line 7-8 after 
0.2s of its occurrence which directs to a power swing in the line 
7-5. The data for Power Swing are collected with the above 
mentioned faults for the time intervals of 0-0.5s, 0.5 to 1s and 
1-1.5s. The whole dataset includes the values of all 
parameters/attributes for all buses. That means the dataset 
includes a total of 78 case samples with 1 case for normal 
condition, 44 fault cases (11 fault conditions × 4 different time 
intervals), and 33 (11 × 3 different time intervals) power swing 
cases. For each case, the data matrix with dimensions 
39601×48 is generated and stored, giving a total of 1900848 
values for each case. Since the size of the data is large, they 
need to be given for preprocessing. The waveforms from 
Figure 4 to Figure 9 show all the system conditions under 
consideration. The voltage and current waveform of the IEEE 
9-bus system, during normal conditions are shown in Figure 4 
and 5 respectively.  

 

 

Fig. 4.  Voltage during normal condition 

 

Fig. 5.  Current during normal condition 

Figures 6 and 7 show the voltage and current waveforms of 
the system under a single phase to ground fault at Phase-A, 
where the fault is applied at 0.2s and is cleared at 0.3s. Figures 
8 and 9 respectively show the phase voltage and the phase 
current during a power swing situation. These Figures depict 
the simulation of a power swing, i.e. when a double line to 
ground fault is applied in the line 7-8 at 0.5s with a fault 
impedance and the fault is cleared by operating the breakers of 
the line 7-8 after 0.2s of its occurrence which directs to a power 
swing in the line 7-5. All the measurements are in per unit 
values. 

 

 
Fig. 6.  Voltage during fault condition (single line – ground fault) 

 

 
Fig. 7.  Current during fault condition (single line – ground fault) 
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Fig. 8.  Voltage during power swing 

 

Fig. 9.  Current during power swing 

B. Pre-processing 

A combination of the PPCA method and the PLSR 
algorithm is used for preprocessing the proposed system. By 
using the coefficients of the PPCA model, the size of the data 
attributes is reduced or even minimized. In the studied system, 
the output of the PPCA is 2 rows and 48 columns. i.e. the data 
gets reduced from 39601 rows to only two with the lower and 
higher coefficients of each column. Since, there are 48 
attributes, the size of the dataset is reduced to 2×48. After 
extracting the output from the PPCA, the PLSR algorithm is 
used to mine the feature values into the sum score. This sum 
score values are added to the eight attributes/columns 
respectively. As a result, 6 values/columns (48/8) per data 
sample are produced. These 6 values for each case sample are 
efficient and are further used in the CNN for classification. The 
seventh/last column consists of the class labels. There are three 
class labels (Normal, Fault, and Power Swing) A snap-shot of 
the pre-processing output is shown in Figure 10. 

 

 
Fig. 10.  Snapshot of the pre-processing output 

C.  Discrimination of Fault and Power Swing with the 

Proposed CNN-based Classifier 

All the required data attained from the IEEE 9-bus system 
which utilizes PMUs are ready after the preprocessing stage to 
be given to the CNN classifier. The implementation and 
training of the CNN is depicted in Figure 11 which shows its 
architecture diagram. The architecture includes an input with 6 
data values from the output of the preprocessing for each case. 
There are total 78 observations/cases as mentioned above. 
Next, this input is multiplied by a randomly generated weight. 
The multiplied input is added with bias for biasing the 
activation function. There are 10 hidden nodes used in the 
hidden layer. From the hidden layer, the values are then passed 
to the output layer for classification. In the output layer, the 
random weight is multiplied and bias is added in the same 
manner. The output layer consists of three nodes (class labels) 
for Normal, Fault, and Power Swing conditions.  

 

 

Fig. 11.  Implementation and training of the CNN 

Training and testing data comprise of all the functioning 
situations stated above with various time frames. Figure 12 
shows the output of the presented classifier during Normal 
condition, which is assumed as ‘0’ in this system. It indicates 
that there is no fault or power swing conditions in the system. 
The display for fault conditions is 1 and power swing is -1. 
Figure 13 shows the output of the presented classifier during a 
Fault condition. The proposed classifier also identifies the type 
of the fault, i.e. single phase fault, two phase fault, and three 
phase fault, when a fault condition occurs. One such result is 
shown in Figure 14. A sample screenshot shown in Figure 15 
clearly shows the implementation of the proposed 
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methodology, i.e. the classification of one of the system 
conditions (Power Swing). 

 

 
Fig. 12.  Output of Normal condition  

 
Fig. 13.  Output of Fault condition 

 
Fig. 14.  Output of Fault type 3: Phase Fault 

 
Fig. 15.  Classification of the Power Swing system condition 

The performance of the CNN classifier is analyzed and 
evaluated with measures such as accuracy, error rate, and 
specificity. In general, the ratio of correct predictions over the 
total number of instances evaluated is given by accuracy and 
the ratio of incorrect predictions over the total number of 
instances evaluated is given by error rate. Specificity is the 
ability of the classifier to identify negative results. The 
statistical summary of the proposed classifier is shown in 
Figure 16. The classification accuracy achieved using the CNN 
model in MATLAB is 98.72%, the error rate is 0.0128 and the 
specificity is 1. Also, the Figure shows the detailed process of 
classification with statistics for all the 78 observations that are 
obtained after preprocessing (as mentioned above) which in 
turn are given as input to the classifier. We can conclude that 
the classifier is able to classify/discriminate the system 
conditions effectively. 

 

Fig. 16.  Statistical summary of the proposed classifier 

V. PERFORMANCE INDICES  

The preprocessed dataset was also given as input to the 
Decision Tree (DT), Naïve Bayes (NB), and K-Nearest 
Neighbor (KNN) classifiers in order to compare the 
performance of the proposed CNN classifier in terms of 
accuracy, specificity, error rate, and execution time with their 
performance. NB is a simple, effective, statistical/probabilistic 
based classification approach based on Bayes’ theorem. KNN 
is the simplest machine learning algorithm and it is utilized for 
classification applications. A DT has the structure of a tree and 
is a simple machine learning approach where the data are 
classified on attribute values by continuously splitting 
according to a certain parameter [43, 44]. The results of these 
classifiers for the same dataset are shown in the form of 
statistical summaries in Figures 17-19.  

 

 

Fig. 17.  Statistical summary of the KNN classifier 
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Fig. 18.  Statistical summary of the Naïve Bayes classifier 

 
Fig. 19.  Statistical summary of the Decision Tree classifier 

Figure 20 shows the comparison of classification accuracy 
of the proposed with the other classification methods. The 
proposed classifier achieved an accuracy of 98.72%, whereas 
the DT achieved 96.15%, NB only 56.41%, and KNN achieved 
80.77% accuracy. Figures 21 and 22 show the comparison of 
the proposed CNN with other classification methods in terms 
of specificity and error rate respectively. The CNN classifier 
and NB classifiers have a specificity of 1, whereas the KNN 
and DT have 0.9870. The error rate of the proposed CNN 
classifier is 0.0128 which is very low compared to the error 
rates of DT (0.0385), NB (0.4359), and KNN (0.1923). Figure 
23 shows the comparison of the proposed CNN with the other 
classification methods in terms of execution time in seconds. It 
shows that the CNN takes lesser time to execute than Decision 
Tree, KNN, and Naive Bayes classifiers. 

 

 

Fig. 20.  Accuracy comparison  

 

Fig. 21.  Specificity comparison  

 
Fig. 22.  Error rate comparison 

 

Fig. 23.  Execution time comparison 

An ROC (Receiver Operating Characteristic) curve is a 
measure in the form of a graph that shows the performance of a 
classification model [43, 44]. This curve plots two parameters 
namely True Positive Rate and False Positive Rate. The 
comparison of the proposed CNN with NB, KNN and DT in 
terms of ROC curve is shown in Figure 24. It can be seen that 
the CNN has better ROC performance compared to the other 
classification methods.  

From the results, it is shown that the proposed CNN 
classifier has higher accuracy, higher specificity, and lower 
error rate in comparison with the existing classification 
methods in the discrimination of fault and power swing 
situations. By the ROC curve graph, it can be concluded that 
CNN has a very good performance, because in general, a 
perfect classifier should have an ROC curve which will go 
straight up the Y axis and then along the X axis. Also, the ROC 
curve will sit on a diagonal for a less powerful classifier while 
generally for most classifiers it lies in between.  
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Fig. 24.  ROC curve comparison 

VI. VALIDATION USING TENSORFLOW FRAMEWORK 

The proposed CNN classifier model is further validated in 
TensorFlow framework for the same preprocessed dataset. 
TensorFlow CNN framework is developed in Python Jupiter 
environment. It works in the backend whereas the Keras is used 
in the frontend. To develop the CNN model, packages such as 
numpy and pandas are imported. The model summary of 
TensorFlow design is shown in Figure 25. The model summary 
depicts the CNN layer design with various layer types and 
sizes. The performance of the classifier is found to be efficient 
using the above framework. 

 

 
Fig. 25.  TensorFlow CNN model summary 

The class statistics which shows the detailed process of 
classification is shown in Figure 26. The confusion matrix (a 
metric which summarizes the performance of the classification 
algorithm in the form of a table) and the overall statistics of the 
performance of CNN are shown in Figure 27. From Figures 26 
and 27 it is seen that the accuracy achieved for classification 
using the TensorFlow model of the CNN is 98.7179%. A plot 
of accuracy and losses with the variations in the number of 
epochs is displayed in Figure 28. This plot shows that accuracy 
increases and loss reduces with epochs. 

The accuracy achieved for classification using the 
TensorFlow and the MATLAB CNN models is 98.7179% and 

98.72% respectively. Thus, we can conclude that the proposed 
model of the CNN classifier is proved to be better compared to 
other data mining models for the addressed problem. 

 

 
Fig. 26.  Class statistics for TensorFlow CNN  

 
Fig. 27.  Confusion matrix and overall statistics for TensorFlow CNN  

 
Fig. 28.  Accuracy and loss for TensorFlow CNN 

VII. CONCLUSION 

This paper proposed a data mining approach based on CNN 
to classify the power system conditions. The proposed 
methodology utilizes wide-area measurements for computation 
of the features to the classifier. The data are collected from the 
IEEE 9-bus system by PMUs while considering full 
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observability. The classifier discriminates whether the system 
is in normal, fault, or power swing condition. Additionally, it 
identifies the type of the fault that occurs in the system. The 
proposed CNN-based classification technique gave accurate 
results for all tested conditions without compromising 
accuracy. The represented outcomes established that the 
classification accuracy of the proposed classifier is high and 
has lower error rate compared to other known classification 
methods, namely Decision Tree, KNN and Naïve Bayes 
classifiers. Furthermore, the proposed classifier has been 
validated by the TensorFlow framework. Thus, the main 
objective of this research which was achieving better 
efficiency, compared to the ones reported in the literature, 
using the data mining approach has been accomplished. 
Moreover, the present work can be extended to design a new 
technique that can be applied to discriminate fault and other 
stressed conditions. This would enhance the performance of the 
distance relay and can prevent its maloperation. 
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